
20

A Comparative Study of Recent Wireless Sensor Network Simulators

IVAN MINAKOV and ROBERTO PASSERONE, University of Trento
ALESSANDRA RIZZARDI and SABRINA SICARI, Università degli Studi dell’Insubria

Over recent years, the continuous interest in wireless sensor networks (WSNs) has led to the appearance
of new modeling methods and simulation environments for WSN applications. A broad variety of different
simulation tools have been designed to explore and validate WSN systems before actual implementation and
real-world deployment. These tools address different design aspects and offer various simulation abstractions
to represent and model real-world behavior. In this article, we present a comprehensive comparative study of
mainstream open-source simulation tools for WSNs. Two benchmark applications are designed to evaluate
the frameworks with respect to the simulation runtime performance, network throughput, communication
medium modeling, packet reception rate, network latency, and power consumption estimation accuracy.
Such metrics are also evaluated against measurements on physical prototypes. Our experiments show that
the tools produce equivalent results from a functional point of view and capacity to model communication
phenomena, while the ability to model details of the execution platform significantly impacts the runtime
simulation performance and the power estimation accuracy. The benchmark applications are also made
available in the public domain for further studies.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems;
I.6 [Computing Methodologies]: Simulation and Modeling; C.2 [Computer Systems Organization]:
Computer-Communication Networks

General Terms: Design, Measurement, Performance, Verification

Additional Key Words and Phrases: WSN simulation tools and environments, system architectures, model-
ing, performance, power consumption estimation

ACM Reference Format:
Ivan Minakov, Roberto Passerone, Alessandra Rizzardi, and Sabrina Sicari. 2016. A comparative study of
recent wireless sensor network simulators. ACM Trans. Sen. Netw. 12, 3, Article 20 (July 2016), 39 pages.
DOI: http://dx.doi.org/10.1145/2903144

1. INTRODUCTION

In recent years, we have witnessed a steadily increasing interest in the use of net-
worked embedded systems in a large variety of applications. In particular, wireless
sensor network (WSN) systems have great potential to bring new smart sensing en-
vironments and replace traditional wired sensor systems with more flexible and less
expensive solutions. Despite the many research activities pursued at several academic
and industrial centers, the area of WSN is still open, with many aspects related to archi-
tectures, protocols, and software layers not yet well defined and standardized [Mottola

Authors’ addresses: I. Minakov and R. Passerone, Dipartimento di Ingegneria e Scienza dell’Informazione,
University of Trento, via Sommarive 9, 38123, Trento, Italy; emails: {ivan.minakov, roberto.passerone}@
unitn.it; A. Rizzardi and S. Sicari, Dipartimento di Scienze Teoriche e Applicate, Università degli Studi
dell’Insubria, via Mazzini 5, 21100, Varese, Italy; emails: {alessandra.rizzardi, sabrina.sicari}@uninsubria.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1550-4859/2016/07-ART20 $15.00
DOI: http://dx.doi.org/10.1145/2903144

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

http://dx.doi.org/10.1145/2903144
http://dx.doi.org/10.1145/2903144

20:2 I. Minakov et al.

et al. 2010]. In contrast to traditional networks (e.g., TCP/IP), there are no common
design patterns, standard APIs, and hardware solutions to be applied for all possible
applications. For instance, it is often the case that a sensor network system is designed
essentially from the ground up, a situation that in turn requires an individual design
approach in order to satisfy a range of application-specific demands. In addition to the
design issues inherent to traditional networks, WSN development faces a new set of
specific objectives, which were considered of secondary importance before. These in-
clude, for instance, the management of the limited hardware resources present in the
network node, the limited battery power, and custom ad hoc communication infras-
tructure [Rossi et al. 2014]. In addition, the wide choice of available nonstandard MAC
and routing protocols complicates the design process even more, making it difficult to
choose the right solution that best fits a particular system [Langendoen and Meier
2010]. It is unlikely that this situation will change in the near future due to the very
application-specific nature of the WSN systems. As a consequence, it is essential to be
able to explore and validate the various aspects of a complex design space (induced by
different design choices) before proceeding to the actual implementation and real-world
deployment.

The most common approaches for the evaluation of WSN systems include modeling,
simulation, and prototyping. Prototyping is a widely used method, which provides an
efficient evaluation of the tested systems [Srinivasan et al. 2010; Li et al. 2013]. De-
spite its obvious benefits, prototyping has a number of crucial disadvantages in terms
of high cost and time required to build, run, and debug experimental systems. When
prototyping is impractical, and during the early phases of the design space exploration
process, models can be used to analyze the system both analytically and through simu-
lation [Pinto et al. 2006]. Analytical methods are commonly used to statically evaluate
classes of techniques against some optimization criteria [Jung et al. 2009; Dietrich and
Dressler 2009; Palopoli et al. 2011]. When the designer is interested in the dynamic
behavior of the system, models are typically used in conjunction with simulation [He
et al. 2006], which is currently one of the most widely used techniques to explore and
evaluate the design of WSN applications. For this purpose, various simulation envi-
ronments have been developed in recent years. These tools offer a diversified set of
facilities to model, examine, and test aspects such as application algorithms, commu-
nication protocols, cooperative network behavior, and power-saving techniques. Each
simulation tool is designed for a specific purpose and has a different level of accuracy
and suitability depending on the target application. Because of this, it is essential to be
aware of the strengths and weaknesses of the available simulators in order to use them
properly according to the purpose they were designed for. Many studies and surveys
on available WSN simulation environments have been recently presented in the liter-
ature [Singh et al. 2008; Khemapech et al. 2005; Egea-Lopez et al. 2005; Korkalainen
et al. 2009; Kuorilehto et al. 2008]. These provide a general picture on the state of the
art of WSN simulation toolkits. However, only a few of the published papers exhibit
practical studies and real test cases to explore and compare the accuracy and the us-
ability of the various tools [Lessmann et al. 2008b; Timm-Giel et al. 2008; Lee et al.
2007].

In this article, we present a practical comparative study of a number of recent open-
source simulation tools for WSN systems. Our main objective is to evaluate and assess
different mainstream simulation environments with respect to the general usability,
runtime performance, model scalability, network channel model accuracy, network fail-
ure rate, MAC protocol performance, network latency, and accuracy of the power con-
sumption estimation. In this article, we study the recent releases of the Castalia [Boulis
2007], MiXiM [Köpke et al. 2008], WSNet [Guillaume et al. 2007], TOSSIM [Levis et al.
2003], and COOJA [Osterlind et al. 2006] simulators, due to their popularity in the

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:3

area, their completeness, and their level of current development support. In addi-
tion, we also evaluate the PASES simulation framework [Somov et al. 2009; Minakov
and Passerone 2013], which we have recently extended with platform, protocol, and
network simulation capabilities, offering an additional tradeoff point among accuracy,
performance, and modeling abstraction. All these tools have much in common and offer
similar functionality that allows one to compare them to each other. The simulations
are also compared to small-scale real deployments to verify the results against realistic
executions.

All evaluated metrics mentioned previously are obtained by means of two separate
benchmark applications that were implemented natively and equally in each of the
studied toolkits. The first test case is designed to assess and compare simulation perfor-
mance, network channel models, and the MAC protocol functionality. In the second test
case, we assess the accuracy of the power consumption simulation results by comparing
them with reference values obtained on a real testbed. We consider these models as an
additional contribution of this work, as they could be used as benchmarks for future
comparisons and tool development. For this reason, all the test case applications stud-
ied in this article are open and available for download at http://eecs.disi.unitn.it/pases
in the Download section.

This article is structured as follows. In Section 2, we first consider mainstream WSN
simulation environments and overview related reports and practical studies of various
simulation tools. Then, the benchmark test cases utilized in our study are described in
Section 3. The details of the design process and the challenges of implementing a set of
equivalent benchmark models in different tools are considered in Section 4. Section 5
presents and discusses the results obtained from the simulations. Finally, we conclude
the article in Section 6.

2. RELATED WORK

In this section, we provide a broad overview of the available simulation environments
for both generic networked and WSN applications. Further, we outline the results from
published comparative evaluation studies and reports on different simulation tools.

2.1. Simulation Environments

The whole set of available simulators for WSNs might be roughly divided into three
broad categories: the general-purpose (generic) network simulators, the network-
oriented frameworks, and the sensor-node-oriented frameworks [Kuorilehto et al. 2008]
specially designed for simulation of WSN applications. The generic network simula-
tors are intended to model and evaluate conventional networks such as the IEEE
802 family of LAN/MAN systems. The WSN network-oriented tools focus on the net-
work aspects of WSN systems and typically offer highly realistic and accurate models
of the communication infrastructure. In general, these tools provide efficient simula-
tion for large-scale network models while simplifying and abstracting the underlying
hardware-software details of the real target systems. Another kind of simulator, re-
ferred to in the literature as either sensor node simulators or emulators, targets inter-
nal operations of sensor nodes while still providing simple lightweight communication
models. These tools are generally intended to validate and test platform-specific soft-
ware on top of the virtual model of the target hardware. Most of the emulators provide
cycle-accurate execution models of the target binary files for various node architec-
tures and offer different profiling facilities to track the application execution process.
Despite the highly detailed simulation results of the internal behavior of the nodes,
these tools are typically bound to a particular hardware architecture and are not capa-
ble of simulating others. The next subsection reviews the state of the art for all of these
categories.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

http://eecs.disi.unitn.it/pases

20:4 I. Minakov et al.

2.1.1. Generic Network Simulators. NS-2 (Network Simulator 2) [Downard 2004] is one
of the most popular general-purpose open-source network simulators. It provides a
broad variety of simulation models for widely used IP network protocols. These include
TCP/IP, routing, and multicasting protocols for conventional wired and wireless net-
works. NS-2 has earned its popularity thanks to its highly extensible object-oriented
architecture based on a discrete-event engine. This allows users to extend the simula-
tion functionality by adding custom components and libraries. Hence, plenty of third-
party implementations of communication protocols, models, and add-ons are available
in NS-2.

The NS-3 tool (Network Simulator 3) [Henderson et al. 2008] is a recent version of
the Network Simulator (NS) family that is intended to replace NS-2. However, NS-3 is
still in the active development process. In spite of its youth, NS-3 is a powerful tool for
network modeling and optimization. It includes models for the most popular protocols
including socket API, TCP/IP, IPv6, MANET routing, IEEE802.11, WiMAX, and so
forth. Like NS-2, NS-3 also has a modular object-oriented architecture combined with
a discrete-event simulation engine written in C++. Due to the the relative novelty of
the tool, there are not many extensions available, especially ones suitable for WSN
applications, and it provides considerably fewer available models than its predecessor.

OMNet++ [Varga 2001] is a component-based C++ simulation library and frame-
work that provides deep analysis of network activities at the packet layer. OMNet++
provides a GUI front-end for simulation setups and result interpretation analysis. It ex-
ploits modules and channels to implement and connect simulation components, where
components are connected in a hierarchical fashion via generic interfaces. OMNet++
has become a popular simulator framework due to its plain and neat architecture and
multiple extensions for conventional and WSN systems.

2.1.2. Network-Oriented Simulators. Most of the available WSN network-oriented tools
are based on the generic network simulation environments that gained popularity in
traditional network research and design.

Castalia [Boulis 2007] is a popular WSN simulator based on the OMNet++ frame-
work. It provides a first-order analysis of algorithms and protocols before actual imple-
mentation on a specific node platform. Detailed radio and communication modeling is a
strong feature of Castalia. It includes an adjustable and highly accurate radio physical
(PHY) model along with an advanced communication channel model based on empiri-
cally measured data. To handle packet delivery, Castalia provides dynamic calculation
of radio Signal Interference and Noise Ratio (SINR) based on modulation type, sig-
nal strength, and other parameters. The PHY model, in turn, includes multiple states
with transition delays among them, different transmission levels and modulations,
and configurable RSSI (Received Signal Strength Indicator) and CCA (Clear Channel
Assessment). Besides, Castalia allows modeling of mobile network units. Additionally,
Castalia includes customizable models of the most popular MAC and routing protocols
for WSN applications. It also provides models of on-board sensors, including effects such
as sensing device noise and bias. Castalia offers power-aware modeling and power con-
sumption reporting for radio components. Besides, it can support simple modeling of
clock drift for CPUs. In addition, the simulator is well documented and provides design
examples for making it easy to adopt by the end-user. Despite its advantages, Castalia
does not include power models for the many typical hardware peripheral components
that constitute a node platform, such as timers, analog-to-digital converters, and so
forth. Additionally, it does not provide any battery model and hence it does not of-
fer lifetime estimation. However, power analysis is not one of the stated purposes of
Castalia. From the point of view of usability, we point out the lack in Castalia of an
efficient postprocessing tool with GUI support.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:5

MiXiM (Mixed Simulator) [Köpke et al. 2008] is another mainstream simulation en-
vironment based on OMNet++. It is a joint project that combines various simulation
tools designed for wireless and mobile simulations. As Castalia, MiXiM provides de-
tailed models of the communication channel and the radio PHY layer. It offers various
radio signal propagation models including a time-variant Signal-to-Noise Ratio (SNR)
level model, a model for path loss, shadowing, and large- and small-scale fading models.
The MiXiM’s PHY layer provides a high level of customization in terms of modulation
types, sensitivity, output signal power, and radio hardware operating states with power
and timing parameters. Along with Castalia, MiXiM offers power-aware modeling and
power reporting for radio modules. Additionally, mobile networks are also supported.
In general, this tool has much in common with Castalia. As a relative disadvantage of
MiXiM, it actually lacks models for hardware peripheral components typical of WSN
nodes and a graphical representation tool for simulation results is still absent.

PAWiS [Weber et al. 2007] is another simulator built on top of the OMNet++ frame-
work. The main focus of PAWiS is power analysis for a wide range of WSN applications.
It provides facilities to simulate a whole sensor network along with accurate modeling
of internal activity for each single node in the network. The model of the sensor node
is represented as a hierarchical composition of HW/SW modules. Modules are inter-
connected via functional interfaces. Its architecture provides an extensible and flexible
simulation infrastructure, where users can customize and add new simulation modules
and components. PAWiS defines two types of simulation components. Software compo-
nents reflect software tasks and application, routing, and MAC protocols. Hardware
components represent hardware models of the sensor node, including the CPU, timers,
Analog-to-Digital Converter (ADC), and radio transceiver. The tasks that simulate the
work of the dedicated hardware are used to report the power consumption to the power
supply module. The biggest disadvantages of PAWiS are (1) lack of support (most re-
cent release was in 2009), (2) insufficient documentation, and (3) lack of clear design
examples.

WSNet [Guillaume et al. 2007] is a standalone simulation tool written in C++ for
Linux. WSNet offers a wide range of radio medium models including a basic ideal phys-
ical layer with no interference, no path loss, and a fixed radio range, as well as complex
and precise ones exploiting Friis propagation formula [Rappaport 2002], Rayleigh fad-
ing [Rappaport 2002], multiple frequencies and complex correlation properties among
frequencies, complex antenna radiation patterns, and so forth. The simulated nodes
in WSNet are built as a composition of blocks that represent either a hardware or a
software component of the node. The available model units include, among others, the
following components and phenomena: mobility, energy source, application, routing
protocols, MAC protocols, radio interface, and antenna. Additionally, WSNet provides
an option to simulate dynamic physical phenomena (e.g., fire) and physical measures
(e.g., temperature, humidity). This feature gives the opportunity to simulate sensor-
driven applications and networks. The lack of a GUI environment for interpreting the
simulation results might be considered a disadvantage of the WSNet toolkit.

DANSE [Baz and Pearce 2011] is a standalone Windows simulator with rich GUI
support. This tool was originally designed for teaching purposes and hence it is opti-
mized for ease of use. It provides an excellent GUI to configure various model options,
run simulations, and study results. Results comprise, among others, simulation event
logs, packet flow records, and visual representation of the nodes’ PHY radio activity.
DANSE offers a relatively simple communication channel model that captures the most
relevant transmission aspects. It simulates packet passing based on the frame length,
distance, path loss, bit error rate, and channel capacity. This toolkit also provides
a set of the most popular MAC protocols. Additionally, DANSE includes experimen-
tally based power models for radio PHY components. Despite its rich GUI features,

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:6 I. Minakov et al.

DANSE does not provide any input interface for the user to define applications, MAC
models, or new hardware options, which, in fact, limits the applicability of this tool.
The only option available for the user is to tune the duty cycle and the packet rate
of the available predefined models, which might be sufficient for the simplest kind of
applications.

Another simulation tool with extensive GUI support is NetTopo [Shu et al. 2011], a
Java-language-based open-source framework for simulation and visualization of large-
scale WSNs. This framework provides a friendly GUI that makes it easy to use and
study network models of interest. The important feature of the NetTopo tool is its
efficient simulation scalability that allows it to handle extremely large-scale network
models consisting of several thousand nodes. In addition, NetTopo provides a flexi-
ble framework for visualizing real sensor network testbeds and enables interactive
communications among simulated sensor networks and visualized testbeds. Although
NetTopo achieves a high level of scalability, the detailed and accurate representation
of the node’s hardware is penalized. This makes this tool not very well suited for the
power consumption analysis and lifetime estimation of WSN applications.

PASES (Power-Aware Simulator for Embedded Systems) [Somov et al. 2009;
Minakov and Passerone 2013] is a standalone Windows application written on top
of the SystemC simulation engine [Grötker et al. 2002]. This toolkit was initially
designed with the aim to perform accurate power consumption estimation for various
WSN hardware platforms. It utilizes a flexible multilayer architecture that allows
users to specify and assemble models of HW/SW platforms from a set of predefined
components including CPUs, timers, ADCs, Flash, USART, radios, and other models.
While PASES was initially oriented toward studying the sensor platform, several
extensions have been developed to offer facilities to model and visually study the
network communication behavior for both static and mobile nodes. The model of
communication channel is based on the pass-log equation [Rappaport 2002] supplied
with various interference models. This model is relatively simpler than the ones
available in Castalia and MiXiM; however, it still provides a reliable communication
environment. Additionally, the PASES component library includes a number of the
most popular WSN MAC protocol models, which can be easily extended with new
user-defined functionality. Simulation results in PASES consist of a number of log files
for various network-related metrics along with energy-performance trace files for each
individual peripheral component of every simulated node. The main benefit of the
PASES toolkit is its plain and easy-to-use interface to assemble heterogeneous models
of HW platforms and to organize them into a network. Additionally, it offers rich GUI
support to interpret simulation results and perform lifetime analysis based on different
battery models. One of the drawbacks is its relative complexity and dependency on
external scripting tools such as Python, which provides a lot of the framework flex-
ibility, but which might be considered an obstacle to get started with this framework.
Additionally, because of the detailed hardware models, it suffers from lower runtime
performance and scalability than other tools for large-scale network models.

Sense [Szymanski and Chen 2007] is a WSN simulator designed on top of COST
[Chen et al. 2002b], a discrete-event simulation core. Sense implements each sensor
node as a collection of components connected via unified input/output ports. Such an
architecture provides a high level of extendibility of the simulation infrastructure.
Sense includes models of the communication channel, duplex transceiver, and a wide
range of MAC and routing protocols. Besides, it provides energy profiling for the radio
transceiver and includes a linear battery model to perform simple lifetime analysis.
However, Sense does not capture timing and power aspects of other hardware com-
ponents present in the sensor node platform such as the CPU, timers, sensors, and
so on.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:7

Table I. WSN Simulation Tools: Comparative Table

Castalia MiXiM PAWiS
Simulation engine OMNet++ OMNet++ OMNet++

Simulation input C++, ini files, nodes,
protocols, application

C++, ini files, nodes,
protocols, applications

C++, ini files, power
models, nodes, protocols

Scalability >100 high low middle

Communication
channel model

experimental SINR path
loss model

path loss model, free
space, log. shadowing

-

Mobile nodes yes yes yes

Supported HW
platforms

virtual platform virtual platform virtual platform

RF PHY model cc2420, cc1100 cc2420, cc1100 cc2420

MAC TMAC, IEEE 802.15.4,
custom MAC

IEEE802.15.4, BMAC,
IEEE 802.11

simple CSMA, IEEE
802.11, CSMA-MPS

Routing - flood, wise route EADV

Sensing channel yes yes yes

Energy profiling simple radio simple radio for each HW component

Battery/lifetime
estimation

no/no linear/no linear/no

Table II. WSN Simulation Tools: Comparative Table

WSNet DANSE PASES
Simulation engine custom custom SystemC

Simulation input C++, XML, nodes,
applications, protocols

C#, XML, nodes, apps,
protocols

Python/C++, XML, power
models, nodes, apps,
protocols

Scalability >100 high high low

Communication
channel model

free space, log.
shadowing, Rayleigh
fading

path loss model path loss model

Mobile nodes yes yes yes

Supported HW
platforms

virtual platform - TelosB, Mica2, custom
models

RF PHY model cc2420, cc1100 virtual PHY, custom cc2420, custom

MAC IEEE 802.11 ALOHA, IEEE 802.11 SMAC, IEEE 802.15.4

Routing greedy, geographic flooding, AODV, Bellman
Ford

flooding, AODV

Sensing channel yes no yes

Energy profiling simple radio simple radio each HW component

Battery/lifetime
estimation

linear/yes linear/yes linear, relaxation/yes

Table I and Table II provide a summary of some of the network-oriented simula-
tors that we have discussed. In particular, Table I groups the simulators that are
based on OMNet++, while those in Table II use either a custom simulation engine or
SystemC. Despite the differences among the toolkits, these environments also share
sufficient similarities, such as simulation input, available models for the wireless chan-
nel, physical layer and MAC level protocols, and so on, which make them amenable to
a performance and accuracy comparison.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:8 I. Minakov et al.

2.1.3. Sensor Node Simulators. We now present the characteristics of the sensor node
simulators, which proved to be very useful when designing a network for future real
deployment.

The TOSSIM simulation environment is included in the TinyOS [Levis et al. 2004]
framework. It exploits the TinyOS component model and is fully integrated with it.
This simulator provides code-level simulation of TinyOS applications that can be run
on actual sensor network hardware. By replacing a small number of TinyOS compo-
nents, TOSSIM simulates the behavior of the low-level hardware. It includes models
for the CPU, ADCs, clocks, timers, and radio components. The TOSSIM simulation
architecture provides a high level of scalability and execution speed for networks with
a large number of sensor nodes. However, the abstract hardware model available in
TOSSIM does not capture low-level details of timing and interrupts, which can be im-
portant for precise time-power analysis. The network simulation in TOSSIM is limited
by the homogeneity of the execution model. It is able to run only the same program
on each node in the network. Besides, the TOSSIM simulation model is not extensible
and it supports only a single hardware platform model (Micaz [Polastre et al. 2005]).
PowerTOSSIM [Perla et al. 2008] is a TOSSIM [Levis et al. 2003] extension that allows
power analysis for TinyOS applications. This simulator provides code-level simulation
of TinyOS applications that can be run on actual sensor network hardware. Power-
TOSSIM equips the TOSSIM hardware model with a specific module, PowerState, to
keep track of state activities for each simulated hardware component. Additionally,
PowerTOSSIM provides CPU profiling support to report the number of cycles for each
execution block. By combining the timing information with the energy model of the
simulated hardware platform, PowerTOSSIM computes the total energy consumed by
the node. However, PowerTOSSIM is included only in the first version of the TinyOS
framework, which is not currently supported. Besides, simulation in TOSSIM and
PowerTOSSIM is supported only for a single platform (Micaz [Polastre et al. 2005]).

AVRORA [Titzer et al. 2005] is one of the most widely used WSN emulation tools. It
exploits cycle-accurate instruction simulation to run the code. AVRORA runs actual ap-
plication binaries without the need to specially adapt them for simulation. It exploits
an efficient method to handle large-scale networks with various events and inter-
rupts happening. AVRORA is similar to TOSSIM in simulation runtime performance
and scalability. Nevertheless, AVRORA solely supports AVR MCU cores [Myklebust
2004] and does not provide any extensions for other CPU architectures. Additionally,
it includes only a single model for the radio transceiver component (CC1100). This
significantly reduces flexibility and makes it impossible to simulate applications de-
signed for non-AVR MCU-based platforms. AVRORA includes the AEON evaluating
tool [Landsiedel et al. 2005] to estimate the power consumption of sensor nodes. AEON
exploits the cycle-accurate execution model of AVRORA for precise timing and energy
measurements. However, AEON supports energy modeling only for the Mica2 [Polastre
et al. 2005] platform.

COOJA/MSPSiM [Eriksson et al. 2009] is a simulation framework for the Con-
tiki [Dunkels et al. 2004] sensor node operating system. Both COOJA and MSPsim
are written as standalone Java-based tools that together allow WSNs to be simulated
at both the operating system (code) and machine instruction level. COOJA provides
an application-level simulation for networks consisting of nodes running the Contiki
OS. COOJA operates in a way similar to how TOSSIM works for TinyOs applications.
The Contiki core, user processes, and special simulation proxy drivers are compiled
into object code native to the simulator platform, and are then executed from COOJA.
MSPSim [Eriksson et al. 2009], in turn, is a cycle-accurate emulator for WSN plat-
forms based on the Texas Instruments MSP430 microcontroller [Texas Instruments
Corporation 2006]. It combines cycle-accurate interpretation of CPU instructions with

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:9

discrete event simulation of all other peripheral components on board, such as the
transceiver, ADC, timers, Usart, and others. In this respect, MSPSim is similar to the
AVRORA tool discussed earlier. COOJA and MSPSim are the best choice for devel-
opment of Contiki-based applications running on the MSP430 hardware architecture.
However, for other hardware platforms and target OSs, these tools do not provide any
support.

VIPTOS (Visual Ptolemy and TinyOS) is a graphical development and simulation en-
vironment for TinyOS-based WSN applications [Cheong et al. 2005]. VIPTOS bridges
together VisualSense [Baldwin et al. 2005], a Ptolemy II-based [Liu et al. 2001] graph-
ical simulator, and the TinyOS framework. VisualSense exploits the actor-oriented
computational model of Ptolemy II, a general modeling framework for heterogeneous
embedded systems. VisualSense defines actor-oriented models for sensor node sub-
systems and communication channels. The interaction among different components
occurs via timestamped events. VIPTOS combines the VisualSense execution semantic
model and the TinyOS low-level hardware representation of the sensor node. Such a
combination extends the capacity of TOSSIM to support simulation of heterogeneous
networks [Cheong et al. 2005]. VIPTOS provides event-driven simulation of actual
TinyOS programs along with packet-level network modeling. It allows one to use the
available Ptolemy II models of computation to model different WSN subsystems. Be-
sides, VIPTOS provides the capability to transform high-level representations of appli-
cations into actual TinyOS code. It allows designers to easily translate the algorithmic
view of an application into a low-level implementation. However, VIPTOS does not pro-
vide any accurate hardware representation of a sensor node. Substantially, it focuses
more on the algorithmic and application domains. Additionally, VIPTOS has been inte-
grated only with the first version of TinyOS, which is not currently supported. Similar
integrations have been provided for other general-purpose simulators. For instance,
Rialto [Bonivento et al. 2006] supports a platform-based approach based on Metropo-
lis [Davare et al. 2013]. Simulation, in this case, is used as part of the optimization
process.

A similar federated approach has been recently proposed with the Wireless Cyber-
Physical Simulator (WCPS) [Li et al. 2013]. This framework integrates TOSSIM
with Simulink [2015] in order to provide a combined simulation of a wireless sen-
sor monitoring system with a realistic representation of physical structures. Simulink
is also used to model the controller in a closed-loop actuation network that typically
runs outside the sensor nodes on a more powerful platform. Similar solutions have also
been developed based on NS-2, such as the NCSWT modeling and simulation tool [Eyisi
et al. 2012].

Table III provides a summary of the characteristics of some of the tools covered in
this section.

2.2. Comparative and Evaluation Studies on Simulation Tools

A number of studies and evaluation reports on different network simulation environ-
ments have been published in the literature in recent years. For instance, Timm-Giel
et al. [2008] compared the throughput and the transmission delay of WSN scenarios
modeled in the OMNet++, NS-2, and OPNET [opnet 2014] tools. The simulation results
obtained in this study revealed a close similarity between OPNET and NS-2 for the
throughput and a close resemblance of OPNET to OMNet++ in end-to-end delay.

Lessmann et al. [2008b] presented a case study for the analysis and comparison of
the J-Sim [Sobeih et al. 2007], OMNeT++, NS-2, and ShoX [Lessmann et al. 2008a]
tools by implementing a simple network control algorithm called SPAN [Chen et al.
2002a]. The tools are evaluated with respect to the usability, the effort for installation
and simulation implementation, the availability of usable models, and other aspects.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:10 I. Minakov et al.

Table III. WSN Emulators: Comparative Table

TOSSIM & AVRORA &
PowerTOSSIM AEON COOJA VIPTOS

Simulation
engine

custom C++ custom in Java custom in Java custom C++

Simulation
input

C++/Python, AVR
bin. files

Java, AVR bin. files Java config, MSP
bin. files, Contiki

XML, TinyOS apps

Scalability
>100

high high middle middle

Communication
channel model

free space with
directed graph of
bit errors

free space free space, log.
shadowing

free space, log.
shadowing, Rayleigh
fading

Mobile nodes no no no no

Supported HW
platforms

MicaZ MicaZ, Mica2 Tmote sky TelosB, Tmote sky

Extendability - - - partly supported in
C++

RF PHY model cc1100 c2420, cc1100 cc2420 cc2420, CC1100

Sensing
channel

no no no ADC interface file

Energy
profiling

MicaZ platfrom each HW component each HW
component

each HW component

Battery/lifetime
estimation

no/no no/no no/no no/no

Accuracy
timing/power

high/high high/high high/high high/high

The authors concluded that there was no clear winner revealed in this study and each
of the tools had its own strengths and weaknesses compared to the other candidates.

Weingartner et al. [2009] compared the performance of popular general-purpose net-
work simulators including NS-2, NS-3, OMNet++, SimPy [Simpy 2013], and JiST [Barr
et al. 2005]. The evaluation criteria consisted of the simulation runtime performance
and the memory footprint for various network sizes. The JiST and NS-3 environments
were found to be the most efficient tools for large-scale network models. At the same
time, SimPy exhibited lower performance due to its Python-based simulation core.

Instead, Lee et al. [2007] focused on studying the accuracy of the wireless link model
for several tools, including EmStar [Girod et al. 2004], TOSSIM, and NS-2. Their
conclusion is that, while the empirical approaches available in most tools are able to
recreate packet-level behavior to some extent, they are insufficient to take into ac-
count the effect of noise produced by neighboring networks. Therefore, it is not well
captured by an additive white Gaussian component. Therefore, the author proposed
various approaches to statistically characterize real noise traces and implement the
corresponding algorithms in the TOSSIM framework, considerably improving the ac-
curacy (at the expense, for one approach significantly, of simulation performance). One
distinctive advantage of using traces is that the model is able to not only simulate
packet loss but also to point at the causes of temporal variations in packet loss and con-
nectivity, thereby adapting well to different deployments. Kamthe et al. [2013] improve
on this work by using a multilevel statistical approach to model the short- as well as
the long-scale behavior of links in wireless sensor networks, by modeling the correla-
tions between successive packet receptions and failures. In our study, we explore the
behavior of the channel model in the different simulators in terms of packet delivery
ratio for comparison purposes. However, we do not present results in case of specific

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:11

noise patterns due to other networks, which would require additional measurements.
On the other hand, the study on noise models presented by Lee et al. and by Kamthe
et al. is complementary to our comparison, and we refer the interested reader to the
original papers for more details [Lee et al. 2007; Kamthe et al. 2013].

Finally, Boulis and Tselishchev, the designers of the Castalia framework, presented
a series of experimental studies on Castalia performance [Pediaditakis et al. 2010] and
effects on carrier sense modeling [Boulis and Tselishchev 2011]. These studies solely
consider the Castalia toolkit and do not compare the obtained results with any other
tool. However, in our evaluation, we partially rely on the experimental results obtained
in these studies.

Summarizing, all of the studies discussed provide a varied level of analysis including
pure analytical evaluation and a practical comparison of the runtime performance,
memory footprint, and network simulation results produced by different tools. In our
study, we decided to address most of the presented metrics. Moreover, we go even
further and not only compare tools to each other but also evaluate the consistency of
the simulation results with values obtained in real experiments. However, we do not
consider the memory footprint taken by the different tools due to its not very practical
value, considering the large amount of memory that is available today in even small-
sized systems. To quantify, the maximum reported memory footprint for a large-scale
network simulation was approximately only 150MB [Weingartner et al. 2009]. While
this metric may reflect runtime efficiency of a particular tool, we believe it is more
valuable to assess execution speed and accuracy of simulation.

3. COMPARATIVE STUDY

In this section, we discuss the benchmark methods and the application test cases that
we have designed to compare different WSN simulation environments. We admit that
it is a rather challenging and sometimes not even a feasible task to compare various
tools designed for different purposes. However, in this study, we consider functionally
similar environments and compare them by providing unified input models to pro-
duce consistent simulation results. In our study, we include six recent (January 2015)
mainstream open-source WSN simulation toolkits. The latest releases of the Castalia
(version 3.0), MiXiM (version 2.3), WSNet, PASES, TOSSIM, and COOJA tools are
investigated. Our main objective for this study is to obtain and assess numerical per-
formance values and figures on different simulation results. The following simulation
metrics are collected and evaluated:

—Runtime simulation performance versus number of modeled units: it is the time
taken by the tool to run a certain number of modeled units and events.

—Network throughput: it is the average rate of successfully delivered packets over a
communication channel. Although this is a very application-specific parameter, we
are interested in discovering the capacity of a certain tool to simulate the communi-
cation infrastructure under different conditions.

—Packet loss at the MAC layer: it is the number of packets discarded by the MAC layer
due to the limited number of retransmissions and trials to send a packet while the
channel is found busy or for other failures.

—Packet Delivery Ratio (PDR): it is the ratio between the packets that are successfully
delivered to a destination and the total number of packets that have been sent. The
PDR depends both on the communication environment and on the peer-to-peer link
quality. In our PDR study, we incorporate two different communication media condi-
tions. It includes an ideal model and a close-to-real indoor obstructed environment,
in order to assess both the RF propagation and the radio reception models in the
various simulation tools.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:12 I. Minakov et al.

Fig. 1. Network topology consisting of 20 nodes.

—Network latency (delivery delay): it is defined as the average time delay between
sending data frames from the application layer of the node to its reception at the
destination node on the application layer. Along with network throughput, packet
delivery depends on a number of parameters such as the application duty cycle,
the MAC protocol implementation and options, the RF channel (e.g., obstacles), and
so on.

—Accuracy of the power consumption estimation: it measures how results of power
consumption estimation correlate with or resemble real-world values obtained by
measurements on a testbed.

All presented metrics have been collected by means of two benchmark applications
(Sections 3.1 and 3.2), which were identically implemented in each of the investigated
toolkits. In any comparative study where different tools are evaluated, it is crucial to
build equal models with identical behavior producing the same amount and rate of
simulation events. Hence, the first and main challenge we were faced with was the
equivalence of the models and the consistency of the simulation results. We started our
study from the definition and implementation of uniform simulation setups, topologies,
and application models.

3.1. Simulation Study I

The first simulation scenario is a WSN application intended to evaluate network-
related metrics and simulation runtime performance. This scenario presents a data-
centric network with a unidirectional data traffic flow. The network model consists of N
nodes, of which N−1 are senders and produce data transmitted to one sink node, which
receives packets and reports delivery statistics. All senders are randomly arranged
around the sink within its reception range in such a way that all the nodes are capable
of hearing each other. Figure 1 shows an example of modeled topology consisting of
20 wireless nodes. The circles on the figure represent the node “communication disk

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:13

Fig. 2. Unslotted IEEE 802.15.4 CSMA/CA algorithm.

model,” that is, the node communication range within which the transmitted signals
are above the receiver sensitivity threshold.

Senders periodically broadcast packets with constant bit rate (CBR). This scenario
represents the typical sensing or monitoring WSN application where broadcasting is
the dominant approach for packet transmission. All network transmissions in this
scenario rely on an unslotted IEEE 802.15.4 CSMA/CA algorithm [IEEE Standard
Association 2006] (see Figure 2).

According to the MAC standard, each device operates with a set of variables that
defines the boundaries for back-off operations. NB is the number of times the CSMA/CA
algorithm is required to back off while attempting the current transmission; this value
is initialized to zero before each new transmission attempt. BE is the back-off exponent,
which is related to how many back-off periods a device shall wait before attempting to
assess the availability of the channel [IEEE Standard Association 2006].

Before each transmission, BE is initialized to a defined value macMinBE. When
a device wants to transmit data, it initializes NB and BE and proceeds to wait for
a random number of back-off periods defined by BE. The duration of the back-off
period (back-off unit) is defined by a constant value held in a variable aUnitBackoff-
Period. Subsequently, after back-off, the node immediately performs a Clear Channel
Assessment (CCA) to check whether the medium is idle. If so, the data is transmitted;
otherwise, the device increases both BE (up to a maximum value) and NB, and backs
off once again. This procedure is repeated until either CCA reports idle and the packet
is transmitted or NB exceeds the maximum allowed number (MaxCSMABackoffs) of
CSMA/CA back-offs. In the latter case, a MAC error occurs and the current packet is
discarded from the node’s transmission queue.

The model of this MAC protocol was initially available in the WSNet tool only. We
have ported it to the other toolkits, ensuring that the behaviors of the different models
were the same. Because the MAC algorithms used in the different tools are equivalent,
we do not expect differences in the medium access behavior among the tools we have

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:14 I. Minakov et al.

Fig. 3. Clear and log-normal shadowing channel conditions.

considered. The parameters for the MAC model have been set to the default values
specified in the IEEE 802.15.4 standard; namely, MaxCSMABackoffs was set to 4; the
BE boundaries values macMinBE and macMaxBE were set to 3 and 5, respectively;
and aUnitBackoffPeriod was equal to 20 symbols (0.32 milliseconds). The acknowl-
edgments and any handshaking algorithms (such as RTS-CTS) are not considered in
our model due to the broadcast message-passing scenario. For all transmissions, the
packet size was fixed to 64 bytes (16 bytes for the MAC header and the rest for the
data payload). The sink node collects statistics on the total number of successfully
received packets. Additionally, it computes the mean delivery latency by analyzing the
timestamp included in each packet.

Along with the application and the MAC models, the settings of the radio propa-
gation model have been carefully chosen in order to provide identical communication
environments among the toolkits. Some of the tools provide a number of different
communication channel models; however, for comparison reasons, we consider a prop-
agation model based on the log-distance path loss equation [Rappaport 2002], which is
available in all the tools out of the box:

PLdB(d) = PLdB(d0) + 10η log10

(
d
d0

)
+ Xσ,dB, (1)

where d0 is the reference distance, η is the path loss exponent that defines the rate
at which the signal decays with respect to the distance d, and Xσ,dB is a zero-mean
Gaussian random variable (in dB) with standard deviation σ . The last term represents
the signal shadowing effect that accounts for dependencies of all environmental factors,
such as static and mobile obstacles and signal reflections. If there is no shadowing
effect, then σ is zero. In our study, we incorporate two propagation media conditions,
shown in Figure 3. The first model represents an “ideal” network condition with an
unobstructed clear path (η = 2.5) between the transmitter and the receiver. Conversely,
the second model represents “close to real” link conditions with memory-less shadow
fading distribution σ = 20 and path loss η = 4.0.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:15

A simple interference model is chosen in all tools to handle signal collisions. In this
model, packet collisions happen and transmissions fail (packets are marked as invalid)
every time two or more nodes are concurrently transmitting within the receiver range.

The TOSSIM tool, in contrast to the other simulation environments, does not provide
a log-normal shadowing interference model out of the box. Instead, it introduces a
specific statistical approach, the Closest Pattern Matching (CPM) algorithm [Lee et al.
2007], for packet reception. In order to use it, the model requires a collection of empirical
measured levels of noise in a specific environment. Hence, a noise trace has to be
provided as an input from which a statistical model capturing different phenomena
like interference is generated. Either the input file containing the noise trace has to be
created or the user may rely on sample traces available in the public domain.

In order to model the shadowing effect in COOJA, we have used a specific radio
propagation model provided by the tool, named Multipath Ray-tracer Medium (MRM).
This model is packet based and uses a ray tracing technique, which allows us to specify
the necessary parameters related to the radio medium (e.g., transmitted power, an-
tenna gains, SNR threshold). This approach is able to approximate the signal strength
attenuations, due to obstacles, among the simulated radios. Refraction, reflection, and
diffraction coefficients are calculated and taken into account in order to provide a
more realistic range for the transmitted signal. In this article, the receiver power is
calculated by means of the Friis formula [Rappaport 2002]. When a radio antenna
transmits a packet, the area of interference around the antenna is “busy” for a time
that depends on the length of the packet itself; if the transmission is completed without
any interference, then the packet is delivered; otherwise, no data are delivered. Note
that, in addition to MRM, COOJA provides another three radio propagation models:
the Unit Disk Graph Medium (UDGM) Constant Loss, in which the transmission range
is an ideal disk, and where all (and only) the nodes within such a disk receive all the
packets; the Unit Disk Graph Medium (UDGM) Distance Loss, which is an extension
of the previous one, and which considers interferences, leading to the definition of a
success transmission ratio and a success reception ratio probability; and finally the
Directed Graph Radio Medium (DGRM), which allows also propagation delays to be
defined. For the purpose of this work, we believe that MRM is the best choice with
its capability of setting the proper parameters to simulate the shadowing channel
conditions.

Finally, in order to make the communication even more realistic, we include prop-
erties of a real RF subsystem by assuming a CC2420 [Texas Instruments Corporation
2013] radio model for all simulated nodes. The RF systems are set to operate at a radio
frequency of 2.4GHz with a data rate of 250kbps, -3dBm output power, and -85dBm sig-
nal sensitivity. Furthermore, for comparison reasons, we also annotated the RF model
in all toolkits with state transitions and CCA operation timing delays (16 symbols)
typical of the CC2420 transceiver.

In order to validate the simulation results, we deployed a small-scale wireless
network composed of four TelosB nodes [Polastre et al. 2005]. TelosB is a popular
open-source platform designed to enable experimentation with WSNs. The TelosB
architecture includes a low-power 8MHz microcontroller (TI MSP430); the CC2420
RF transceiver, which is modeled in our simulations; and a set of sensors for ambient
monitoring. Our test bench consisted of three nodes that generated data and one sink
node connected to the PC for data logging. For each packet delivered to the sink, the
information on RSSI level, time latency, and sender MAC state was collected. Time
synchronization between nodes was performed by broadcasting reference timestamps
from the sink side at the beginning of each experiment. All the settings of the nodes,
the topology, the application, and the MAC functionality implemented on the test
bench are fully compatible with the simulation scenario described earlier.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:16 I. Minakov et al.

Table IV. CC2420 Current Consumption and Timing

Off(PD) Idle RX TX Off to Idle Off to RX RX to TX TX to RX RX to Off
Current (mA) 0.02 0.42 18.8 17.5 0.55 2.0 18.5 18.5 7.0
Time (us) - - - - 600 1,920 200 200 800

3.2. Simulation Study II

The second study is intended to evaluate the accuracy of the power consumption esti-
mation results in the considered tools. The simulation results, as in the first case study,
are compared with respect to the values obtained on a real test bench. The application
scenario for this study is a modification of the first test case. Here we consider a small
three-node network that includes one sink and two senders. In order to preserve bat-
tery energy, the sender nodes exploit a simple power-saving technique that controls the
operating states of the RF subsystem. Whenever the application has a packet to send,
the RF component is switched from the idle to the active state. Upon the completion
of the transmission, the radio antenna is turned back to the idle mode. Hence, the
power consumption of the nodes is essentially determined by the transmission rate of
the application that defines how often the radio antenna is required to be in the active
state.

In order to model the node power consumption, each simulated node is provided with
an energy model based on the TelosB platform [Polastre et al. 2005]. However, most
of the tools in our study provide modeling facilities only for the RF subsystems and
omit CPU and other peripheral components. Due to these limitations, it seems not to
be possible to build the whole node functional and energy models without considerable
design efforts and changes in the tools’ architectures. Because of that, we focus solely
on the RF component model, which is in any case the dominant power consumer. For
comparison reasons, we consider a simplified energy model of the RF transceiver based
on the CC2420 radio chip. Our model consists of three discrete operating states (idle,
transmission, listening) and transition delays between them. Each state and transition
take some power and time to be completed. Table IV gives values of current and time
transitions related to the CC2420 transceiver.

In order to obtain the power consumption reference values with which simulation
results can be compared, we have set up a test bench consisting of three TelosB nodes
programmed according to the modeled scenario. The software applications and the
MAC algorithm for both the sink and the sender nodes were implemented in TinyOS.
Using a digital multimeter (Agilent 34411A), we measured the voltage drop across a
10 Ohm resistor connected between the board and two batteries wired in series (NiMH
1400mAh, 1.36V in fully charged conditions, each taken separately). The current load
profile was obtained by logging the voltage drop with a 40-microsecond sample period
and subsequently converting the voltage to the current value.

3.3. Simulation Studies Summary

Table V summarizes the global settings for the benchmark test cases presented in this
article. Specific settings for the application, the MAC protocol, and the communication
channel are given in Section 5, where we discuss the obtained results.

4. IMPLEMENTATION

In this section, we discuss the design of the models and the challenges we have
faced during the implementation and installation of the benchmark simulation se-
tups in different tools. All the tools in our study have many similarities regarding
architecture, design principles, and simulation configuration. All the toolkits have an
object-oriented architecture based on an event-driven simulator engine implemented in

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:17

Table V. Case Studies’ Settings Summary

Case Study I Case Study II
Network area, m x m 40x40 10x10

Traffic type/rate (pkt/sec) CBR/1, 2, 5, 10 CBR/1, 2, 5, 10,
20, 50, 100

Network size (N) 5, 10, 25, 50 3

Number of senders N − 1 2

Data packet size (bytes) 64 64

MAC/routing/PHY IEEE802.15.4, none, IEEE802.15.4, none,
models CC2420 CC2420

RF output power/ -3dBm/-85dBm -3dBm/-85dBm
receiver sensitivity

Communication channel log-normal shadowing log-distance path loss
model η=2.5/η=4.0, σ=20 η=2.5, σ=0

simulation performance, power consumption
Collected metrics throughput, packet loss,

MAC performance

Sim time, sec 100 100

C++ or, for COOJA, in C and Java. Simulation configuration and network setups in all
environments are made by means of external configuration and scripting files.

Castalia and MiXiM utilize OMNet++-based initialization files (.ini and .ned for-
mats). Inside the .ned files, users may define the topology of simulation modules as an
interconnection of simple components linked through channels and interfaces. Addi-
tionally, .ned files hold default values for the module external variables and constants.
The .ini format files are used to configure simulation scenarios. They typically include
the number of simulated nodes, node assigned locations, names of application and MAC
modules, simulation time, and many others. Castalia also includes a set of plain-text
files to configure power-timing properties of the RF section, while MiXiM uses .ned files
for this purpose.

Both WSNet and PASES employ XML configuration files for the network and sim-
ulation setups. Additionally, PASES offers Python scripting facilities for MAC and
application design as well as external Python files to hold energy-timing values for
hardware models.

COOJA supports the creation of the desired simulations by first indicating the radio
medium to be used and then by instantiating the nodes and by compiling their code
(previously written in the C language). Once the network parameters have been defined
(e.g., area, node number, topology), the simulation environment can be stored in a .csc
file, in order to save it for future usage. Note that from the COOJA GUI, only the
network configurations can be set, while the node behavior has to be defined at the
Contiki code level; the file projec-conf.h contains all the defined configurations for a
specific node.

The TOSSIM tool, being a part of standard TinyOS installation, requires some knowl-
edge and experience with TinyOS applications, modules, and interfaces. The simulation
scenario can be written either in Python or in C++ where all model properties (e.g.,
number of nodes, node start-up and simulation time, etc.) are defined. In our study, we
use Python scripts for all simulation test cases.

Sections 4.1 and 4.2 provide a detailed report on challenges faced for the implemen-
tation of the first and second test cases, respectively.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:18 I. Minakov et al.

Note that, at the application level, for both test cases we employed the “Through-
putTest” model available in Castalia. Porting of an application to the other tools is
essentially similar to porting the MAC layer. Likewise, this process did not raise any
challenge due to the very similar modularity and design principles applied in the
tools. Since the tools provide different reporting facilities, we implemented simulation
statistics gathering individually at the MAC and at the application layers. This in-
cluded logging and reporting the number of received packets, the mean receive latency,
the number of sent packets, the packet drops, and the mean back-off time at the MAC
layer. Each tool provides built-in simulation performance information reporting out of
the box, which we employed to evaluate their runtime performance.

4.1. Implementation I

In the first application test case, we aim at assessing tools with respect to the network
communication behavior and utilization of the channel. Thus, given that different
tools provide different and not compatible MAC models, we started our benchmark
design from the implementation of functionally equivalent MAC algorithms in each
tool. The core of the MAC model is the CSMA model that is easy to implement in any
studied tool based on examples available. The model of the CSMA algorithm involves
radio module CCA functionality and a single timer component to process back-off
periods. All the tools in our study provide very similar simulation architectures and
module partitioning with distinctive layers for application, routing, MAC, radio PHY,
and communication channel. Besides, tools have almost equal event-driven semantics
for simulation, where the functionality of the component is activated in response to the
internal events and requests (e.g., CCA procedure completion or timer firing) generated
by the upper and lower layers. Thus, porting of simulation models from one tool to
another did not require considerable changes in the initial model structure and the
execution flow. However, different simulation events, various APIs, and diversified
interaction mechanisms among simulation components require one to individually
adapt the initial model for each toolkit. In a similar way, TOSSIM requires new models
to be compatible with TinyOS split-event command semantics. During porting, we
revealed that TOSSIM does not fully support all functional modules and interfaces
specific for real TinyOS applications. As a consequence, we had to manually adapt and
modify the actual application code in order to compile it for simulation. In particular,
TOSSIM does not support the CC2420ActiveMessageC.RadioBackoff interface that is
the basis for the CSMA implementation in our test bench TinyOS application.

As soon as the communication algorithms and the application models were imple-
mented, we started to verify their functional equivalence and consistency of simulation
results with respect to the packet delivery and MAC behavior. For the sake of simplic-
ity, the initial simulation setup consisted only of two nodes (one sink and one sender)
that excluded the possibility for collisions. Simulation results for all studied metrics
between the tools were almost equal. Some slight deviation was observed with respect
to packet delivery latency that was in the range of 2%. This allowed us to assume that
MAC and application models were functionally equal and simulation setups were cor-
rect. As mentioned in Section 3.1, for the tools Castalia, MiXim, WSnet, and PASES,
we selected and set up the communication channel model based on the log-normal
shadowing models available in each of these tools out of the box, while for COOJA the
MRM propagation model is considered. Further analysis revealed that the differences
in simulation results were caused mostly by the differences in the implementation of
communication channel models in different tools. The results of the network through-
put study are reported in Section 5.1.

The network topology specification in TOSSIM for its SNR-based communication
model is conceptually different from the other simulators, where nodes are placed

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:19

in the virtual space according to their coordinates. The topology in TOSSIM is not
represented by the distances between the nodes, but rather by the signal gains. This
approach supposes the knowledge of the gains between the nodes prior to the simulation
run. Since the gains depend not only on the distances (path loss) but also on the
characteristics of the communication channel, we profiled the signals for every modeled
node in Castalia and then supplied this information into TOSSIM.

4.2. Implementation II

In the first application test case, the energy efficiency requirements for the nodes’
operations are not considered. However, in the second test case, the nodes utilize a
simple power management mechanism, which automatically turns the radio component
on or off whenever transmission is required or completed. This simple state control was
implemented at the MAC layer that, in turn, required some slight changes to be made
with respect to the initial model. Nevertheless, no issues arose here due to the plain
interfaces available in each of the toolkits to explicitly control radio operating states.

Certain challenges were encountered when we implemented the energy and tim-
ing models for the RF subsystem. For instance, Castalia and MiXIM provide plain
interfaces in .txt or .ned files for energy-timing modeling, while WSNet does not allow
any timing annotation for radio state transitions. In order to ensure that the delay
due to the RF models among the tools was the same, we extended the WSNet’s radio
model with timing values for each operation and state transition. PASES offers an
easy way to annotate any platform component with energy-timing values by means of
external Python files. In COOJA, an extension, named Energest, was added in order
to perform energy consumption measurements. In particular, Energest estimates the
per-component energy consumption by measuring the amount of time spent by a cer-
tain component in a specific state. Between any two points in the source code we can
calculate the value of these timing parameters, by logging their initial p_init and final
p_final values. Then, the difference p_final - p_init gives the time spent in the desired
interval. This result is given in Rtimer ticks (it is a CPU cycle counter and outputs 1 tick
every 32μs); therefore, it needs to be converted from time to energy by using the voltage
and the current draw of the specific component (such data are available in the datasheet
related to the Tmote Sky). TOSSIM is not present in this study due to the absence of an
energy model. The results of the energy modeling study are presented in Section 5.2.

4.3. Ease of Use

A discussion about the ease of use of the analyzed tools is important for (1) making
the best choice to minimize the development effort of porting new protocols on ac-
tual hardware and (2) mitigating the additional overhead required to engineer a real
implementation. In this direction, Castalia presents a well-designed channel model (es-
pecially at the MAC layer) and allows one to simulate communication conditions that
are closer to reality (e.g., shadowing, signal-to-noise ratio, packet reception probability,
path losses). In addition, it provides various routing protocols. Moreover, Castalia pro-
vides a great documentation support and comprehensive set of examples. That makes
Castalia an easy-to-get-started tool not requiring any prior experience with the OM-
Net++ framework. However, despite the high accuracy and flexibility in the network
design aspects, the code produced by the Castalia simulator is not portable to an actual
deployment. MiXiM, on the other hand, is more complex in terms of architecture, mod-
ules partitioning, and requires some basic experience with the OMNet++ environment
and the Eclipse IDE. COOJA and its Contiki OS are designed for portability on many
platforms, such as the Tmote Sky, ESB, and so on, since MSPSim is a sensor node
emulator for MSP430-based nodes. Note that COOJA is able to execute native code
by performing Java Native Interface calls from the Java environment to a compiled

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:20 I. Minakov et al.

Contiki code. COOJA makes available some interfaces that represent the hardware
peripherals for the simulated nodes and enable the Java simulator to detect and trig-
ger different kinds of events, such as incoming radio traffic and the lighting of an
LED. Each Contiki system is compiled for a specific hardware platform, with proper
drivers and communication modes to the actual hardware. This makes it possible to
simulate and deploy the same code without any modifications, minimizing the delay
between simulation and deployment. Additionally, COOJA also enables the simulation
of TinyOS code, in the form of a binary file (e.g., .hex).

PASES is a tool specifically designed for fine-grained power consumption analysis of
standalone and networked embedded systems. Thus, it offers a wide range of possible
configurations and design options to explore for the target models, such as the kind
of CPU core, a diverse set of hardware peripherals, clock frequencies, power supply,
and so on. The utilization of PASES assumes an extensive use of Python scripting and
XML configuration to set and refine different design options. In order to facilitate the
simulation design process, PASES comes with a set of sample examples for various
WSN applications and HW platforms, GUI utilities for power profiling, and network
topology visualization. Custom module design and functional extension in PASES
require some expertise in C++ and with the SystemC library.

The WSNet tool offers a wide set of examples, tutorials, and comprehensive docu-
mentation out of the box in the standard distribution. Its plain source code and clear
partitioning of the functional modules and interfaces make WSNet an easy-to-start-
with toolset.

TOSSIM, on the other hand, requires experience with the nesC and the TinyOS
framework, involving application design, component development, and interface im-
plementation. The TOSSIM simulation does not fully support the whole set of standard
interfaces and modules present in a real TinyOS application. For this reason, apart
from the simple examples, the TinyOS development process often requires that two
separate versions of the same application are supported, one for the real-world deploy-
ment, the other for simulation.

5. RESULTS

Our evaluation is based on a series of simulations that we have performed to compare
toolkits with respect to the metrics discussed in Section 3. All simulations were con-
ducted on a desktop PC equipped with an AMD Athlon 64 X2 5000+ 2.6GHz with 4GB
of RAM running either Ubuntu 11.10 or the Windows 7 Professional operating system.
The simulations were all set up to simulate 100 seconds of virtual operating time.

5.1. Simulation Results I

For the first test case, we carried out a set of simulations varying number of trans-
mitting nodes and packet rates. The network size ranged from five to 50 nodes with
four different packet rates for each network size (i.e., one, two, five, 10 packet/sec). All
simulation results are averaged out of 10 execution sets for each case, to smooth out
random differences.

Figure 4 and Figure 5 show the obtained runtime performance for various network
sizes and data rates. As expected, the runtime of all tools grows almost linearly as
both the network size and the packet rate increase. With this setup, in all cases, the
performance of the simulators is faster than real time. The main outcome from this
experiment is a noticeable difference in simulation performance among the tools. The
performance of TOSSIM appears to be the worst among all the studied tool sets. This
can be explained by the complexity of the TOSSIM SNR-based communication model.
This model requires a precomputation phase during which a graph of connected nodes
with SNR information for each link is created. The precomputation time contributes

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:21

Fig. 4. Runtime performance for low packet rates.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:22 I. Minakov et al.

Fig. 5. Runtime performance for high packet rates.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:23

Fig. 6. Radio state transition waveforms in PASES.

up to 80% of the total runtime in TOSSIM. The actual runtime performance, excluding
the noise model initialization, is comparable with other tools in our study, as shown by
the TOSSIM* line on our performance plots (Figures 4 and 5). When the packet rate
increases, the impact of the precomputation phase on the overall simulation is reduced
in relative terms, making the performance of TOSSIM more in line with the other
simulators. Note that all simulations in TOSSIM are done using Python scripts, which
leads to a slight performance degradation in comparison with a C++ implementation.

The PASES framework also exhibits relatively low simulation scalability and poor
runtime performance, being the second slowest tool in our experiments. The high
computation demands shown by PASES are explained by its node-oriented architecture
that captures the low-level features of the underlying hardware models. That, in turn,
leads to an increased number of events and simulation overhead. Thus, as we shall see
in Section 5, it provides better power consumption estimation. However, by reducing
the details in the hardware models, the execution performance can be improved up
to 40%, as shown in Figure 4 and Figure 5 by the data series denoted as “PASES
light”; this happens without negatively affecting the power consumption estimation
(see also the discussion in Section 5.2). The lightweight model is formed by averaging
multiple intermediate transition states of the dedicated hardware components (CPU
and RF) into a reduced set of states with the average amount of current drawn, shown
in Figure 6. Performance can be further improved by simplifying the model even more;
however, this will sacrifice the energy estimation capabilities of the tool.

The MiXiM tool also exhibits relatively low runtime performance that, however, is
comparable to the runtime execution time of PASES running the lightweight model.
We were unable to identify the actual reason for the poor performance in MiXiM,
and additional experiments would be required to find performance bottlenecks in its
simulation algorithm. In contrast to the previously discussed tools (TOSSIM, MiXiM,
and PASES), the WSNet toolkit is found as the fastest and most scalable simulation

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:24 I. Minakov et al.

Fig. 7. Network throughput versus packet rate (base back-off value = 0.32ms).

environment among the ones compared. Castalia and COOJA show runtime results
comparable to WSNet, making them also efficient tools for rapid WSN analysis.

The network throughput results are obtained in the same simulation series. The
graphs in Figure 7 and Figure 8 show the total number of received packets (goodput)
at the sink side for the various network sizes and transmission rates. The figures
also include the results obtained on a real-world, small-scale (i.e., two, three, four,
and five nodes) test bench deployment, which is functionally equivalent to the TinyOS
application, as described at the end of Section 3.1. The purpose of this setup is to
give reference values regarding the network behavior, which are useful to validate
the simulation data. These, however, are not intended to be representative of larger-
scale scenarios. As expected, the number of successfully delivered packets steadily
increases with the network size and the packet rate. However, when the number of
packets exceeds a particular threshold, the network throughput drops considerably,
as shown by the simulations in all the tools. This effect is caused by the short value
of the CSMA base back-off time (320 microseconds by default) that leads to a high
level of collisions between contending nodes. By increasing the base back-off period,

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:25

Fig. 8. Network throughput versus packet rate (base back-off value = 0.32ms).

we can improve the network throughput by letting fewer nodes contend in one time
unit, consequently decreasing the probability of collisions. It also should be pointed out
that the delivery latency depends linearly on the back-off time: the shorter the back-off
time, the smaller the latency. Therefore, by increasing the base back-off value, we also
increase the packet delivery delay.

Figure 9 and Figure 10 show the same simulation results in terms of network
throughput when the base back-off value is set equal to 960 microseconds (three times
more than before).

In this case, in all toolkits the total number of successfully delivered packets is
higher than before and all curves steadily grow according to the packet rate. Simulation
performance in this case slightly degrades compared to the previous case due to the
increased number of packets that must be handled.

For both scenarios, all the tools produce qualitatively consistent results in terms of
packet delivery amount and dynamics. Despite the equivalent simulation setups, the
specific numbers output by the tools vary slightly, with an average deviation of 15%.
As mentioned in Section 4, the deviation in simulation results can be explained by (1)

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:26 I. Minakov et al.

Fig. 9. Network throughput for low packet rates (base back-off value = 0.96ms).

the implementation and minor functional differences in communication channel mod-
els and (2) event and packet handling algorithms applied in the different tools. The
noticeable outcome from this study is that the variation among tools strongly follows
a precise pattern. In particular, WSNet always provides the lowest throughput in all
simulation cases, while the TOSSIM toolkit shows the highest level of delivered pack-
ets. The remaining tools (Castalia, MiXiM, COOJA, and PASES), on the other hand,
demonstrate similar results with a slight deviation of about 8% on average. Note that,
compared to our small-scale networks, COOJA, along with TOSSIM, present results
that are slightly better than the other tools and closer to the actual behavior. The
TOSSIM highest throughput results are explained by its empirically based commu-
nication model that among other factors accounts for the radio “capture effect.” The
capture effect, also called cochannel interference tolerance, is the ability of some radios
to receive a signal from one transmitter despite interference from another transmitter
(even if the relative strengths of the two signals are almost the same) [Leentvaar and
Flint 1976].

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:27

Fig. 10. Network throughput for high packet rates (base back-off value = 0.96ms).

Figure 11 demonstrates how different tools behave when the CSMA algorithm is
disabled (the results are shown for higher packet rates, since those are the most inter-
esting ones). In this case, all sender nodes run as follows: after the first back-off period,
CCA always reports a clear channel condition and packets are transmitted. As for the
network throughput with CSMA, TOSSIM delivers more packets in an amount that
is close to the reference values obtained from the reference small-scale scenario. This
demonstrates that the capture effect also takes place using the real nodes, which in
fact are able to achieve a throughput in line with the TOSSIM estimation.

Along with the network throughput, we gather statistics on the total number of
packets discarded at the MAC layer of the transmitting nodes. Packets are dropped
when the maximum number of allowed CSMA back-off cycles (which is four by default)
is exceeded, therefore, when the channel is found busy. Figure 12 shows the total
number of dropped packets for both base CSMA back-off values and a data rate of
10 packets per second. In both cases, packet drop grows linearly with the packet rate.
However, extended CSMA back-off leads to considerably fewer packet losses at the
MAC layer in contrast to the initial back-off value. The obtained results are consistent
with the throughput values. Packet drop is higher for the WSNet tool, while the lowest

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:28 I. Minakov et al.

Fig. 11. Network throughput without CSMA.

level is shown by the TOSSIM toolkit, again consistently with the results obtained for
throughput.

Furthermore, in this simulation case, the network packet delivery ratio (PDR) is
studied for two different medium conditions, which model (1) an ideal situation with
no shadowing and (2) a close-to-real obstructed indoor communication environment.
As mentioned earlier, the tools provide different communication models that lead to
differences in model settings, input data, and, consequently, simulation outcomes. In
spite of that, we tried to provide unified model parameters and conditions that would
make the communication models comparable. Figure 13 presents PDR results obtained
for the log-normal shadowing communication model performed in the Castalia, MiXiM,
WSNet, and PASES tools. All these tools exhibit very close results with an average
variation of 7%. The plot shows the individual values obtained from the tools, while
the line represents their average value. The figure also shows how the CSMA back-
off settings affect the PDR at the various communication conditions. As expected,
the extended back-off base value always produces a higher PDR. However, the PDR
drops below 50% of successfully delivered packets at network sizes exceeding 10 nodes,
even when an ideal communication medium is modeled. The PDR can be improved
by extending the CSMA base back-off value even further, by increasing the number
of trials to send a packet (MaxCSMABackoffs parameter), and by adjusting the node
output power. For the obstructed network condition, the PDR curves start from a point
below 50% due to the heavy fading conditions.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:29

Fig. 12. Packet loss at MAC layer versus packet rate.

Figure 14 presents comprehensive results for all six tools running various commu-
nication medium models. The plot combines the curves presented on Figure 13 as well
as PDR results for the COOJA and TOSSIM tools. It is noticeable that, in spite of
the fact that different communication models were used, the obtained PDR results ex-
hibit equal dynamics and partially comparable values. Nonetheless, for small network
topologies, the difference in results from the various tools is quite evident. That in
turn can again be explained by the capture effect that dominates on small topologies
and decreases when the network size exceeds 10 nodes. The PDR results for larger
topologies confirm our assumption that the specific settings for the noise floor for the
TOSSIM SNR-based and COOJA MRM models, and the fading factor for the log-normal
shadowing algorithm, produce comparable results. Such an outcome is also due to the
absence of interfering networks in our setup, which may need to be accounted for in cer-
tain environments, and which contribute fundamentally to the noise levels. For more
details on this aspect, we refer the reader to the original work by Lee et al. from which
we have extracted the model [Lee et al. 2007].

Finally, Figure 15 and Figure 16 show the network latency for the higher packet
rates (i.e., five and 10 packet/sec) and 320 and 960 microseconds base back-off time.
The network latency is computed as the end-to-end packet delivery delay from the
application layer of the sender node to the application layer of the destination node.
More in detail, the latency can be divided in (1) the time required to process the packet
from the application layer down to the radio layer and start the packet transmission;
(2) the packet transmission time, given by the packet length and the bit rate, multiplied
by the number of times the packet must be retransmitted; (3) the average back-off time,
also multiplied by the number of retransmissions; and (4) the time to go back through
the protocol stack up to the application layer, after a successful transmission. The
results show a variation among the tools that is much more significant than the results
obtained for throughput and packet delivery ratio. The reason has to do with both the
nature of the metrics and the nature of the tools. For the first one, the number of times

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:30 I. Minakov et al.

Fig. 13. PDR versus network size.

a packet must be retransmitted does not influence throughput and PDR, as long as
the packet is eventually successfully delivered. Therefore, only differences in the last
retransmission of each packet (whether it is successful or not) affect those metrics. On
the other hand, latency is increased by all retransmissions of a successfully delivered
packet. Hence, deviations in the way the channel is modeled have a more pronounced
effect on latency, as shown in the figures. In particular, from the figures, it emerges
that TOSSIM has the lowest average latency. This is to be expected, since TOSSIM
employs a more accurate model that accounts for the already discussed “capture effect.”
In fact, it increases the efficiency of the channel and, therefore, decreases the number
of retransmissions required to deliver a packet. For the small-scale networks (i.e.,
two, three, four, and five nodes), COOJA is actually closest to the real measurements
on our deployment. This is because COOJA accounts for the MAC layer processing,
whereas this time is not included in the TOSSIM simulation, which, therefore, shows
a lower latency than the testbed. COOJA also has lower latency than the other tools
on account of its more accurate channel model. Finally, the other tools stack up against
each other consistently with the results obtained from the throughput analysis, and
have higher latencies than the testbed. In particular, WSNet always shows the highest

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:31

Fig. 14. PDR versus packet network size.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:32 I. Minakov et al.

Fig. 15. Network latency for high packet rates (base back-off value = 0.32ms).

Fig. 16. Network latency for high packet rates (base back-off value = 0.96ms).

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:33

Fig. 17. MAC retransmissions.

levels of latency, closely followed by PASES. Castalia and MiXiM sit in between and
close the gap with COOJA. To confirm our results, we also analyzed the total number
of retransmissions for each of the tools, as shown in Figure 17, which are consistent
with the network latency.

5.2. Simulation Results II

In the second study, we carried out simulations as well as actual experiments with
varied transmission rates, ranging from one to 100 packets per second. The objective
is to compare the power consumption estimation from simulation with the measured
power consumption from a real WSN prototype (see Section 4 for a description of the
experimental setup). It should be noticed that Castalia, MiXiM, and WSNet provide
power estimation solely for the RF subsystem. Hence, the energy estimation results
in these tools are expected to be lower than measurements, since they ignore the
energy consumption of other peripheral components. Regarding COOJA, as described
in Section 4, we have used the Energest extension, which allows us to separately
estimate the energy consumption of reception, transmission, CPU execution, and low
power mode. PASES, in turn, provides functional and experimentally based energy
models for all hardware components typically present in a WSN platform. Therefore,
we expect to get very accurate power estimation results by this tool. Figure 18 presents
the power consumption simulation results and the reference experimental values for
various transmission rates (power consumption is expressed as the average current
drawn from the batteries). Based on the obtained results, we observe that different tools
provide diverse levels of reliability for power consumption estimation. As expected,
power consumption results in Castalia, MiXim, and WSNet are always lower than
the reference values due to the lack of a complete hardware platform model in these
toolkits. The outcomes of COOJA are more accurate with respect to those tools, since
all four metrics previously introduced have been considered, thus obtaining a more
precise model.

The accuracy of the power estimation that accounts only for RF operations grows
proportionally to the transmission rate, as the RF part becomes a greater contributor

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:34 I. Minakov et al.

Fig. 18. Power consumption estimation versus measurement.

to system energy consumption. At the lower transmission rates, the impact of periph-
eral components (e.g., CPU, sensors, memory) has a dominant effect on the power
consumption that, in turn, leads to the poor estimation results. The breakdown of the
component states and their relative contributions to the system current consumption
at various network rates were computed using PASES and are presented in Figure 19.
The results show how the current consumption proportion between different peripheral
components and operating states changes with the packet rate. At the lowest network
rate, the contribution of the CPU and Timer components taken together dominates
(60%) the system consumption. With more frequent utilization of the RF subsystem,
the relative contribution of the CPU and Timer components correspondingly decreases
and drops below 20% at the highest rate.

PASES performs well with both the “detailed” and the “lightweight” model. The rea-
son is that the data for the “lightweight” model are computed by averaging the values
obtained by running the accurate system simulation. One may therefore question the
benefits of a “detailed” model, as long as reasonable averages can be obtained. Nonethe-
less, average values fail to capture the dynamics of the current drawn from the battery,
whose behavior is significantly affected by the peaks of the current consumption. Thus,
while power consumption may be the same, lifetime estimation could give results that
may deviate substantially from the experiments, depending on the kind of battery
model used by the tool, such as a linear as opposed to a relaxation type. Since only

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

A Comparative Study of Recent Wireless Sensor Network Simulators 20:35

Fig. 19. Power consumption distribution per component.

PASES provides a relaxation model for the battery, we are unable to present a specific
comparison on this aspect.

Summarizing, in this study, the Castalia, MiXiM, and WSNet toolkits show signifi-
cant deviations from the actual measured values, with Castalia estimating the lowest
level of energy spent by the nodes for all transmission rates. In contrast, PASES shows
the most accurate results due to its lower abstraction level modeling capabilities and
the experimentally obtained energy model for the studied hardware platform. On av-
erage, the error for the PASES “detailed” and “lightweight” energy models is computed
as 2.7% and 3.9%, respectively. The other tools, which account solely for the RF oper-
ations, are still able to provide reasonable results. That at least might give designers
an idea about the magnitude of system power consumption to expect, in relation to
the degree of activity of the application. However, the use of energy-expensive com-
ponents, such as extra sensors or actuators, must in these cases be accounted for
separately. Interestingly, and as one may expect, the estimation error for these tools is
roughly proportional to the percentage contribution of the extra components shown in
Figure 19.

6. CONCLUSION

In this article, we have presented a comparative study of six open-source WSN simula-
tion toolkits. Two simulation scenarios were designed and equally implemented in each

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

20:36 I. Minakov et al.

of the tools to assess and compare them with respect to runtime performance, network
throughput, packet loss at the MAC layer, packet delivery ratio, network latency, and
accuracy of power consumption estimation. All the benchmark applications for each
tool studied in this article are available for download at http://eecs.disi.unitn.it/pases
in the Download section. Additionally, simulation results including throughput and
power consumption estimation were compared with measured values obtained on a
real test bench, for a small-scale network. Despite the differences in simulation anal-
ysis capabilities and available component models, the results show the correctness of
the benchmark methods exploited in our study.

In the first test case, we found that WSNet, Castalia, and COOJA are very effi-
cient tools for large-scale network modeling, while MiXiM, PASES, and TOSSIM re-
quire a larger amount of computation resources and time to run the same network
setups. Nevertheless, all the tools present similar results in terms of network through-
put and communication modeling for various network sizes and packet rates. Net-
work latency results show a wider variation, as the effects of differences in modeling
the channel have a larger impact. This analysis prompts the use of a more detailed
model whenever latency has to be estimated more accurately, as in real-time control
applications.

In the second case, due to their limited capability to model the full node architecture,
Castalia, MiXiM, and WSNet showed lower simulated values than in the experiment.
However, these tools still provide reasonable estimation that allows a designer to as-
sess an order of expected energy consumption, at least in relation to the application
network characteristics. PASES, in turn, being a tool specially designed to analyze
power consumption of embedded systems, provides the most benefits in this area and
produces the most accurate energy estimation results. COOJA offers a moderate level
of power estimation accuracy that, combining with results obtained in runtime and
throughput studies, makes this toolset a really good choice for WSN modeling. Addi-
tionally, COOJA enables execution and debugging of a real target application code,
making transition from pure simulation into actual deployment easier and faster than
any other tool presented in this article can offer. TOSSIM, being a part of a standard
TinyOS distribution, is suitable only for applications designed in this framework. Nev-
ertheless, in some practical case, TOSSIM does not fully support all standard interfaces
and modules present in real code. That, in combination with absence of any power pro-
filing facilities, makes TOSSIM a very specific and narrow tool for WSN applications.
However, the TOSSIM SNR-based communication model is considered to be a very
accurate network model, as proved by our experiments.

The general usability of the different tools cannot be directly evaluated since it is a
matter of personal preference and experience with modeling tools. We point out that
having the proper documentation and the availability of simulation examples may
constitute one of the most significant factors in the choice of a particular tool over
another. Additionally, the GUI support for simulation setup and postprocessing results
interpretation is a big point for a modern state-of-the-art simulation environment.
In such a way, Castalia and WSNet are the easiest tools to get started even without
having any prior experience in the WSN field. PASES offers a wide set of examples
and GUI utilities but lacks comprehensive documentation support. Both MiXiM and
TOSSIM require some level of expertise in OMnet++ and the TinyOS frameworks,
respectively. Finally, regarding COOJA/Contiki, the scientific community is very active
in guaranteeing support for the developers who are interested in exploiting this tool;
moreover, COOJA/Contiki provides many examples from which developers can start to
modify in order to realize their own projects.

Our current work focuses on exploring the simulator capabilities when considering
higher layers of the communication protocol [Minakov et al. 2016].

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

http://eecs.disi.unitn.it/pases

A Comparative Study of Recent Wireless Sensor Network Simulators 20:37

REFERENCES

P. Baldwin, S. Kohli, A. L. Edward, X. Liu, and Y. Zhao. 2005. VisualSense: Visual Modeling for Wireless and
Sensor Network Systems. Technical Memorandum UCB/ERL M05/25. University of California, Berkeley,
CA.

R. Barr, J. Haas Zygmunt, and R. van Renesse. 2005. JiST: An efficient approach to simulation using virtual
machines. Software: Practice and Experience 35, 6 (2005), 539–576.

M. Baz and D. A. J. Pearce. 2011. An introduction to DANSE. In Proceedings of the 12th Annual PostGraduate
Symposium on the Convergence of Telecommunications, Networking and Broadcasting.

A. Bonivento, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. 2006. Platform based design for wireless
sensor networks. Mobile Networks and Applications 11, 4 (August 2006), 469–485.

A. Boulis. 2007. Castalia: Revealing pitfalls in designing distributed algorithms in WSN. In Proceedings of
the 5th International Conference on Embedded Networked Sensor Systems (SenSys’07). 407–408.

A. Boulis and Y. Tselishchev. 2011. Effects of carrier sense modeling on wireless network simulation results.
In Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM’11). 129–134. DOI:http://dx.doi.org/10.1145/2068897.2068921

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. 2002a. Span: An energy-efficient coordination algo-
rithm for topology maintenance in ad hoc wireless networks. Wireless Networks 8, 5 (2002), 481–494.

G. Chen, B. K. Szymanski, E. Yücesan, C. Chen, J. L. Snowdon, and J. M. Charnes. 2002b. Cost: A component-
oriented discrete event simulator. In Proceedings of the 34th Winter Simulation Conference: Exploring
New Frontiers, Vol. 1. ACM, 776–782.

E. Cheong, E. A. Lee, and Y. Zhao. 2005. Viptos: A graphical development and simulation environment for
TinyOS-based wireless sensor networks. In Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems (SenSys’05). 302–302.

A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-Vincentelli, A. Simalatsar, and Q. Zhu. 2013.
METROII: A design environment for cyber-physical systems. ACM Transactions on Embedded Computing
Systems 12, 1s (March 2013), 49:1–49:31.

I. Dietrich and F. Dressler. 2009. On the lifetime of wireless sensor networks. ACM Transactions on Sensor
Networking 5, 1, Article 5 (February 2009), 39 pages. DOI:http://dx.doi.org/10.1145/1464420.1464425

I. T. Downard. 2004. Simulating Sensor Networks in NS-2. Technical Report. Naval Research Laboratory,
Network and Communication Systems Information Technology Division, Washington, DC.

A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki - a lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the 29th IEEE Conference on Local Computer Networks. 455–462.

E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Marino, and J. Garcia-Haro. 2005. Simulation
tools for wireless sensor networks. In Proceedings of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems.

J. Eriksson, F. Osterlind, T. Voigt, N. Finne, S. Raza, N. Tsiftes, and A. Dunkels. 2009. Accurate power
profiling of sensornets with the COOJA MSPSim simulator. In Proceedings of the 6th IEEE Conference
on Mobile Adhoc and Sensor Systems. IEEE, 1060–1061.

E. Eyisi, J. Bai, D. Riley, J. Weng, Y. Wei, Y. Xue, X. D. Koutsoukos, and J. Sztipanovits. 2012. NCSWT:
An integrated modeling and simulation tool for networked control systems. In Proceedings of the 15th
International Conference on Hybrid Systems: Computation and Control (HSCC’12).

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and T. Schoellhammer. 2004.
A system for simulation, emulation, and deployment of heterogeneous sensor networks. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys’04). ACM, New
York, NY, 201–213. DOI:http://dx.doi.org/10.1145/1031495.1031519

T. Grötker, S. Liao, G. Martin, and S. Swan. 2002. System Design with SystemC. Springer.
C. Guillaume, F. Antoine, and E. Fleury. 2007. Worldsens: A fast and accurate development framework

for sensor network applications. In Proceedings of the 22nd ACM Symposium on Applied Computing.
222–226.

T. He, B. Blum, Y. Pointurier, C. Lu, J. A. Stankovic, and S. Son. 2006. MAC layer abstraction for simula-
tion scalability improvements in large-scale sensor networks. In Proceedings of the 3rd International
Conference on Networked Sensing Systems (INSS’06).

T. R. Henderson, M. Lacage, and G. F. Riley. 2008. Network simulations with the ns-3 simulator. In Proceed-
ings of the Special Interest Group on Data Communications. 527.

IEEE Standard Association. 2006. IEEE 802.15.4-2006 Standard for information technology. IEEE Standard
Association.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

http://dx.doi.org/10.1145/2068897.2068921
http://dx.doi.org/10.1145/1464420.1464425
http://dx.doi.org/10.1145/1031495.1031519

20:38 I. Minakov et al.

D. Jung, T. Teixeira, and A. Savvides. 2009. Sensor node lifetime analysis: Models and tools. ACM Trans-
actions Sensor Networking 5, 1, Article 3 (February 2009), 33 pages. DOI:http://dx.doi.org/10.1145/
1464420.1464423

A. Kamthe, M. Á Carreira-Perpinán, and A. E. Cerpa. 2013. Improving wireless link simulation using
multilevel markov models. ACM Transactions on Sensor Networks (TOSN) 10, 1 (2013), 17.

I. Khemapech, A. Miller, I. Duncan, and N. Haugh. 2005. Simulating Wireless Sensor Networks. Technical
Report. School of Computer Science, University of St Andrews.

A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. Klein Haneveld, T. E. V. Parker, O. W. Visser, H. S.
Lichte, and S. Valentin. 2008. Simulating wireless and mobile networks in OMNeT++ the MiXiM vision.
In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communica-
tions, Networks and Systems & Workshops (Simutools’08). 71:1–71:8.

M. Korkalainen, M. Sallinen, N. Kärkkäinen, and P. Tukeva. 2009. Survey of wireless sensor networks
simulation tools for demanding applications. In Proceedings of the 5th International Conference on
Networking and Services. 102–106.

M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hamalainen, M. Hannikainen, and T. D. Hamalainen. 2008.
Ultra-Low Energy Wireless Sensor Networks in Practice. Theory, Realization and Deployment. John Wiley
& Sons Ltd, England.

O. Landsiedel, K. Wehrle, and S. Gotz. 2005. Accurate prediction of power consumption in sensor networks.
In Proceedings of the 2nd IEEE Workshop on Embedded Networked Sensors. 37–44.

K. Langendoen and A. Meier. 2010. Analyzing MAC protocols for low data-rate applications. ACM Trans-
actions on Sensor Networking 7, 2, Article 19 (Sept. 2010), 40 pages. DOI:http://dx.doi.org/10.1145/
1824766.1824775

H. J. Lee, A. Cerpa, and P. Levis. 2007. Improving wireless simulation through noise modeling. In Proceedings
of the 6th International Conference on Information Processing in Sensor Networks (IPSN’07). ACM, New
York, NY, 21–30. DOI:http://dx.doi.org/10.1145/1236360.1236364

K. Leentvaar and J. Flint. 1976. The capture effect in FM receivers. IEEE Transactions on Communications,
24, 5 (May 1976), 531–539. DOI:http://dx.doi.org/10.1109/TCOM.1976.1093327

J. Lessmann, T. Heimfarth, and P. Janacik. 2008a. ShoX: An easy to use simulation platform for wireless
networks. In Proceedings of the 10th EUROS/UKSim International Conference on Computer Modelling
and Simulation. IEEE, 410–415.

J. Lessmann, P. Janacik, L. Lachev, and D. Orfanus. 2008b. Comparative study of wireless network simula-
tors. In Proceedings of the 7th International Conference on Networking. 517–523.

P. Levis, N. Lee, M. Welsh, and D. Culler. 2003. TOSSIM: Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems
(SenSys’03). 126–137.

P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. A. Brewer, and D. E. Culler. 2004. The
emergence of networking abstractions and techniques in TinyOS. In Proceedings of the 1st Symposium
on Networked Systems Design and Implementation. 1–14.

B. Li, Z. Sun, K. Mechitov, G. Hackmann, C. Lu, S. Dyke, G. Agha, and B. Spencer. 2013. Realistic case
studies of wireless structural control. In Proceedings of the ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS’13).

X. Liu, Y. Xiong, and E. A. Lee. 2001. The ptolemy II framework for visual languages. In Proceedings of the
International Symposium on Human-Centric Computing Languages and Environments. 50.

I. Minakov and R. Passerone. 2013. PASES: An energy-aware design space exploration framework for wireless
sensor networks. Journal of Systems Architecture 59, 8 (September 2013), 626–642. DOI:http://dx.doi.org/
10.1109/JSEN.2013.2263962

I. Minakov, R. Passerone, A. Rizzardi, and S. Sicari. 2016. Routing behavior across WSN simulators: The
AODV case study. In Proceedings of the 12th IEEE World Conference on Factory Communication Systems
(WFCS’16).

L. Mottola, G. P. Picco, M. Ceriotti, Ş. Gunǎ, and A. L. Murphy. 2010. Not all wireless sensor networks are
created equal: A comparative study on tunnels. ACM Transactions on Sensor Networks 7, 2, Article 15
(September 2010), 33 pages. DOI:http://dx.doi.org/10.1145/1824766.1824771

G. Myklebust. 2004. The AVR Microcontroller and C Compiler Co-Design. Technical Report. ATMEL Corpo-
ration, Trondheim, Norway.

opnet. 2014. OPNET. http://www.opnet.com/. (Accessed December 2014).
F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. 2006. Cross-level sensor network simulation

with COOJA. In Proceedings of the 31st IEEE Conference on Local Computer Networks. 641–648.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

http://dx.doi.org/10.1145/1464420.1464423
http://dx.doi.org/10.1145/1464420.1464423
http://dx.doi.org/10.1145/1824766.1824775
http://dx.doi.org/10.1145/1824766.1824775
http://dx.doi.org/10.1145/1236360.1236364
http://dx.doi.org/10.1109/TCOM.1976.1093327
http://dx.doi.org/10.1109/JSEN.2013.2263962
http://dx.doi.org/10.1109/JSEN.2013.2263962
http://dx.doi.org/10.1145/1824766.1824771
http://www.opnet.com/

A Comparative Study of Recent Wireless Sensor Network Simulators 20:39

L. Palopoli, R. Passerone, and T. Rizano. 2011. Scalable off-line optimization of industrial wireless sensor
networks. IEEE Transactions on Industrial Informatics 7, 2 (May 2011), 328–339.

D. Pediaditakis, Y. Tselishchev, and A. Boulis. 2010. Performance and scalability evaluation of the castalia
wireless sensor network simulator. In Proceedings of the 3rd International Conference on Simulation
Tools and Techniques. 53.

E. Perla, A. Ó Catháin, R. S. Carbajo, M. Huggard, and C. McGoldrick. 2008. PowerTOSSIM: Realistic energy
modelling for wireless sensor network environments. In Proceedings of the 3rd ACM Workshop on Per-
formance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks (PM2HW2N’08).
35–42.

A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli, R. Passerone, and M. Sgroi. 2006. System level de-
sign paradigms: Platform-based design and communication synthesis. ACM Transactions on Design
Automation of Electronic Systems 11, 3 (July 2006), 537–563.

J. Polastre, R. Szewczyk, and D. E. Culler. 2005. Telos: Enabling ultra-low power wireless research. In Pro-
ceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN’05).
364–369.

T. S. Rappaport. 2002. Wireless Communications: Principles and Practice (2nd ed.). Prentice Hall PTR, NJ.
M. Rossi, L. Rizzon, M. Fait, R. Passerone, and D. Brunelli. 2014. Energy neutral wireless sensing for

server farms monitoring. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 4, 3
(September 2014), 324–334.

L. Shu, M. Hauswirth, H.-C. Chao, M. Chen, and Y. Zhang. 2011. NetTopo: A framework of simulation and
visualization for wireless sensor networks. Ad Hoc Networks 9, 5 (2011), 799–820.

Simpy. 2013. Simpy. http://simpy.sourceforge.net/. (Accessed April 2013).
Simulink. 2015. Simulink. http://it.mathworks.com/. (Accessed January 2015).
C. P. Singh, O. P. Vyas, and M. K. Tiwari. 2008. A survey of simulation in sensor networks. In Proceedings of

the International Conference on Computational Intelligence for Modelling Control Automation. 867–872.
A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou. 2007. J-sim: An integrated environment for simulation

and model checking of network protocols. In Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium. 1–6.

A. Somov, I. Minakov, A. Simalatsar, G. Fontana, and R. Passerone. 2009. A methodology for power consump-
tion evaluation of wireless sensor networks. In Proceedings of the 12st IEEE International Conference
on Emerging Technologies and Factory Automation. 1–8.

K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. 2010. An empirical study of low-power wireless.
ACM Transactions on Sensor Networks 6, 2, Article 16 (March 2010), 49 pages. DOI:http://dx.doi.org/
10.1145/1689239.1689246

B. K. Szymanski and G. G. Chen. 2007. Handbook of Dynamic System Modeling. CRC/Taylor and Francis
Publishing.

Texas Instruments Corporation. 2006. MSP430x1xx Family. User’s Guide, SLAU094F. Texas Instruments
Corporation.

Texas Instruments Corporation. 2013. SWRS041c - 2.4 GHz IEEE 802.15.4 ZigBee-ready RF Transceiver
(revision c ed.). Texas Instruments Corporation.

A. Timm-Giel, K. Murray, M. Becker, C. Lynch, C. Gorg, and D. Pesch. 2008. Comparative simulations of
WSN. In Proceedings of ICT Mobile and Wireless Communications Summit.

B. L. Titzer, D. K. Lee, and J. Palsberg. 2005. Avrora: Scalable sensor network simulation with precise
timing. In Proceedings of the 4th International Symposium on Information Processing in Sensor Networks
(IPSN’05). 477–482.

A. Varga. 2001. The OMNeT++ discrete event simulation system. In Proceedings of the 15th European Sim-
ulation Multiconference. The Society for Computer Simulation, International, Prague, Czech Republic,
319–324.

D. Weber, J. Glaser, and S. Mahlknecht. 2007. Discrete event simulation framework for power aware wireless
sensor networks. In Proceedings of the 5th IEEE International Conference on Industrial Informatics.
335–340.

E. Weingartner, H. vom Lehn, and K. Wehrle. 2009. A performance comparison of recent network simulators.
In Proceedings of the 5th IEEE International Conference on Communications. 1–5.

Received February 2015; revised November 2015; accepted March 2016

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 20, Publication date: July 2016.

http://simpy.sourceforge.net/
http://it.mathworks.com/
http://dx.doi.org/10.1145/1689239.1689246
http://dx.doi.org/10.1145/1689239.1689246

