
1

Security Policy Enforcement for
Networked Smart Objects

Sabrina Sicari∗‡, Alessandra Rizzardi∗, Daniele Miorandi§, Cinzia Cappiello†, Alberto Coen-Porisini∗
∗Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria,

via Mazzini 5 - 21100 Varese (Italy)
§U-Hopper srl, via A. da Trento 8/2, 38122 Trento, Italy

†Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
‡Corresponding author

Email: {sabrina.sicari; alessandra.rizzardi; alberto.coenporisini}@uninsubria.it,
daniele.miorandi@u-hopper.com, cinzia.cappiello@polimi.it

Abstract—In the Internet of Things (IoT) heterogeneous
technologies concur to the provisioning of customized
services able to bridge the gap between the physical and
digital realms. Security, privacy and data quality are
acknowledged to represent key issues to be tackled in
order to foster the large-scale adoption of IoT systems
and technologies. One instrumental aspect concerns the
ability of the system to preserve security in the presence
of external attacks. In such a scenario, the integration
of a flexible IoT middleware, able to handle a large
number of data streams and of interconnected devices,
with a flexible policy enforcement framework is needed
and presented in this paper. The proposed solution aims
to ease the management of interactions across different
realms and policy conflicts. Its effectiveness is validated
by means of a lightweight and cross-domain prototypical
implementation.

I. INTRODUCTION

The Internet of Things (IoT) [1] represents a vision
of future technological ubiquity, where the ability of
devices to connect to a global infrastructure enables
to bridge the gap between the physical and digital
realms. The diffusion of the IoT paradigm would allow
the implementation and the diffusion of innovative and
customized services in several applications fields. From
a technological point of view, the term ‘things’ is used
to denote various physical everyday objects that em-
bed electronics (e.g., wireless sensor nodes, actuators,
RFIDs, and so on) to make them smart and suitable
to be part of a global networked infrastructure. From a
logical point of view, an IoT system can be characterised
as a collection of smart devices which interact on a
collaborative basis to fulfill a common goal, acquiring
data from and acting upon the environment they are in.

In such a context, security & privacy represent crit-
ical requirements, which can hinder the large scale
adoption and diffusion of IoT applications [1] [2] [3]
[4] [5] [6]. Traditional security countermeasures and
privacy solutions cannot be directly applied to IoT
scenarios due to various reasons, including, but not
limited to, energy and computing constraints, scalability

etc. Moreover, adaptation and self-healing play a key
role in IoT infrastructures, which must be able to
face sudden and unexpected changes in the operational
environment. Accordingly, privacy and security issues
should be treated with a high degree of flexibility [7]
[8]. Together with the conventional security solutions,
there is also the need to provide built-in security in the
devices themselves (i.e., embedded) in order to pursue
dynamic prevention, detection, diagnosis, isolation and
countermeasures against successful breaches [9].

Security and privacy are two pillars for ensuring the
effectiveness of IoT services, the third one being data
quality. IoT services should provide correct, complete
and updated information: in some scenarios indeed
errors or missing values might have critical impact on
actions or decisions [10]. Keeping in mind the crucial
role of the satisfaction of these security, privacy and
data quality requirements, it is important to remark
that in IoT context the number of violation attempts
is high [2]. In other words, in order to deal with
the huge amount of critical situations typical of the
sharing approach of IoT paradigm, it is fundamental
to adopt well-defined enforcement mechanisms able to
successfully tackle them. Furthermore, IoT deployments
are characterized by a high degree of heterogeneity
in terms of architectures and technologies, so that a
suitable security framework should be highly flexible
in order to adapt to various deployment features.

In order to address such emerging issues, in this work
we propose to integrate an existing flexible and dis-
tributed IoT middleware, called NetwOrked Smart ob-
jects (NOS) [11], with a policy enforcement framework.
More in detail, the extended middleware has to provide a
policy enforcement system able to manage the resources
in a secure way and to handle attacks and violation
attempts. NOS is represented, in a previous work, as a
security-and quality-aware system architecture [12], and
is based upon the concept of a computationally powerful
smart nodes’ layer acting as a distributed database able
to manage IoT-generated data. The basic idea underpin-
ning NOS is of bringing processing, security and data

2

qualification closer to the actual data sources. To ease
the development of applications and the management
of such a system, in [11], the NOS middleware has
been designed and prototyped. It includes provisioning
for users and applications to dynamically specify the
levels of security and data quality suitable for their own
purpose.

However, the original NOS architecture does not
define supporting mechanisms for: (i) controlling the
access of both users and data sources; (ii) the data
provision to users. An enforcement system would allow
to overcome such limitations. As regards the enforce-
ment mechanisms, few efforts are currently made by
the scientific community [2] [13]. To the best of the
authors’ knowledge, no specific enforcement solution
for IoT is currently available, although it is essential to
ensure a safe deployment of IoT paradigm. To address
such shortcoming, in this paper we propose a policy
enforcement system specifically tailored to IoT, able
to manage the interactions among the involved entities
under well-defined policies. The proposed solution is
able to guarantee data quality, security and privacy also
in the presence of policy violation attempts.

The paper is organized as follows. Section II reviews
the relevant state of the art. Section III presents the NOS
architecture, with a specific focus on data management
aspects. Section IV describes the proposed enforcement
framework. Section V and VI present the prototyp-
ical implementation of the NOS policy enforcement
framework and its validation, in order to demonstrate
the feasibility of the proposed approach in a real IoT
context. Section VII concludes the paper and provides
some hints for future works.

II. RELATED WORKS

The most crucial challenge in building an IoT system
lies in the lack of common, standardised and interop-
erable software frameworks. In order to fill this gap,
the scientific community has started several interesting
research initiatives. For example, in recent years, the
availability of web service solutions has provided a
common frame for building systems able to leverage the
services of another one according to the principles of
Service Oriented Architectures (SOA). Service-oriented
Communications (SOC) technologies emerged as a way
to manage web services by creating a virtual network
and adapting applications to the specific needs of users
rather than forcing users to adapt to the available
functionality of applications [14] [15]. Although the
decision of adopting SOA architecture in IoT is shared
by the majority of scientific community, at the moment
the state of the art in this area is mostly limited to
research and innovation activities [16] [17] with limited
commercial uptake.

Furthermore, due to the very large number of hetero-
geneous technologies normally co-existing within IoT
deployments, several middleware layers are employed
to enforce the integration and the security of devices

and data within the same information network. Within
such middlewares, data must be exchanged respecting
strict protection constraints. Moreover, in middleware
design and development, different communication pro-
tocols shall be supported: while many smart devices
can natively support IPv6 communications [18] [19],
existing deployments might not support the IP protocol
within the local area scope, thus requiring ad hoc gate-
ways and supporting middlewares [20]. Recent works
on IoT middlewares are: VIRTUS [21], which relies
on the open eXtensible Messaging and Presence Pro-
tocol (XMPP) to provide secure event-driven commu-
nications; Otsopack [22] and Naming, Addressing and
Profile Server (NAPS) [23] are data-centric frameworks
based on HTTP and REpresentational State Transfer
interfaces. We differentiate from them since: (i) [21]
focuses only on the application of an authentication
system and on securing the communication channel by
means of encryption mechanisms; (ii) [22] and [23] ad-
dress, respectively, ambient intelligence in constrained
environments and resources naming management, with-
out dealing with security issues.

Many relevant activities have taken place within the
framework of EU R&D actions. The FP7 COMPOSE
(Collaborative Open Market to Place Objects at your
Service) project [24] aims to design and develop an open
marketplace, in which data from Internet-connected
objects can be easily published, shared and integrated
into services and applications. The basic concept un-
derpinning such an approach is to treat smart objects as
services, which can be managed using standard service-
oriented computing approaches and can be dynamically
composed to provide value-added applications to end
users.

The iCORE project (iCORE) [25] aims to empower
IoT with cognitive technologies and is focused on the
concept of virtual objects (VOs). VOs are semantically
enriched virtual representations of the capabilities/re-
sources provided by real world objects. Through the
inception of VOs it becomes possible to easily re-use
Internet-connected objects through different application-
s/services, also supporting their mash-up into composite
services. VOs provide a unified representation for smart
objects, hiding from the application/service developers
low-level details as well as from underlying technologi-
cal heterogeneity. They also provide a standardised way
to access objects’ capabilities and resources. One key
element in the iCORE project is the use of advanced
cognitive techniques for managing and composing VOs
in order to improve IoT applications and better match
user/stakeholder requirements. The considered applica-
tion scenarios include ambient assisted living, smart
office, transportation and supply chain management.

A dynamic architecture for services orchestration and
adaptation has been proposed in IoT.EST (Internet of
Things Environment for Service Creation and Testing)
[26]. The project defines a dynamic service creation
environment that gathers and exploits data from sen-
sors and actuators that use different communication

3

technologies and formats. Such an architecture deals
with different issues such as composition of business
services based on re-usable IoT service components,
automated configuration and testing of services for
“things”, abstraction of the heterogeneity of underlying
technologies to ensure interoperability.

Focusing on semantic web services, the Ebbits project
[27] designed a SOA platform based on open pro-
tocols and middleware, effectively transforming every
subsystem or device into a web service with semantic
resolution capability. The goal is to allow businesses
to semantically integrate the IoT into mainstream en-
terprise systems and support interoperable end-to-end
business applications.

Finally, security, privacy and trust issues are ad-
dressed by the uTRUSTit [28] and the Butler [29]
projects. The former one is a project integrating the user
directly in the trust chain, guaranteeing transparency in
the underlying security and reliability properties of the
IoT. If successful, uTRUSTit aims to enable system
manufacturers and system integrators to express the
underlying security concepts to users in a comprehen-
sible way, allowing them to make valid judgments on
the trustworthiness of such systems. Butler aims to
allow users to manage their distributed profile allowing
data duplication and identities control over distributed
applications. The final purpose is to implement a frame-
work able to integrate user dynamic data (i.e., location,
behaviour) in privacy and security protocols.

Besides security and privacy levels, which means
ability to guarantee confidentiality, integrity and
anonymity requirements, in order to allow a real dif-
fusion of IoT paradigm also data quality has to be
addressed. As regards data quality, several scientific
publications recognize its pivotal role in the IoT re-
search landscape. In [30], authors claim the need of con-
trolling data sources to ensure their validity, information
accuracy and credibility. Data accuracy is also covered
in [31], where the authors observe that the presence of
many data sources raises the need to understand the
quality of data. In particular, they state that the data
quality dimensions to consider are accuracy, timeliness
and the trustworthiness of the data providers. Anomaly
detection techniques are widely employed to remove
noise and inaccurate data in order to improve data
quality. The huge number of data sources is considered
a positive aspect for data fusion mechanisms and for
the provisioning of advanced services. Besides temporal
aspects (i.e., currency) and data validity, a related work
adds another important dimension such as availability
[32], with focus on pervasive environments. Authors
defined new metrics for the cited quality dimensions
in the IoT environment and evaluate the quality of the
real-world data available on an open IoT platform. They
show that data quality problems are frequent and they
should be addressed or, at least, users should be aware
of the poor quality of the data sources being used.

The definition of security and data quality policies
may be not sufficient for satisfying the requirements

of an IoT system, because violation attempts should
also be considered. This requires the inclusion of policy
enforcement mechanisms, which define how the system
shall reach in such cases. More in detail, policies are op-
erating rules which need to be enforced for the purpose
of maintaining data order, security, and consistency. The
policy enforcement assures that the security tasks can
only be fulfilled if they are in accordance with the un-
derlying security policies, consulting the policy decision
component and deciding whether to allow an entity to
perform an operation on a system resource. This aspect
is poorly covered in existing literature, which mostly
focuses on how to manage policy enforcement.

[33] presents a simulation environment for various
policy languages, such as WS-Policy (Web Services-
Policy) and XACML (eXtensible Access Control
Markup Language), used in different systems. Low-
level enforcement mechanisms may indeed vary from
system to system. Thus, it is difficult to enforce a policy
across domain boundaries or over multiple domains.
Before applying policies across domain boundaries, it
is desirable to know which policies can be supported
by other domains, which are partially supported, and
which are not supported. For example, in a health-
care environment, the cooperation and communication
among pharmacies, hospitals and medical schools are
essential. They have their own policy enforcement
mechanisms to protect their own proprietary data and
patients records. The problem is that there are lots of
collaborations and communications among these actors,
therefore a cross-domain policy enforcement becomes
an essential component. However, in most cases, these
domains use different policy languages. When a new
interaction or communication is required between two
separate domains, we do not know how many rules from
one domain can be enforced by current enforcement
mechanisms. So in most cases, the technical depart-
ments from these two domains have to work together
to evaluate whether or not it is possible to make
their systems interoperating. The same problem also
exists in social networking environment (e.g., Facebook,
Linkedin). Most existing social networking sites have
privacy configurations based on their own enforcement
mechanisms. When two social networking sites or two
healthcare domains need to communicate or collaborate
with each other, they have to rebuild or reconfigure
their systems to make sure these activities are consistent
with their own and their partners policies. In [33] a
simulation environment is proposed, using semantic
model mapping and translation for policy enforcement
across domain boundaries by means of the Web On-
tology Language (OWL), which can be used to model
both policy languages and enforcement mechanisms.
Therefore, a configurable middle-level component is
presented for the mapping process among such different
domains.

In [34] the languages regarding the definition of
obligations and policies are classified into two cate-
gories. On the one hand, there are policy enforcement

4

languages, which generally simplify the specification
and interpretation of policies; however, they lack the
formal semantics needed to allow the verification of the
policies themselves by means of formal proofs. On the
other hand, there are policy analysis languages, which
allow the formal policies analysis and the expression
of a large variety of obligations. In [34], the authors
introduce a policy language which aims at combining
the advantages of both approaches. Formalizing policy
enforcement has several advantages: it reduces the gap
between the specified policies and their deployment,
thus it ensures that the policies are correctly applied in
the system. To formalize policy enforcement, the target
system should be modeled and then the effects of the
application of the policies should be described. More in
details, policies are enforced using reference monitors,
and a set of active rules specifies that a set of actions
should be executed after the detection of some events,
if some conditions are met. However, such a language
does not provide the operational semantics needed to
dynamically enforce and manage obligations in a policy
managed system.

In [35] a novel access control framework, named
Policy Machine (PM), is proposed. It is composed by
the following basic entities: authorized users, objects,
system operations, and processes. Users may be either
human beings or system users; objects specify system
entities which are controlled under one or more poli-
cies (e.g., records, files, e-mails); operations identify
the actions that can be performed on such resources
(e.g., read, write, delete); finally, users submit access
requests through processes. Policies are grouped in
classes according to their attributes and, therefore, an
object may be protected under more than one policy
class, and, similarly, a user may belong to more than
one policy class. In such a way, PM is a general purpose
protection machine, since it is able to configure many
types of access control policies, and it is independent
from the different operating systems and applications;
users need to login only to PM in order to interact with
the secure framework. [35] demonstrates the PM ability
to express and enforce the policy objectives of RBAC
[36], Chinese Wall [37], MAC and DAC models [38].
Moreover, PM is able to face many Trojan horse attacks,
to which DAC and RBAC are vulnerable.

[39] and [40] introduce a semantic web framework
and a meta-control model to orchestrate policy reason-
ing with the identification and access of information
sources. In open domains indeed enforcing context-
sensitive policies requires the ability to opportunistically
interleave policy reasoning with the dynamic identi-
fication, selection, and access of relevant sources of
contextual information. Each entity (i.e., user, sensor,
application or organization) relies on one or more agents
responsible for enforcing relevant policies in response
to incoming requests. The framework is applicable to a
number of domains where policy reasoning requires the
automatic discovery and access of external sources.

[41] introduces a formal and modular framework

allowing to enforce a security policy on a given con-
current system. In fact, one of the important goals of
the software development process is to prove that the
system always meets its requirements. To deal with
this problem, two different approaches are proposed.
The former is a conservative enforcement: the program
should be terminated as soon as it violates the secu-
rity policy even if the current run could be partially
completed. The latter is a liberal enforcement: the
execution of the process is not aborted if it could be
partially satisfied. With this approach, more properties
are enforced than with the conservative one, but the
program may terminate without fully satisfying the
security policy. Therefore, the conservative enforcement
will generate false negatives, while the liberal enforce-
ment will generate false positives and no one of them
reach the desired result. In [41] an extended version
of Algebra for Communicating Process (ACP) [42],
designed for specifying concurrent systems behaviour,
and Basic Process Algebra (BPA) language for the
specification of security policies are used. To achieve the
goal, ACP is enhanced with an enforcement operator,
whose actions run in parallel with the system, in order
to monitor the requests and the satisfaction of the related
policies.

[43] provides an overview of network security, se-
curity policies, policy enforcement and firewall policy
management systems. As far as policy enforcement is
concerned, it proposes to use security services such
as authentication, encryption, antivirus softwares and
firewalls in order to protect the data confidentiality,
integrity, and availability. In contrast, the authors of [44]
present a framework able to prove whether the code
implementing access control respects access control
policy specifications.

Expressing security policies to govern distributed
systems is a complex and error-prone task. Because
of their complexity and of the different degrees of
trust among locations in which code is deployed and
executed, it is challenging to make these systems se-
cure. Moreover, policies are hard to understand, often
expressed with unfriendly syntax, making it difficult
for security administrators and for business analysts to
create intelligible specifications. In [45] a Hierarchical
Policy Language for Distributed Systems (HiPoLDS) is
introduced; it has been designed to enable the specifi-
cation of security policies in distributed systems in a
concise, readable and extensible way. HiPoLDS design
focuses on decentralized execution environments under
the control of multiple stakeholders. It represents policy
enforcement through the use of distributed reference
monitors, which control the flow of information among
services and are in charge of putting into action the
directives output by the decision engines. For example,
an enforcement engine should be able to add or re-
move security metadata such as signatures or message
authentication codes, encrypt confidential information,
or decrypt it when it is the case. [45] does not specify
how the distributed system behaves and manages policy

5

reconfiguration (e.g., if a reboot is required).
The authors of [46] state that the application logic,

embodied in the system components, should be sepa-
rated from the related policies. Therefore, they propose
an infrastructure which can enable policy, representing
high-level (i.e., user) or systems entities, able to drive
the system functionality in a distributed environment.
To this end, a middleware, able to support a secure
and dynamic reconfiguration and to provide a policy
enforcement mechanism across system components, is
introduced. However, neither a case study nor a working
implementation is presented.

Summarizing, there are no available solutions able
to handle both security & privacy and data quality
requirements in IoT environments at the same time.
In fact, [33] and [46] mainly address cross-domain
policy issues, [34] and [45] focus on a policy language
definition, [35], as well as [39] and [40], enforces only
access control policies, [41] and [43] are about a formal
proof of the correct behavior of a system with not well
defined security rules. A first attempt to consider both
the issues is presented in [10], [12] and [11]. In the first,
a general UML conceptual model for IoT architecture
is defined, while in the second one a high level design
of such an architecture is detailed. In the third, a real
implementation of the architecture is presented, which,
in this work, is integrated with an enforcement engine
able to manage the defined policies and the interactions
among the involved entities. Note that the identification
of the enforcement solutions suitable for the specific
IoT context is fundamental, finding a suitable tradeoff
between the guarantee of security, privacy and data qual-
ity issues and the computing efforts. The enforcement
framework proposed in this paper aims to fill this gap.

III. ARCHITECTURE AND PROTOTYPE

In a generic IoT system we can identify two main
entities: (i) the nodes, heterogeneous devices (e.g.,
RFID, NFC, sensors etc.) which generate data (ii) the
users, who interact with the IoT system through services
making use of IoT-generated data, typically accessing
them by means of a mobile device (e.g., smartphone,
tablet) connected to the Internet (through, e.g., WiFi,
3G, Bluetooth). The NOS layer has been introduced
in [11] in order to process such a huge amount of data
closer to the sources and to better serve the user in
terms of quality and security. NOSs are networked smart
nodes without strict constraints in terms of energy and
computational capabilities. They have self-organizing
features and can be deployed where and when needed,
in a distributed manner; through their interface with
enterprise platforms and IoT enabling technologies, they
can be used to extend existing software platforms,
making them able to interact with the physical world
following well-defined templates and rules. In general,
a NOS would act as a gateway with built-in processing
capabilities, able to manage a number of IoT data
sources. Multiple NOSs may co-exist, each of them

serving a subset of the IoT devices present in the
environment.

A high-level architecture of NOS is presented in
Figure 1 [12]. In the remainder of this section we
present the various components in detail.

NOSs aim to handle in near real-time the large
amount of data coming from heterogeneous IoT devices.
Following a bottom-up analysis of the architecture, we
start from the southbound NOS interface, which are
used by NOS to collect data from IoT devices. NOSs
are able to deal with both registered as well as non-
registered sources. NOSs provide a specific REST end-
point for handling source registration. The information
related to the registered sources is put into the storage
unit named Sources. Registered sources may specify an
encryption scheme for their interactions with NOSs. For
each incoming data unit, the NOS extracts the following
fields: (i) the data source, which describes the kind
of node (e.g., sensor node, actuator, RFID); (ii) the
communication mode, that is, the way in which the data
is collected (e.g., discrete or streaming communication);
(iii) the data model in use, which represents the type
(e.g., number, text) and the format of the received
data; (iv) the data itself; (v) the timestamp registering
when the data arrived to NOS. HTTP is assumed to
be used for communication among the NOS and the
data sources. Since the received data are of different
types and formats, NOSs initially put them in the Raw
Data collection. Data in such collection is periodically
processed, in a batch way, according to the two-phases
scheme shown in Figure 1. Data goes through the Data
Normalization and Analyzers phases in order to obtain
a uniform representation of data, including, as specified
in the following, metadata useful for optimsing and
customising the service provision.

First, the data stored in Raw Data is put in the format
specified in Figure 2 by the Data Normalization module
and stored in the Normalized Data unit. This represents
a sort of pre-processing phase in which the unnecessary
information is removed from the data (where the ‘unnec-
essary’ depends on the specific application domain) and
a uniform representation thereof is built; at this stage,
security and quality metadata fields are still empty.
Then, a second module, consisting of a set of Analyzers,
periodically extract such data from the Normalized Data
storage unit and elaborates it in terms of security and
data quality properties). Such an analysis implies that
the data are annotated with a set of metadata (i.e., a
score for each security and quality level). A sample
semantic description of the data content is shown in
Figure 2. The data thus processed is ready to be used
for providing services to the interested users. Therefore,
in order to achieve such a goal, the NOSs layer can be
connected to IP-based networks (i.e., Internet, intranet).

The assessment of security and quality levels are
based on a set of rules stored in a proper format in
another NOS storage unit, named Config. It is worth
remarking that such rules are not the subject of this
work, since the focus of this paper is on the enforce-

6
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������

	�
���������

����

������������

������������

������

����

�����
��������

�

�����������

�����
�

���������

	�����

�������������

���������������

�������

��������

������ ���������!����

�������"#���

�����

����	��

�����������

$����%

��&�

�����������������

#��������������

����

����������	
������

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�������

Fig. 1: System Architecture

ment mechanism. Config contains all the configuration
information required for the correct management of the
IoT system (including, e.g., how to calculate quality
properties, which attacks or security countermeasures to
consider etc.). Rules in the Config store can be dynam-
ically configured at runtime by system administrators
connecting remotely to the NOS over a secure connec-
tion (e.g., HTTPS, SSL) without the need to re-start the
NOS services. The usage of a secure communication
protocol is required in this case, as the policy adopted by
the NOS for processing the IoT data has to be protected
against external attacks. In this article we do not cover
monitoring and event reporting (e.g., registered sources,
source behavior, NOS performances, service utilization,
occurred violations) aspects, yet it is understood that
they should be included as in any operational system.
Given the distributed nature of NOS a viable solution
is represented by the popular ELK (Elastic, Logstash,
Kibana) stack 1.

Analyzers query the Config store to retrieve a list of
the operations they are intended to carry out. How-
ever, we remark that the assignment of security and
quality scores provides a handle for letting the users

1https://www.elastic.co/webinars/introduction-elk-stack

filter directly by themselves the data processed by
NOS according to their personal preferences. In fact,
the choice to provide a score for each security and
data quality dimension makes our approach extremely
flexible and able to adapt to very different applica-
tion scenario requirements. For example, there exist
application scenarios (e.g., factory floor automation)
in which only data with a high level of integrity and
confidentiality shall be used, but there is no interest to
satisfy privacy requirement. Another application domain
may aim to provide a service characterized by error-
free data and high confidentiality scores; therefore the
data to be selected are those provided by sources able
to satisfy these requirements. Such a feature makes
our solution suitable for adoption in different contexts.
In many situations indeed no description neither about
the sources nor the acquired data may be available
a priori; at the moment this requires labour-intensive
search and selection of which data sources to use.
Our approach automates such a task, leaving to the
system administrator to define scoring policies and to
the service provider to specify the requirements on the
data to be used. The ability to support an automatic
reasoning about data quality and security is what makes

7

our approach able to deal properly with the scale and
heterogeneity of IoT contexts.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������	
�������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
������	
�������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2: NOS data format

NOS’ northbound interface is based on the Mes-
sage Queue Telemetry Transport (MQTT) protocol. It
consists of a publish/subscribe mechanism, which aims
to make the processed data available for interested
applications and/or users. In fact, the system allows both
the registration of users and of external applications,
which authenticate to NOS and then make requests to
the services made available by the NOS itself. In case
of application registration, multiple users may register
to such an application, instead of registering to NOS.

MQTT is a lightweight publish/subscribe connectivity
protocol [47] specifically addressed for resource con-
strained devices. In IoT context, it is widely used to
enable communications among devices using a pub-
lish/subscribe messaging approach. An MQTT client,
as that contained in NOS, exchanges messages using
an MQTT broker by means of publications and sub-
scriptions to a topic. Such a mechanism is adopted to
support interactions among services and IoT devices.
In particular, each NOS has a module in charge of
assigning the corresponding topic to data and, then, to
send them to a MQTT client (module Publish Data
in Topics in Figure 1). The assignment of the topics
depends on the application domain and is out of the
scope of this work, but it may need the definition of an
ontology able to represent the semantics of the managed
resources. In general, topics are multi-level structures
separated by a forward slash similar to a directory struc-
ture. An example of a topic for publishing temperature
information of a sensor with identifier sensorId could be
sensor/temperature/sensorId. Note that subscribers may
register for specific topics at runtime and NOS provides
a mechanism for dynamic subscription e unsubscription
to the topics. The MQTT client (Client MQTT in Figure
1) publishes messages to a MQTT broker.

In our prototypical implementation, which is openly
accessible at https://bitbucket.org/alessandrarizzardi/
nos.git we have used the Mosquitto [48] open-source
MQTT broker, Node.JS platform [49] and MongoDB
[50] for the data management part. In our implementa-
tion, NOS modules interact among themselves through
RESTful interfaces. This allows us to add new modules
or modify the existing ones at runtime, since they are
able to work in parallel in a non-blocking manner.

The non-relational nature of MongoDB allows the data
model to evolve dynamically over time.

IV. POLICY ENFORCEMENT

In order to effectively manage the available resources
and to handle possible violation attempts, NOSs have
to be provided with a set of well-defined policies,
specifying the behaviour and the actions to be taken
in a given situation. Accordingly, a fundamental role
is played by the enforcement framework integrated in
the NOS system, as it guarantees that the policies
specified are correctly applied. In the NOS case, policies
refer in particular to controlling access to IoT data
and managing communications. This comes from the
requirement to protect both data resources and user
sensitive information. Technically, the main challenge to
be faced is how to integrate an enforcement mechanism
in the existing NOS architecture, without affecting the
existing functionality. In our approach, as shown in
Figure 1, the enforcement functionality is embedded in a
wrapper layer, able to control the NOS operations with-
out requiring major system-level modifications. In the
remainder of this section we analyse the functionality
in detail.

A. Enforcement Framework
The enforcement framework is in charge of handling

access control and service provisioning under well-
defined security and quality requirements. The frame-
work is defined hereby to represent a redefinition of
access control and data exchange in terms of a common
set of functions and roles suitable for IoT applications.
Functions and roles are dynamically configurable in
order to provide the required level of flexibility to cover
different application scenarios.

Conventional access control enforcement frameworks
include a Policy Enforcement Point (PEP), a Policy
Decision Point (PDP), and a Policy Administration
Point (PAP) [51]. PEP is in charge of intercepting
any requests of access to resources from users, and of
making a decision request to PDP in order to obtain
the access decision (i.e., approve or reject). Whenever
a user or an application requests access to a data, this
is routed through a PEP and transferred to a PDP for
evaluation and authorization decision. PDP evaluates
the access requests against the authorization policies in
order to decide whether the request shall be accepted.
To this end, the PDP refers to and queries a policies
store. When the PDP completes the evaluation, it returns
a response to the PEP. Based on such a decision, PEP
either permits or denies access to the user/resource. The
authorization policies are finally administered through
a “centralized” PAP. The functions just described are
usually performed by an application software. In our
case, where communication is based on the MQTT
protocol, all requests are handled via the MQTT broker
(as also shown in Figure 1). The architecture underlying
the framework may comprise one ore more NOS and a

8

huge amount of nodes, which act as data sources, and
users, which act as data consumers (either directly or
mediated by applications/services). Each NOS includes
a PEP, a PDP and a PAP, while each user has an ap-
plication representing an interface for the user personal
device and the NOS. As far as nodes are concerned, a
separate discussion has to be made, since the system
has to be able to deal both with registered and non-
registered nodes (i.e., data sources), while users may
be directly registered to NOS or to another application,
which is further registered to NOS. In the latter case,
the application itself manages all the interactions with
NOS and establishes the levels of security and quality
for the data to be provided to the interested users.
While, in the former case, a user, besides logs on the
application running on his/her device using the provided
GUI, opens a session, during which he/she can request
for the services provided by NOS on the basis of the
accessible resources. All components interact with the
underlying PEP.

The structure of the presented enforcement frame-
work is sketched in Figure 3. Although the figure shows
only one NOS, the framework may be executed in
a distributed manner on multiple NOS, whereby each
NOS runs its own framework and a single applica-
tion/service may interact with a plurality of NOSs.
Therefore, the distribution of policies, their update and
synchronization have to be considered (let us recall
that this means, roughly speaking, to synchronize the
content of the various instances of the Config store
on multiple NOSs). We assume that, in the case of
multiple NOSs interacting with each other, all NOSs
within the same administrative domain share the same
security policies and each of them has its own policy
enforcement component.

Our approach follows the Attribute Based Access
Control (ABAC) model [52]. In such a mechanism,
both the subject who want to access or to provide the
resources, and the objects (i.e., data), which represent
the resources themselves, are described by means of
specific attributes, which are used for the policies def-
inition. Attributes can be based on the metadata fields
natively supported in our data representation and control
rules can be defined according to the specific needs
of the application domain. As widely acknowledged in
the relevant literature, ABAC presents better scalability
and flexibility than Role Based Access Control (RBAC)
[53].

To ease interoperability and to actually enable the
implementation of a policy enforcement system, a pol-
icy representation language has to be chosen. Given
the large number of IoT domain applications, such a
language has to be flexible enough to represent the
analyzed contexts both in a general-purpose and in a
customizable way. The policy language proposed in
this paper is specifically tailored to the management
of enforcement, and is written in JSON syntax, being
therefore suitable for the integration in the database
management system used in our implementation (i.e.,

MongoDB). It allows to express the whole set of policies
for each involved entity (i.e., nodes and users). Each
of them has specific attributes, as described in the
following section. According to the defined attributes,
each entity can be allowed to perform different actions.
The system allows the runtime change of policies, which
can be dynamically loaded in the system through the
aforementioned PAP.

B. Enforcement Engine
Security among the involved components (i.e., NOS,

users, nodes) is guaranteed through the adoption of
suitable encryption mechanisms. Another challenge is
represented by the identification of a minimal set of
primitives able to specify and enforce a large variety
of attribute-based security and data quality policies.
To this end, NOS are provided with an Enforcement
Engine component, which is in charge of managing
such policies for all involved entities. The Enforcement
Engine implements to the PDP and PAP functions
shown in Figure 3. An important feature of the proposed
policy framework is that the Enforcement Engine also
supports the loading of new policies at runtime, without
disrupting service operations. Such a feature increases
the flexibility of the framework and makes it particular
suitable for IoT applications, which require a high
degree of availability.

The advantage of the adopted policy-based control is
that the controlling unit of the system (i.e., Enforcement
Engine) is kept decoupled from other management
components (i.e., Data Normalization and Analyzers
phases). As a consequence, the system administrator
can manage and change the system behaviour without
modifying the software or the user/node interfaces.
Furthermore, the entire system is controlled by policies
which specify the rules interpreted and enforced by
Enforcement Engine. Hence, if the conditions change
or new services or applications are added, only the cor-
responding policy rules have to be adapted. Within NOS
all the security related tasks are executed seamlessly so
that services are not required to have explicit knowledge
of security policies.

V. IMPLEMENTATION OF THE ENFORCEMENT
FRAMEWORK

In this section we present a prototypical implemen-
tation of the policy enforcement framework defined
in the previous section. The key component in the
NOS architecture is for us the Enforcement Engine,
which is in charge of ensuring that the system satisfies
the security and quality requirements of authorized
users/nodes. Policies are applied to two types of en-
tities: data producers (in our context: IoT devices or
nodes, as we term them) and data consumers (users
directly or applications). Six key actions for which
policies are specified have been identified and formally
described: node access control, node data transmission,
node data processing, user/application access control,

9

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������

��	
����

�

���������

�����������

�����������

����������

���������

���

����

���������

��	
����

����

���������

���������

�
����
������������

���������

�������

���������

�������

��	
����

�������

��	
����

����

����	�
��

�����

����������

�����

 ��!���

Fig. 3: Enforcement System

user/application service request, and service provision.
In line with the ABAC approach used, policies are spec-
ified as a set of key-value pairs, each pair representing
an attribute of the corresponding policy.
In our framework, a policy is composed of three main
building blocks. The first one (input) defines the val-
ues that the NOS expects to receive in input from
the requesting entity (nodes or users/applications) and
that are used for evaluating the policy for a specific
action. The second one (security) defines the functions
to be executed on the provided inputs to assess the
policy. Each function returns a value; such values are
composed by means of the logic specified in the third
block (response) to define whether the request shall be
accepted or not.
In our implementation, the policies are represented in
JSON format and are stored in the Config storage unit.
The character @ is used to indicate the value taken by
the corresponding field. In the following, we present
some sample policy specifications.
In our system three types of entities are present: users,
applications and nodes. Users and applications con-
sume data and they must be registered. Nodes generate
data; as explained in detail above the system accepts
also data generated by non-registered (anonynmous)
nodes. The user/application registration phase takes
place through an exchange of credentials between the
user/application and the NOS. In order to perform
registration operations, a user/application must be au-
thenticated with admin privileges. From the operational

perspective, we do expect that entities consuming data
(i.e., users/applications) will, in most cases, be regis-
tered by a system administration. When registering, an
identifier is assigned by the system to each registered
user/application, along with a function, conceived as a
set of attributes used for filtering the access to resources
(an example is presented in Section VI). Note that
such attributes and the related access permissions are
established by a system administrator, decoupled from
NOS.

On the other hand, as already introduced in Section
III, nodes can optionally self-register with the NOS.
Note that the NOS also assigns an identifier to the
registered nodes, for which in the registration phase is
specified the signature key used for encrypting the data
they send. Such credentials are eventually exchanged
between the node and NOS through the proper Sources
Registration interface.

Listing 1 describes a sample version of the NodeAc-
cessControl policy, which covers nodes wanting to send
data to the NOS. This policy is invoked by the NOS
before inserting the data into the Raw Data storage
unit. The Enforcement Engine verifies whether the node
is transmitting, along with the data, the node identifier
and a signature key (specified as node inputs in Listing
1). The verification process is split in two branches.
If the source is a registered one, the NOS receives in
input the node identifier and the signature key and can
perform a registrationCheck (i.e., checking whether the
identifier is known and valid) and the signaturekeyCheck

10

(i.e, checking that the identifier and key are compliant
for the requesting node). Conversely, if the source is
unknown, the key is marked as undefined by the func-
tion signaturekeyUndefinedMark for the corresponding
node. In case of a non-registered node, the NOS keeps
track of the source by assigning to it a pseudo-random
identifier at the first communication exchange; such an
identifier will be used in following interactions. This
approach allows a NOS to verify whether the node is a
new or a known one just by looking up its identifier. If
registrationCheck and/or signaturekeyCheck reveal that
the credentials are not compliant with the requesting
source, then the enforcement engine prevents such a
node from interacting with NOS.

Once these checks have been passed and the node
is allowed to send data to the NOS, a pseudo-random
session identifier is created and assigned by the ses-
sionAssignment function. Data quality and security are
assessed on a per-session basis.

1 { ” NodeAccessCon t ro l ” : {
2 ” p o l i c y ” : ” NodeAccessCon t ro l ” ,
3 ” i n p u t ” : {
4 ” node ” : {
5 ” i d e n t i f i e r ” : ”@NodeID” ,
6 ” s i g n a t u r e k e y ” : ”@Key”
7 }
8 } ,
9 ” s e c u r i t y ” : [{

10 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
11 ” r e g i s t r a t i o n C h e c k ” : ”@NodeID” ,
12 ” s i g n a t u r e k e y C h e c k ” : ”@NodeID , @Key”
13 }] ,
14 ” v e r i f i c a t i o n U n k n o w n S o u r c e ” : [{
15 ” s i g n a t u r e k e y U n d e f i n e d M a r k ” : ” u n d e f i n e d ” ,
16 ” i d e n t i f i e r C h e c k ” : ”@NodeID”
17 }]
18 }] ,
19 ” r e s p o n s e ” : [{
20 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
21 ” r e g i s t r a t i o n C h e c k ” : t r u e ,
22 ” s i g n a t u r e k e y C h e c k ” : t r u e ,
23 ” s e s s i o n A s s i g n m e n t ” : ”@NodeID , t imes t amp ”
24 } ,
25 {
26 ” s i g n a t u r e k e y C h e c k ” : f a l s e ,
27 ” a c c e s s D e n i e d ” : ”@NodeID”
28 }] ,
29 ” v e r i f i c a t i o n U n k n o w n S o u r c e ” : [{
30 ” s e s s i o n A s s i g n m e n t ” : ”@NodeID , t imes t amp ”
31 }]
32 }]
33 }}

Listing 1: Node access control sample policy

Once the node has completed the access control
phase, then it can send data to NOS. Listing 2 high-
lights the requested inputs for the corresponding policy,
named NodeDataTransmission, which are: the session
identifier, previously assigned by the NOS to the node
during the access control phase; the node identifier; the
data itself and the data type. Note that at this stage no
security operations have been performed yet: if all the
requested inputs are present (i.e., requiredInformation
action is true), the data are stored in Raw Data storage

unit (i.e., storeData action is activated for the actual
node). Data gets discarded only if the transmitting node
fails to provide the required information to the NOS
(i.e., discardData action is undertaken).

1 { ” NodeDa taTransmis s ion ” : {
2 ” p o l i c y ” : ” NodeDa taTransmis s ion ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” @Session ” ,
6 ” i d e n t i f i e r ” : ”@NodeID” ,
7 ” d a t a ” : ”@d” ,
8 ” d a t a t y p e ” : ”@dt”
9 }

10 } ,
11 ” r e s p o n s e ” : [{
12 ” v e r i f i c a t i o n I n p u t ” : [{
13 ” r e q u i r e d I n f o r m a t i o n ” : t r u e ,
14 ” s t o r e D a t a ” : ”@NodeID ,@d, @dt”
15 } ,
16 {
17 ” r e q u i r e d I n f o r m a t i o n ” : f a l s e ,
18 ” d i s c a r d D a t a ” : ”@NodeID ,@d, @dt”
19 }]
20 }}

Listing 2: Node data transmission sample policy

As detailed in Section III, in the NOS there are
processing modules that periodically fetch data from
Raw Data or Normalized Data storage units and process
them. The policy invoked in this step is called Node-
DataProcessing and, as shown in Listing 3, receives
in input the same values of the NodeDataTransmission
policy, but the action of data evaluation is enforced,
before sending processed data to the publish/subscribe
system. For registered sources, the NOS performs de-
cryptionData and decryptionDatatype operations, thus
decrypting the data and the corresponding data type
using the key of the actual node. Hence, for both
registered and non-registered sources, scoreAssessment
is executed and a score for each security and quality
property is assigned to the data.

1 { ” N o d e D a t a P r o c e s s i n g ” : {
2 ” p o l i c y ” : ” N o d e D a t a P r o c e s s i n g ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” @Session ” ,
6 ” i d e n t i f i e r ” : ”@NodeID” ,
7 ” d a t a ” : ”@d” ,
8 ” d a t a t y p e ” : ”@dt”
9 }

10 } ,
11 ” r e s p o n s e ” : [{
12 ” e v a l u a t i o n R e g i s t e r e d S o u r c e ” : [{
13 ” d e c r y p t i o n D a t a ” : ”@d, @NodeID” ,
14 ” d e c r y p t i o n D a t a t y p e ” : ”@dt , @NodeID” ,
15 ” s c o r e A s s e s s m e n t ” : ”@d, @NodeID”
16 }] ,
17 ” e v a l u a t i o n N o n R e g i s t e r e d S o u r c e ” : [{
18 ” s c o r e A s s e s s m e n t ” : ”@d, @NodeID”
19 }]
20 }]
21 }}

Listing 3: Node data processing sample policy

Listing 4 refers to the access request from a
user/application who wants to receive data from a NOS;

11

such a request is sent to the MQTT broker, which per-
forms an access request to the Enforcement Engine. The
corresponding policy, named UserAccessControl, is in-
voked before sending any data to the requesting entity. It
verifies whether the user/application is registered, using
for such a purpose the following parameters: user name,
user/application identifier, signature key and a function,
previously specified during the registration phase. The
policy verification process includes two cases. If the
user/application is registered, the NOS receives in input
the user/application identifier, the function and the sig-
nature key and can perform registrationCheck (i.e., the
identifier is known and valid for the specified function)
and signaturekeyCheck (i.e, identifier, function and key
are compliant for the requesting user/application). If the
user/application is unknown, then the key is marked as
undefined by the action signaturekeyUndefinedMark and
the user/application is not authorized by the enforce-
ment engine to access the system. If a user/application
tries to register with wrong credentials, for example
with a function different from the one declared during
the registration phase or with a different key, then
the enforcement engine generates a negative response,
alerts the user/application (see Figure 6 in Section VI)
and does not allow any interactions with IoT system.
Otherwise, in the case that the checks have been passed,
the user/application is allowed to interact with NOS and
a pseudo-random session identifier is assigned by the
sessionAssignment function.

1 { ” U s e r A c c e s s C o n t r o l ” : {
2 ” p o l i c y ” : ” U s e r A c c e s s C o n t r o l ” ,
3 ” i n p u t ” : {
4 ” u s e r ” : {
5 ” username ” : ”@Username” ,
6 ” i d e n t i f i e r ” : ”@UserID” ,
7 ” s i g n a t u r e k e y ” : ”@Key” ,
8 ” f u n c t i o n ” : ” @Function ”
9 }

10 } ,
11 ” s e c u r i t y ” : [{
12 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
13 ” r e g i s t r a t i o n C h e c k ” : ”@UserID , @Function ” ,
14 ” s i g n a t u r e k e y C h e c k ” : ”@UserID , @Key,

@Function ” ,
15 }] ,
16 ” v e r i f i c a t i o n U n k n o w n U s e r ” : [{
17 ” s i g n a t u r e k e y U n d e f i n e d M a r k ” : ” u n d e f i n e d ”
18 }]
19 }] ,
20 ” r e s p o n s e ” : [{
21 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
22 ” r e g i s t r a t i o n C h e c k ” : t r u e ,
23 ” s i g n a t u r e k e y C h e c k ” : t r u e ,
24 ” s e s s i o n A s s i g n m e n t ” : ”@UserID , @Function ,

t imes t amp ”
25 } ,
26 {
27 ” s i g n a t u r e k e y C h e c k ” : f a l s e ,
28 ” a c c e s s D e n i e d ” : ”@UserID , @Function ”
29 }] ,
30 ” v e r i f i c a t i o n U n k n o w n U s e r ” : [{
31 ” a c c e s s D e n i e d ” : ”@UserID , @Function ”
32 }]
33 }]

34 }}

Listing 4: User access control sample policy

Once the user/application has completed the access
control phase and is authenticated, then it can receive
data from NOS by activating the corresponding sub-
scription to the MQTT broker. Listing 5 highlights the
requested inputs for the corresponding policy, named
ServiceRequest, which are: (i) a session identifier, given
by NOS to the user/application after the access control
phase (computed randomly at each access, as for the
nodes); (ii) the username and the identifier; (iii) the
function; (iv) the requested service, along with the user
preferences in terms of security and quality.

For the service invocation, as already discussed in
Section III, we treat a resource as an object identified by
a hierarchical name (e.g., a URI). A service is conceived
as a software able to fulfill a specific task making use
of the available data. There is no direct interaction
among users/applications and NOS resources, but a
well-defined programming interface is needed through
a software application. Resources can be accessed by
users/applications only once they are published as object
instances. Note that at this stage no security operations
are performed: the request is elaborated by the system
if all the inputs are valid (i.e., requiredInformation
action is true); if not, the request is discarded by the
enforcement engine (i.e., requiredInformation action is
false). The security and quality preferences are not
mandatory: if they are omitted, the enforcement engine
does not discard the request, but sets the corresponding
constraints to the lowest admissible values.

1 { ” S e r v i c e R e q u e s t ” : {
2 ” p o l i c y ” : ” S e r v i c e R e q u e s t ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” @Session ” ,
6 ” username ” : ”@Username” ,
7 ” i d e n t i f i e r ” : ”@UserID” ,
8 ” f u n c t i o n ” : ” @Function ” ,
9 ” s e r v i c e ” : ” @Service ” ,

10 ” s e c u r i t y P r e f e r e n c e s ” : ” @ c o n f i d e n t i a l i t y ,
@ i n t e g r i t y , @privacy , @ a u t h e n t i c a t i o n ” ,

11 ” q u a l i t y P r e f e r e n c e s ” : ” @accuracy ,
@prec i s ion , @t ime l ine s s , @completeness ”

12 }
13 } ,
14 ” r e s p o n s e ” : [{
15 ” v e r i f i c a t i o n I n p u t ” : [{
16 ” r e q u i r e d I n f o r m a t i o n ” : t r u e ,
17 ” p r o c e s s R e q u e s t ” : ” @Session , @Username ,

@UserID , @Function , @Service ,
@ c o n f i d e n t i a l i t y , @ i n t e g r i t y , @privacy ,
@ a u t h e n t c a t i o n , @accuracy , @prec i s ion ,
@t ime l ine s s , @completeness ”

18 } ,
19 {
20 ” r e q u i r e d I n f o r m a t i o n ” : f a l s e ,
21 ” d i s c a r d R e q u e s t ” : ” @Session , @Username ,

@UserID , @Function , @Service ”
22 }]
23 }]
24 }}

Listing 5: User service request sample policy

12

Finally, the ServiceProvision policy is activated after
a data request, in order to verify the matching between
the request itself and the requesting user/application,
in terms of identifier and function, by performing
serviceAccessVerification action (Listing 6). Such a
policy receives in input the same values of the Ser-
viceRequest policy. Note that the parameters describing
the requested data are sent encrypted by the requesting
user/application. Therefore, the NOS has to decrypt
it (i.e., decryptionRequest action). From the identifier,
the NOS derives the signature key of the authenticated
user/application and uses it to decrypt the message.
After the verification step, the retrieveResults action
is performed. It retrieves the data corresponding to
the requested service, for which the user/application
is allowed to access. Before sending them back, the
retrieved data are filtered on the basis of the security
and quality constraints. In case there is no matching
among the described parameters (i.e., the user with the
specified identifier and function is not allowed to access
the requested service), the enforcement engine blocks
the data provision process and sends an error message
to the requesting entity.

1 { ” S e r v i c e P r o v i s i o n ” : {
2 ” p o l i c y ” : ” S e r v i c e P r o v i s i o n ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” @Session ” ,
6 ” username ” : ”@Username” ,
7 ” i d e n t i f i e r ” : ”@UserID” ,
8 ” f u n c t i o n ” : ” @Function ” ,
9 ” s e r v i c e ” : ” @Service ” ,

10 ” s e c u r i t y P r e f e r e n c e s ” : ” @ c o n f i d e n t i a l i t y ,
@ i n t e g r i t y , @privacy , @ a u t h e n t i c a t i o n ” ,

11 ” q u a l i t y P r e f e r e n c e s ” : ” @accuracy ,
@prec i s ion , @t ime l ine s s , @completeness ”

12 }
13 } ,
14 ” s e c u r i t y ” : [{
15 ” d e c r y p t i o n R e q u e s t ” : ” @Service , @UserID” ,
16 ” s e r v i c e A c c e s s V e r i f i c a t i o n ” : ” @Service ,

@UserID , @Function ”
17 }] ,
18 ” r e s p o n s e ” : [{
19 ” s e r v i c e A c c e s s V e r i f i c a t i o n ” : t r u e ,
20 ” r e t r i e v e R e s u l t s ” : ” @Service , @UserID ,

@Function , @ c o n f i d e n t i a l i t y , @ i n t e g r i t y ,
@privacy , @ a u t h e n t c a t i o n , @accuracy ,
@prec i s ion , @t ime l ine s s , @completeness ”

21 } ,
22 {
23 ” s e r v i c e A c c e s s V e r i f i c a t i o n ” : f a l s e ,
24 ” a c c e s s D e n i e d ” : ” @Session , @Username ,

@UserID , @Function , @Service ”
25 }]
26 }}

Listing 6: Service provision sample policy

VI. VALIDATION AND EVALUATION

In order to verify the effectiveness of the proposed
solution, we developed a simple use case based on the
usage of open IoT data feeds. In particular, we relayed
on six sensors measuring weather-relevant parameters

TABLE I: Source parameters

Parameters Source 1 Source 2 Source 3 Source 4 Source 5 Source 6
Authentication 1 1 0 1 0 0
Security schema score 10 6 0 2 0 0
Privacy schema score 10 6 0 2 0 0
Timeliness 9 8 6 3 9 7
Completeness 9 10 8 6 7 10
Accuracy 9 7 5 6 7 10
Precision 9 8 4 5 8 9

and co-located within the meteorological station in the
small town of Campodenno (Trentino, Italy) and can
be accessed through the Trentino Open Data portal2.
The measurements cover temperature, humidity, wind,
energy consumption and air quality parameters.

In the experimental setup, the prototypical NOS im-
plementation is deployed on a Raspberry Pi. A laptop
is used to emulate the behaviour of a set of nodes,
basically reading data from the aforementioned feeds
and sending them to the NOS as if they came from
six different nodes. Laptop and Raspberry communicate
via a WiFi network. The laptop runs also a simple
visualization service, which fetches, according to user-
defined constraints, data from the NOS and displays
them. User can express constraints in terms of the
required security and quality levels, including aspects
such as confidentiality, integrity, privacy, authentication,
completeness, timeliness, and accuracy, as shown in the
dashboard in Figure 4. As an example, we assigned to
the six different data sources considered the security and
quality scores reported in Table I.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 4: User Dashboard

A first analysis carried out concerns the storage
capacity required by the system for carrying out its op-
erations. In this respect, it is worth recalling that NOSs
do not support persistent storage of IoT-generated data.
Rather, data are temporarily cached on the NOS while
being processed before being submitted to the MQTT
broker. NOS has therefore to provide only a temporary
storage. When data are further pushed to or pulled from

2http://dati.trentino.it/dataset/raw-data-in-near-realtime-stazione-cmd001

13

the server which handles the topics notification to sub-
scribers, data can be safely flushed from the NOS. In our
prototypical implementation, we used the in-memory
capability of MongoDB for Raw Data and Normalized
Data collections, while Config and Sources databases
are persistently stored on the local hard disk. Since NOS
runs on a Raspberry Pi, the maximum storage capacity
for IoT data with the actual technology corresponds to
1 gigabyte (i.e., the RAM provided by Raspberry Pi 2
and 3). In our implementation, we include a routine in
charge of removing from Raw Data the data already
normalized and from Normalized Data the data already
published. We measured the memory occupancy of NOS
during operations, which resulted in an average slightly
less than 7 megabyte. Such a value is only indicative,
as the memory occupancy depends on a number of
factors, notably: (i) the frequency of data fetching from
sources (in our example 10 packets per second); (ii) the
frequency of execution of the routines for removing data
from non-persistent collections (in our example every 5
minutes); (iii) the number of sources.

A further evaluation is performed in order to estimate
the latency introduced by NOS and the policy enforce-
ment framework. Figure 5 shows the results obtained
from one run of one NOS prototype with the six data
sources just described over a period of one hour for
two different reading data rates (i.e., how often the NOS
queries the data sources to fetch data), 10 and 20 packets
per second, respectively. The graph shows that the mean
delay is almost constant over time. Furthermore, the
introduced latency does not exceed 6.5 ms in our test
case, a promising result in terms of the ability of the
solution to deal with near real-time analysis of IoT data.

Fig. 5: Latency introduced by the NOS and the policy
enforcement framework.

As regards the enforcement actions undertaken by
NOS, we have analyzed: (i) the node access control
for a registered source; (ii) the node access control
for a non-registered source; (iii) the data transmission
for a registered source; (iv) the data processing for a
registered source; (v) the user access control along with
a violation attempt; (vi) a user service request along

with a violation attempt; (vii) a user service provision.
Before sending their data to NOS, the registered

sources perform the access control operation. For ex-
ample in Listing 7 is represented the policy activated
for Source 1: the request is valid if the signature key
is compliant with the one owned by NOS. We suppose
that the session identifier randomly generated by the
node identifier and the actual timestamp is 2016-03-24
09:15:00 (as shown in Listings 8 and 9).

1 { ” NodeAccessCon t ro l ” : {
2 ” p o l i c y ” : ” NodeAccessCon t ro l ” ,
3 ” i n p u t ” : {
4 ” node ” : {
5 ” i d e n t i f i e r ” : ” 1 ” ,
6 ” s i g n a t u r e k e y ” : ”∗∗∗∗∗ ”
7 }
8 } ,
9 ” s e c u r i t y ” : [{

10 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
11 ” r e g i s t r a t i o n C h e c k ” : ” 1 ” ,
12 ” s i g n a t u r e k e y C h e c k ” : ” 1 ,∗∗∗∗∗ ”
13 }]
14 }] ,
15 ” r e s p o n s e ” : [{
16 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
17 ” r e g i s t r a t i o n C h e c k ” : t r u e ,
18 ” s i g n a t u r e k e y C h e c k ” : t r u e ,
19 ” s e s s i o n A s s i g n m e n t ” : ” 1 , 2016−03−24 09

: 1 5 : 0 0 ”
20 }]
21 }]
22 }}

Listing 7: Node access control - registered source

In Listing 8 the same action is presented for the non-
registered Source 3; in this case the enforced action is
the tracking of the node.

1 { ” NodeAccessCon t ro l ” : {
2 ” p o l i c y ” : ” NodeAccessCon t ro l ” ,
3 ” i n p u t ” : {
4 ” node ” : {
5 ” i d e n t i f i e r ” : ” 3 ”
6 }
7 } ,
8 ” s e c u r i t y ” : [{
9 ” v e r i f i c a t i o n U n k n o w n S o u r c e ” : [{

10 ” s i g n a t u r e k e y U n d e f i n e d M a r k ” : ” u n d e f i n e d ” ,
11 ” i d e n t i f i e r C h e c k ” : ” 3 ”
12 }]
13 }] ,
14 ” r e s p o n s e ” : [{
15 ” v e r i f i c a t i o n U n k n o w n S o u r c e ” : [{
16 ” s e s s i o n A s s i g n m e n t ” : ” 1 , 2016−03−24 09

: 1 5 : 0 0 ”
17 }]
18 }]
19 }}

Listing 8: Node access control - non-registered source

Now we suppose that the registered Source 1 trans-
mits data to NOS (Listing 9). Function encr specifies
that the parameters of the message are encrypted. The
only difference between this node and a non-registered
node is that, in the latter case, the parameters of the
message would not be encrypted. The enforcement
engine verifies whether the four requested values (i.e.,

14

session, identifier, data, datatype) are present in the
message received by NOS. If this is not the case,
the NOS discards the message and, possibly, prevents
other communications with the same source. Note that
a message sent from a node may include also other data
(which depend on the specific device) besides the ones
requested by the policy (e.g., a timestamp, a location):
the policy specifies conditions on the mandatory ones
only.

1 { ” NodeDa taTransmis s ion ” : {
2 ” p o l i c y ” : ” NodeDa taTransmis s ion ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” 12345 ” ,
6 ” i d e n t i f i e r ” : ” 1 ” ,
7 ” d a t a ” : ” e n c r (1 0 . 7) ” ,
8 ” d a t a t y p e ” : ” e n c r (dou b l e wind speed) ”
9 }

10 } ,
11 ” r e s p o n s e ” : [{
12 ” v e r i f i c a t i o n I n p u t ” : [{
13 ” r e q u i r e d I n f o r m a t i o n ” : t r u e ,
14 ” s t o r e D a t a ” : ” 1 , e n c r (1 0 . 7) , e n c r (do ub l e

wind speed) ”
15 }
16 }]
17 }]
18 }}

Listing 9: Node data transmission

After validating such data, NOS can process them.
Listing 10 shows the corresponding processing policy.

1 { ” N o d e D a t a P r o c e s s i n g ” : {
2 ” p o l i c y ” : ” N o d e D a t a P r o c e s s i n g ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” 12345 ” ,
6 ” i d e n t i f i e r ” : ” 1 ” ,
7 ” d a t a ” : ” e n c r (1 0 . 7) ” ,
8 ” d a t a t y p e ” : ” e n c r (dou b l e wind speed) ”
9 }

10 } ,
11 ” r e s p o n s e ” : [{
12 ” e v a l u a t i o n R e g i s t e r e d S o u r c e ” : [{
13 ” d e c r y p t i o n D a t a ” : ” e n c r (1 0 . 7) , 1 ” ,
14 ” d e c r y p t i o n D a t a t y p e ” : ” e n c r (km / h wind

speed) , 1 ” ,
15 ” s c o r e A s s e s s m e n t ” : ” 1 0 . 7 , 1 ”
16 }]
17 }]
18 }}

Listing 10: Node data processing

Now we suppose that the user Bob had registered
himself to the weather service with the username Bob
and 473 as identifier, in order to be notified about
the measurements acquired in the considered area for
some monitoring actions he has to do for his employer.
Therefore he registers himself with the role of Monitor.
Firstly, he has to perform the access control: Listing
11 describes the activated policy. We suppose that the
generated session identifier is 13240. If the credentials
are not valid, it could be a violation attempts, then
the enforcement engine forces the NOS to prevent user
interactions, as illustrated in Figure 6.

1 { ” U s e r A c c e s s C o n t r o l ” : {
2 ” p o l i c y ” : ” U s e r A c c e s s C o n t r o l ” ,
3 ” i n p u t ” : {
4 ” u s e r ” : {
5 ” username ” : ”Bob” ,
6 ” i d e n t i f i e r ” : ” 473 ” ,
7 ” s i g n a t u r e k e y ” : ”∗∗∗∗∗ ” ,
8 ” f u n c t i o n ” : ” Moni to r ”
9 }

10 } ,
11 ” s e c u r i t y ” : [{
12 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
13 ” r e g i s t r a t i o n C h e c k ” : ” 473 , Moni to r ” ,
14 ” s i g n a t u r e k e y C h e c k ” : ” 473 ,∗∗∗∗∗ , Moni to r ”
15 }]
16 }] ,
17 ” r e s p o n s e ” : [{
18 ” v e r i f i c a t i o n R e g i s t r a t i o n ” : [{
19 ” r e g i s t r a t i o n C h e c k ” : t r u e ,
20 ” s i g n a t u r e k e y C h e c k ” : t r u e ,
21 ” s e s s i o n A s s i g n m e n t ” : ” 473 , Monitor ,

2016−03−24 09 : 2 0 : 0 0 ”
22 }]
23 }]
24 }}

Listing 11: User access control

Fig. 6: Violation attempts of user access control

Otherwise, if the credentials are correctly verified, the
user can make the desired service requests. Listing 12
shows an example of the corresponding policy invoked
for requesting the service, named Humidity and Wind
Speed Real Time Measurements, along with the security
and quality constraints.

1 { ” S e r v i c e R e q u e s t ” : {
2 ” p o l i c y ” : ” S e r v i c e R e q u e s t ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” 13240 ” ,
6 ” username ” : ”Bob” ,
7 ” i d e n t i f i e r ” : ” 473 ” ,
8 ” f u n c t i o n ” : ” Moni to r ” ,
9 ” s e r v i c e ” : ” Humidi ty and Wind Speed Rea l

Time Measurements ” ,
10 ” s e c u r i t y P r e f e r e n c e s ” : ” 2 , 0 , 2 , 1 ” ,
11 ” q u a l i t y P r e f e r e n c e s ” : ” 4 , 4 , 4 , 4 ”
12 }
13 } ,
14 ” r e s p o n s e ” : [{
15 ” v e r i f i c a t i o n I n p u t ” : [{
16 ” r e q u i r e d I n f o r m a t i o n ” : t r u e ,
17 ” p r o c e s s R e q u e s t ” : ” 13240 , Bob , 4 7 3 , Monitor ,

Humidi ty and Wind Speed Real Time
Measurements , 2 , 0 , 2 , 1 , 4 , 4 , 4 , 4 ”

18 }
19 }]

15

20 }}
Listing 12: User service request

At this point, such a request has to be analyzed in
order to establish if the user is entitled to receive the
data corresponding to the service (Listing 13 represents
a user which has access to requested data).

1 { ” S e r v i c e P r o v i s i o n ” : {
2 ” p o l i c y ” : ” S e r v i c e P r o v i s i o n ” ,
3 ” i n p u t ” : {
4 ” message ” : {
5 ” s e s s i o n ” : ” 13240 ” ,
6 ” username ” : ”Bob” ,
7 ” i d e n t i f i e r ” : ” 473 ” ,
8 ” f u n c t i o n ” : ” Moni to r ” ,
9 ” s e r v i c e ” : ” Humidi ty and Wind Speed Rea l

Time Measurements ” ,
10 ” s e c u r i t y P r e f e r e n c e s ” : ” 2 , 0 , 2 , 1 ” ,
11 ” q u a l i t y P r e f e r e n c e s ” : ” 4 , 4 , 4 , 4 ”
12 }
13 } ,
14 ” s e c u r i t y ” : [{
15 ” d e c r y p t i o n R e q u e s t ” : ” Humidi ty and Wind

Speed Real Time Measurements , 4 7 3 ” ,
16 ” s e r v i c e A c c e s s V e r i f i c a t i o n ” : ” Humidi ty

and Wind Speed Rea l Time Measurements , 4 7 3 ,
Moni to r ”

17 }] ,
18 ” r e s p o n s e ” : [{
19 ” s e r v i c e A c c e s s V e r i f i c a t i o n ” : t r u e ,
20 ” r e t r i e v e R e s u l t s ” : ” Humidi ty and Wind

Speed Real Time Measurements , 4 7 3 , Moni tor ,
2 , 0 , 2 , 1 , 4 , 4 , 4 , 4 ”

21 }]
22 }}

Listing 13: Service provision

There are two possible outcomes: (i) the user with
Monitor function is allowed by the sensors data admin-
istrator to access the requested measurements for the
monitoring scope; (ii) the user is not allowed to access
these data for the declared scope. In the former case,
the dashboard shown to the user is the one represented
in Figure 7(d); from here, the user can also change
dynamically the security and quality settings as can be
seen in Figure 7. If no security or quality constraint is
specified, all data is considered valid and the resulting
graphs for wind speed (in Km/h) and humidity (in %)
look as in Figure 7(a). In Figure 7(b) some security
filters are applied; in particular, the system shows to the
user only the data (i) provided by authenticated sources,
(ii) for which the integrity is verified, (iii), for which the
level of privacy and confidentiality is equal or higher
than 6. Obviously in this case some data is dropped,
as it fails to meet the criteria specified by the user in
terms of security and quality of the data to use. The
graph in Figure 7(c) is obtained without any constraint
specified on security, but considering valid only data
scoring at least 6 in completeness and timeliness, and
8 in accuracy and precision. In the latter case, it would
be a violation attempt, then the response of the system
is the one shown in Figure 8.

We remark that this represents only an example of
a very simple NOS application in a context charac-

terised by the analysis of real-time data. Other possible
applications include energy management in a smart
home/smart building scenario; monitoring of business
processes and productive activities in real time; smart
retail experiences services and, more in general, any
application/service where decisions (either manual or
automated) have to be taken based on IoT-generated
data. This class of applications is expected to play a
key role in the adoption of IoT technologies across a
variety of vertical domains.

One aspect which deserves some further clarifications
refers to the fact that in our example we considered
one single NOS. While indeed we aim to deploy the
presented middleware in a distributed environment, from
an analysis of NOS functionality it is not difficult to see
that no NOS-to-NOS coordination is strictly required.
In fact, NOSs are able to: (i) independently handle
the data sources, without the need to inform the other
NOSs of their active and past interactions; (ii) be inde-
pendently re-configured by IoT system administrators;
(iii) independently assign topics and publish data on the
basis of the defined rules; (iv) enforce the application
of the policies defined for the IoT system. We can
safely conclude therefore that considering a single NOS-
scenario for validation purposes does not represent a
limiting factor.

VII. CONCLUSIONS

Security and data quality issues represent potential
show-stoppers for the market take-up of IoT-based prod-
ucts and services in various operational scenarios and
vertical application domains. To tackle these issues, in
this article we have introduced and discussed a flexible
security and data quality enforcement framework, co-
herently integrated within a distributed IoT middleware
platform.

The presented framework supports security and data
quality enforcement policies, re-usable across different
domains and able to detect violation attempts. The
feasibility and performance of the proposed approach
have been validated by means of a prototypical imple-
mentation and the development of a simple, yet real-
world, use case.

In the next future we will focus on the deployment
of the middleware and the framework in a large-scale
pilot focussed on building automation, in order to test its
robustness and scalability in operational environment.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac,
“Survey internet of things: Vision, applications and research
challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–1516,
2012.

[2] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,
“Security, privacy and trust in internet of things: The road
ahead,” Computer Networks, vol. 76, pp. 146–164, 2015.

[3] R. H. Weber, “Internet of things - new security and privacy
challenges,” Computer Law & Security Review, vol. 26, no. 1,
pp. 23–30, January 2010.

16

(a) No\ Filters (b) Security\ Filters

(c) Quality\ Filters (d) All\ Filters

Fig. 7: Results

Fig. 8: Violation attempt of user service request

[4] H. Feng and W. Fu, “Study of recent development about privacy
and security of the internet of things,” in 2010 International
Conference on Web Information Systems and Mining (WISM),
Sanya, October 2010, pp. 91–95.

[5] R. Roman, J. Zhou, and J. Lopez, “On the features and
challenges of security and privacy in distributed internet of
things,” Computer Networks, vol. 57, no. 10, pp. 2266–2279,
July 2013.

[6] J. Anderson and L. Rainie, “The internet of things
will thrive by 2025, PewResearch Internet Project,”
http://www.pewinternet.org/2014/05/14/internet-of-things/,
May 2014, May 2014.

[7] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “A
survey of middleware for internet of things,” in Third Inter-
national Conferences, WiMo 2011 and CoNeCo 2011, Ankara,

Turkey, June 2011, pp. 288–296.

[8] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware
solutions for the internet of things,” in 2012 International
Conference on Collaboration Technologies and Systems (CTS),
Denver, CO, May 2012, pp. 21–26.

[9] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, “Pro-
posed embedded security framework for internet of things
(iot),” in 2011 2nd International Conference on Wireless Com-
munication, Vehicular Technology, Information Theory and
Aerospace and Electronic Systems Technology, Wireless VITAE
2011, Chennai, India, March 2011, pp. 1 – 5.

[10] S. Sicari, A. Rizzardi, C. Cappiello, and A. Coen-Porisini, “A
NFP model for internet of things applications,” in Proc. of IEEE
WiMob, Larnaca, Cyprus, Oct 2014, pp. 164–171.

[11] A. Rizzardi, D. Miorandi, S. Sicari, C. Cappiello, and A. Coen-
Porisini, “Networked smart objects: Moving data processing
closer to the source,” in 2nd EAI International Conference on
IoT as a Service, Oct 2015.

[12] S. Sicari, C. Cappiello, F. D. Pellegrini, D. Miorandi, and
A. Coen-Porisini, “A security-and quality-aware system archi-
tecture for internet of things,” Information Systems Frontiers,
pp. 1–13, 2014.

[13] S. Sicari, S. Hailes, D. Turgut, S. Sharaffedine, and D. U.,
Security, Privacy and Trust Management in the Internet of
Things era- SePriT, 11th ed. Special Issue of Ad Hoc
networks, Elsevier, 2013.

[14] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

17

“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, no. 11, pp. 38–45, Nov 2007.

[15] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying
and managing web services: Issues, solutions, and directions,”
The VLDB Journal, vol. 17, no. 3, pp. 537–572, May 2008.

[16] “Peertrack,” http://cs.adelaide.edu.au/peertrack/.

[17] “Perci (pervasiveservice interaction),”
http://www.hcilab.org/projects/perci/index.htm.

[18] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne,
L. Grieco, G. Boggia, and M. Dohler, “Standardized protocol
stack for the internet of (important) things,” Communications
Surveys Tutorials, IEEE, vol. 15, no. 3, pp. 1389–1406, Third
2013.

[19] I. Bagci, S. Raza, T. Chung, U. Roedig, and T. Voigt, “Com-
bined secure storage and communication for the internet of
things,” in 2013 IEEE International Conference on Sensing,
Communications and Networking, SECON 2013, New Orleans,
LA, United States, June 2013, pp. 523–631.

[20] D. Boswarthick, O. Elloumi, and O. Hersent, M2M Communi-
cations: A Systems Approach, 1st ed. Wiley Publishing, 2012.

[21] D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi,
and M. Spirito, “The virtus middleware: An xmpp based
architecture for secure IoT communications,” in 2012 21st
International Conference on Computer Communications and
Networks, ICCCN 2012, Munich, Germany, July 2012, pp. 1–
6.

[22] A. Gòmez-Goiri, P. Orduna, J. Diego, and D. L. de Ipina,
“Otsopack: Lightweight semantic framework for interoperable
ambient intelligence applications,” Computers in Human Be-
havior, vol. 30, pp. 460–467, January 2014.

[23] C. H. Liu, B. Yang, and T. Liu, “Efficient naming, addressing
and profile services in internet-of-things sensory environments,”
Ad Hoc Networks, vol. 18, no. 0, pp. 85–101, 2013.

[24] “European FP7 IoT@Work project,” http://iot-at-work.eu.

[25] “iCORE project,” http://www.iot-icore.eu.

[26] “IOT-EST project,” http://ict-iotest.eu/iotest/.

[27] “EBBITS project,” http://www.ebbits-project.eu/.

[28] “Usable trust in the internet of things,” http://www.utrustit.eu/.

[29] “BUTLER project,” http://www.iot-butler.eu.

[30] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou, “Opportunistic
iot: Exploring the harmonious interaction between human and
the internet of things,” J. Netw. Comput. Appl., vol. 36, no. 6,
pp. 1531–1539, Nov. 2013.

[31] A. Metzger, C.-H. Chi, Y. Engel, and A. Marconi, “Research
challenges on online service quality prediction for proactive
adaptation,” in Software Services and Systems Research -
Results and Challenges (S-Cube), 2012 Workshop on European,
June 2012, pp. 51–57.

[32] F. Li, S. Nastic, and S. Dustdar, “Data quality observation
in pervasive environments,” in Proceedings of the 2012 IEEE
15th International Conference on Computational Science and
Engineering. IEEE Computer Society, 2012, pp. 602–609.

[33] Z. Wu and L. Wang, “An innovative simulation environment
for cross-domain policy enforcement,” Simulation Modelling
Practice and Theory, vol. 19, no. 7, pp. 1558–1583, August
2011.

[34] Y. Elrakaiby, F. Cuppens, and N.Cuppens-Boulahia, “Formal
enforcement and management of obligation policies,” Data &
Knowledge Engineering, vol. 71, no. 1, pp. 127–147, January
2012.

[35] D. Ferraiolo and V. A. ans S. Gavrila, “The policy machine:
A novel architecture and framework for access control policy
specification and enforcement,” Journal of Systems Architec-
ture, vol. 57, no. 4, pp. 412–424, April 2011.

[36] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2,
pp. 38–47, February 1996.

[37] D. Brewer and M. Nash, “The chinese wall security policy,” in
Proceedings., 1989 IEEE Symposium on Security and Privacy,
Oakland, CA, May 1989, pp. 206–214.

[38] M. Bishop, Computer Security: Art and Science. Addison
Wesley, 2003.

[39] J. Rao, A. Sardinha, and N. Sadeh, “A meta-control architec-
ture for orchestrating policy enforcement across heterogeneous
information sources,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 7, no. 1, pp. 40 – 56,
2009.

[40] ——, “A meta-control architecture for orchestrating policy
enforcement across heterogeneous information sources,” Web
Semantics: Science, Services and Agents on the World Wide
Web, vol. 7, no. 1, pp. 40–56, January 2009.

[41] M. Langar, M. Mejri, and K. Adi, “Formal enforcement of
security policies on concurrent systems,” Journal of Symbolic
Computation, vol. 46, no. 9, pp. 997–1016, Semptember 2011.

[42] J. Baeten, “A brief history of process algebra,” Theoret. Com-
put. Sci., vol. 335, no. 2-3, pp. 131–146, December 2005.

[43] R. Macfarlane, W. Buchanan, E. Ekonomou, O. Uthmani,
L. Fan, and O. Lo, “Formal security policy implementations
in network firewalls,” Computers & Security, vol. 31, no. 2,
pp. 253–270, March 2012.

[44] J. A. Pavlich-Mariscal, S. A. Demurjian, and L. D. Michel, “A
framework for security assurance of access control enforcement
code,” Computers & Security, vol. 29, no. 7, pp. 770 – 784,
2010.

[45] M. Dell’Amico, M. S. I. G. Serme, A. S. de Oliveira, and
Y. Roudier, “Hipolds: A hierarchical security policy language
for distributed systems,” Information Security Technical Report,
vol. 17, no. 3, pp. 81–92, February 2013.

[46] J. Singh, J. Bacon, and D. Eyers, “Policy enforcement within
emerging distributed, event-based systems,” in DEBS 2014
- Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems, 2014, pp. 246–255.

[47] “Ibm and eurotech, ”mqtt v3.1 protocol specification”,”
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/
mqtt-v3r1.html.

[48] “Mosquitto, ”an open source mqtt v3.1/v3.1.1 broker”,”
http://mosquitto.org.

[49] “Node.JS,” http://nodejs.org/.
[50] “MongoDB,” http://www.mongodb.org/.
[51] N. Ulltveit-Moe and V. Oleshchuk, “Decision-cache based

XACML authorisation and anonymisation for XML docu-
ments,” Computer Standards & Interfaces, vol. 34, no. 6, pp.
527 – 534, 2012.

[52] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proceedings of the 13th ACM Conference on Computer and
Communications Security, 2006, pp. 89–98.

[53] R. S. Sandhu, “Role-based access control,” vol. 46, pp. 237–
286, 1998.

18

Sabrina Sicari Sabrina Sicari is Assis-
tant Professor at Universita’ degli Studi
dell’Insubria (Italy). She received her master
degree in Electronical Engineering in 2002
and her Ph.D. in Computer and Telecom-
munications Engineering in 2006 from Uni-
versita’ degli Studi di Catania (Italy). From
September 2004 to March 2006 she has been
a research scholar at Politecnico di Milano.
Since May 2006 she works at Universita’
degli Studi dell’Insubria in the software en-

gineering group. Her research interests are on wireless sensor net-
works (WSN), risk assessment methodology and privacy models. She
is a member of the Editorial Board of Computer Network (Elsevier).
She is the general co-chair of S-Cube’09, a steering committee
member of S-Cube’10, S-Cube’11, S-Cube’13 and S-Cube’14, guest
editor for the ACM Monet Special Issue, named “Sensor, System and
Software” and Ad Hoc Special Issue on Security, Privacy and Trust
Management in Internet of Things era (SePriT), TPC member and
reviewer for many journals and conferences.

Alessandra Rizzardi Alessandra Rizzardi
received BS and MS degree in Computer
Sciences with 110/110 cum laude at Uni-
versity of Insubria (Italy) in 2011 and 2013
respectively. Since 2011 for her MS thesis,
she began working in the research group of
Prof. Alberto Coen-Porisini and Dr. Sabrina
Sicari. From November 2013 she is a Ph.D.
student at the University of Insubria under
the guidance of Dr. Sabrina Sicari. Her re-
search activity is focused on issues related

to wireless sensor networks and internet of things, in particular on
security and privacy issues in IoT.

Daniele Miorandi Daniele Miorandi is Ex-
ecutive VP R&D at U-Hopper. He received
a PhD in Communications Engineering from
Univ. of Padova, Italy, in 2005. His cur-
rent research interests include modelling
and performance analysis of large-scale net-
worked systems, ICT platforms for socio-
technical systems and distributed optimisa-
tion for smart grids. Dr. Miorandi has co-
authored more than 120 papers in interna-
tionally refereed journals and conferences.

He serves on the Steering Committee of various international events,
for some of which he was a co-founder (Autonomics and ValueTools).
He also serves on the TPC of leading conferences in the networking
and computing fields. He is a member of ACM, ISOC and ICST.

Cinzia Cappiello Cinzia Cappiello is As-
sistant Professor in computer engineering at
the Politecnico di Milano (Italy) from which
she holds a Ph.D. in Information Technology
(2005). Her research interests regard data
and information quality aspects in service-
based and Web applications, Web services,
sensor data management, and Green IT. On
such topics, she published papers in inter-
national journals and conferences. Cinzia is
Associate Editor of the ACM Journal of

Data and Information Quality. She has been co-chair of the workshops
“Quality in Databases” in conjuction with VLDB 2010, “Data and
Information Quality” in conjuction with CAiSE 2005, “Quality in
Web Engineering” in conjuction with ICWE 2010-2013, and of the
tracks “Information Quality Management in Innovative IS” of MCIS
2012 and “Data and Information quality” of ECIS 2008.

Alberto Coen-Porisini Alberto Coen
Porisini received his Dr. Eng. degree
and Ph.D in Computer Engineering from
Politecnico di Milano (Italy) in 1987
and 1992, respectively. He is Professor
of Software Engineering at Universita’
degli Studi dell’Insubria (Italy) since
2001, Dean of the the School of Science
from 2006 and Dean of the Universita’
degli Studi dell’Insubria since 2012. Prior
to that he was Associated Professor at

Universita’ degli Studi di Lecce (1998-2001), Assistant Professor
at Politecnico di Milano (1993-2001) and Visiting Researcher with
the Computer Security Group at University of California, Santa
Barbara (1992-1993). His main research interests are in the field of
specification and design of real-time systems, privacy models and
wireless sensor networks.

