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Abstract

Wireless sensor networks had a big diffusion in the
last few decades and they are used in many application
domains. Services built on them require to handle a big
amount of data, and a fundamental requirement is their
quality, highly affected by the security of the whole
system. Some encryption techniques can be adopted,
but it is also necessary to verify the reliability of
nodes that sense, aggregate, transmit data and share
keys. This paper proposes a methodology for assessing
data quality. Built on a cross layer approach, our
methodology exploits localization information.
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1. Introduction

Wireless sensor networks (WSNs) are becoming
popular in many application domains: indoor/outdoor
surveillance systems, traffic monitoring and control
systems for urban and sub-urban areas, systems sup-
porting tele-medicine, attendance to disable or el-
derly people, environment monitoring, localization and
recognition of services and users, monitoring and con-
trol of manufacturing processes in industry, etc. [1].
The amount of data that have to be transmitted and
manipulated to provide such complex services is pretty

9781-4244-3941-6/09/$25.00 c© 2009 IEEE

high, but sensors are tiny devices with limited com-
putation and energy capabilities and the transmission
of data is a very expensive operation from a power
consumption perspective. Thus, one of the design goals
of WSN systems should be the reduction of the need
for transmission. A step in this direction are publish-
subscribe approaches and content-based routing [2],
[3]. In several situations, however, the interest is just
in some aggregated measure, such as the average
temperature of a region, the average humidity, etc. In
this cases a proper aggregation algorithm (for examples
see [4], [5], [6]) may reduce significantly the number
of bytes exchanged across the WSN.

From a security point of view, the wireless commu-
nications and the deployment in uncontrolled environ-
ments rise several issues: in fact, the confidentiality,
the integrity, and the availability of data might be
put at risk by malicious tampering of sensors and/or
traffic. Many of the solutions proposed in the literature
are based on access control and strong authentica-
tion, which are problematic to implement with lim-
ited resources and short battery life. Moreover, the
approaches based on pre-shared encryption keys are
prone to physical attacks: in fact, is pretty easy to
clone a sensor device and its key. Therefore, in this
paper we start from the assumption that the perfect
protection of data is infeasible or too expensive to be
effective and we propose to use an approach based on
the assessment of data quality, defined as how likely is
that the information to be elaborated by the application
is reliable and trustworthy. Therefore, we suggest to
combine two — in general unreliable, but relatively
easy to achieve — protection techniques: while none
of them is enough to guarantee the reliability of all
the pieces of information, consistency across them can



be exploited to get a measure of the overall quality.
Applications can then leverage on this assessment to
provide the level of service feasible in the current con-
text. The aim of our work is to define a methodology
that defines the fundamental steps for assessing data
quality. We use secure data aggregation and a secure
localization protocol to gather information about the
data generated by the sensors and we compute a cross-
layer assessment of the overall quality of the data
collected by the sink node. The paper is organized as
follows: Section 2 provides a short state of art about
data aggregation in hostile environments; Section 3
shortly describes the reference scenario in order to
clarify the application domain; Section 4 introduces
the main steps of the methodology and some imple-
mentation details. Section 5 draws some conclusions
and provides hints for future works.

2. Related Work on Secure Aggregation

Data confidentiality and integrity become vital when
sensor nodes are deployed in a hostile environment.
Secure aggregation of data in a adversarial setting is
the focus of several works. They can be classified
according to the approach used for encrypting data,
that can be done hop-by-hop or end-to-end. In the
former case, the data are encrypted by sensing nodes
and decrypted by aggregators. The aggregator nodes,
then, decrypt the data coming from the sensing nodes,
aggregate them, and encrypt them again, until eventu-
ally the sink node gets the final encrypted aggregation
result (and decrypts it). In the end-to-end approach the
intermediate aggregators manipulate only encrypted
data and they have no keys to decrypt them.

Some hop-by-hop works (for example, [5], [7], [8],
[6]) assume that data security is guaranteed by means
of some key distribution schemes. Such solutions are
vulnerable to the tampering or cloning of the intermedi-
ate aggregator nodes. End-to-end encrypted techniques
([9], [4]) partially overcome the weakness of hop-by-
hop techniques, but they also need a key scheme. Some
approaches suggest to share a key among all sensing
nodes and the sink, however, the aggregators have
no keys to manage because they handle data without
making any decryption. Nevertheless, sensing nodes’
keys are still critical and if they are shared among
too many nodes, a whole network region might be
compromised by attacking a single sensing node. An

alternative is represented by the adoption of public key
encryption [10], but in this case the drawback is rep-
resented by a high computational power consumption.

Most of the proposed solutions are based on the
adoption of encryption techniques, ad-hoc key distri-
bution schemes [11], [12], [13], authentication, access
control solutions. Our methodology proposes, instead,
to combine some cheap protection techniques even
if none of them is totally effective. We leverage on
cross-layer consistency to asses the overall quality
of the collected information. Thus, by means of the
verification of localization information it is possible
to adopt an end-to-end secure data aggregation with a
pre-shared key, without wasting power with public key
encryption techniques.

3. Reference Scenario

We consider a dense network composed of nodes
ni, where ni ∈ N, 0 < i ≤ |N | and a base station b
in which all the collected data sink. We consider three
subsets of N :

• S, composed by nodes si, 0 < i ≤ |S| which
perform sensing functions;

• A, composed by nodes ai, 0 < i ≤ |A| which
aggregate data;

• V , composed by nodes vi, 0 < i ≤ |V | which
work as verifiers in the secure localization proto-
col.

N = S ∪ A ∪ V , however while V may overlap
both S and A (in principle every node whose position
can be taken for granted might be used as a verifier),
the effectiveness of secure aggregation requires (see
Section 4.1) that S and A are disjoint, i.e., S ∩A = ∅.

Each si node senses a given type of data (e.g.,
temperature, pressure, brightness, position, and so on),
while ai nodes combine the sensing data received
from sensing nodes in their communication range.
Each (sensing, aggregator, and verifier) node directly
communicates with its closer neighbours (at one hop
distance).

All the sensors si whose data are to be collected by
the node aj share a symmetric encryption key κaj

with
b. As we will discuss in Section 4.1, there is no need
for storing any key on aggregator nodes.



4. Assessing the quality of collected data

We combine secure data aggregation and a secure
localization protocol to gather information about the
data generated by the sensors. Thus, the sink node b is
able to compute a cross-layer assessment of the overall
quality of the collected data. The proposed strategy is
composed by four steps:

1) Secure data aggregation. si nodes send their
sensed data to the nearest aj . The data are
encrypted with a key κaj

not known to aj .
The aj nodes aggregate all the received data
without decrypting them (see Section 4.1) and
send them to b. At the end of the process, b has
the data in their aggregated form: for example
the average temperature of a region. Encryption
guarantees the integrity and confidentiality of the
transmitted data, while the key is not known to
attackers. However, a clone of a sensor could
have sent a forged datum that nonetheless was
aggregated with the others.

2) Node localization. si nodes provide to vj the
pieces of information needed to localize them. A
beacon signal is normally enough: the algorithm
we chose (see Section 4.2) is based on round-
trip time measurement and the vj nodes end up
with a distance bound to si; distance bounds
are then sent to b. A malicious node might
delay the beacon signal, but not speed it up:
as a consequence the distance bounds could be
larger than the actual ones, but not shorter. It
is worth noting that the localization data cannot
be transmitted as described in the previous step,
since no aggregation is performed.

3) Assessment of localization. b, thanks to the dis-
tance bounds received from the vj nodes (at least
three for each si are needed), can now compute
the position1 (xi, yi) of each sensing node si;
moreover the verifiable multilateration (see Sec-
tion 4.2) provides a measure Wi for the trustwor-
thiness of the result: each position can be marked
as Robust, Malicious, or Unknown. At the
end, b has a table T = < (xi, yi),Wi > that
maps each position to its reliability measure.

4) Cross-layer assessment of data quality. b can use
T to assess the quality of data aggregated on a

1. In this paper we consider nodes as points in the 2D space

given region Ξ; in fact, for each position within
Ξ, a measure of its reliability is known: thus,
according to the constraint of the application
domain, b may decide to discard the aggregated
data if it is not considered reliable enough.

The next sections analyze in depth the previous
steps.

4.1. Secure Data Aggregation

Limitations on power require a minimization of the
amount of transmitted data from nodes to the sink.
Aggregation protocols may help in reducing the overall
traffic among nodes. At the same time, since nodes are
the attack goals of malicious users which try to violate
the confidentiality and the integrity of data, proper
countermeasures are needed to perform a secure data
aggregation. Encryption can be used to secure node
communication both hop-by-hop and end-to-end (see
Section 2). We chose an end-to-end secure aggregation
solution in which an attack to any aggregator node is
not able to compromise the whole system. We adopted
the algorithm described in [4] because it is based on
a simple and secure additively homomorphic stream
cipher that allows efficient aggregation of encrypted
data. The cipher algorithm uses modular additions
and is therefore very well suited for CPU-constrained
devices. Aggregation based on this cipher can be used
to efficiently compute statistical values such as mean,
variance, and standard deviation of sensed data, while
achieving a significant bandwidth gain. A homomor-
phic encryption scheme enables arithmetic operations
to be performed on encrypted data. One example
is a multiplicatively homomorphic scheme, whereby
the multiplication of two ciphertexts followed by a
decryption operation yields the same result as, say, the
multiplication of the two corresponding plain-text val-
ues. Homomorphic encryption schemes are especially
useful in scenarios where someone who does not have
decryption keys needs to perform arithmetic operations
on a set of ciphertexts. A stream cipher is typically
obtained by combining plain-text bits with a pseudo-
random cipher bit stream (key-stream) by an exclusive-
or (⊕) operation. Since (a⊕ k)⊕ k = a, decryption is
also easy to obtain. The main idea of the homomorphic
encryption described in [4] is to replace the xor with
modular addition (a + b)modM . The main steps are
the following:



• Encryption
– Each datum is represented by an integer 0 ≤
d ≤M − 1, where M is a large integer;

– Let k be a randomly generated keystream,
where 0 ≤ d ≤M − 1

– The cipher-text c is given by c =
Enc(d, k,M) = (d+ k)modM

• Decryption: d = Dec(c, k,M) = (c− k)modM
• Addition of cipher-texts

– Let c1 = Enc(d1, k1,M) and c2 =
Enc(d2, k2,M)

– then, if M is sufficiently large, Dec(c1 +
c2, k,M) = d1 + d2, where k = (k1 +
k2)modM

The scheme is made practical by generating en-
cryption keys in each session with a pseudo-random
function applied to a unique node id (see [4] for
the details): from a logical point of view, the sensor
nodes and the sink share the encryption key of the
aggregated datum. However, by attacking or cloning
a single sensor node, an enemy cannot compromise
the whole system, but at worst only aggregate a fake
datum. Aggregator nodes, instead, are immune from
attacks, since they handle only encrypted data.

4.2. Secure Localization

The node positions can be evaluated by using a
multilateration technique, which determines the node
coordinates by exploiting a set of landmark nodes,
called the anchor nodes, whose positions are known.
The position of the unknown node u is computed
by using an estimation of the distances between the
anchor nodes and the node itself. The distance is not
measured directly; instead, it can be computed by
knowing the speed of the signal in the medium used
in the transmission, and by measuring the time needed
to get an answer to a beacon message sent to u. If
the computation is carried on without any precaution,
u might fool the anchors by delaying the beacon
message. However, since a malicious node can delay
the answer beacon, but not speed it up, under some
conditions it is possible to spot malicious behaviors.
Verifiable Multilateration (VM) [14] uses three or more
anchor nodes to detect misbehaving nodes. In VM the
anchor nodes work as verifiers of the localization data
and they send to the sink b the information needed to
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Figure 1. Verifiable multilateration

evaluate the consistency of the coordinates computed
for u. The basic idea of VM is shown in Figure 1:
each verifier vi computes its distance bound [15] to
u; any point u′ 6= u inside the triangle formed by
v1, v2, v3 has necessarily at least one of the distance
to the vi enlarged. This enlargement, however, cannot
be masked by u by sending a faster message to the
corresponding verifier. Therefore, if the verifiers are
trusted and they can communicate securely with b,
the following algorithm can be used to check the
localization data:

1) Each verifier vi send a beacon message to u and
records the time τi needed to get an answer;

2) Each verifier vi (whose coordinates < xi, yi >
are known) send to b a message with its τi;

3) From τi, b derives the corresponding distance
bound dbi and it estimates u’s coordinates by
minimizing the mean square error ε =

∑
i(dbi−√

(xu − xi)2 + (yu − yi)2)2, where < xu, yu >
are the coordinates to be estimated2;

4) b can now check if < xu, yu > are feasible in
the given setting by two incremental tests:

a) δ-test: For all verifiers vi, compute the
distance between the estimated u and vi: if
it differs from the measured distance bound
by more than the expected distance mea-
surement error, the estimation is affected
by malicious tampering;

b) Point in the triangle test: Distance bounds
are reliable only if the estimated u is within
at least one verification triangle formed by a
triplet of verifiers, otherwise the estimation
is considered unverified.

2. Such minimization is indeed far from trivial: we used an
approximation based on simulated annealing.



If both the δ and the point-in-the-triangle tests are
positive, the distance bounds are consistent with the
estimated node position, which moreover falls in at
least one verification triangle. Thus, the sink can con-
sider the estimated position of the node as Robust;
otherwise, the information at hands is not sufficient to
support the reliability of the data. An estimation that
does not pass the δ test is considered Malicious.
A sensible value of δ depends on the expected error
in time measurement and the number of available
verifiers. The simulation reported below should clarify
the considerations involved in the choice of δ. If the
δ test is passed, but the point-in-the-triangle one fails,
the sink marks the estimation as Unknown, meaning
there is no sufficient information for evaluating the
trustworthiness of node position. Thus, the localization
phase ends up, for each unlocalized node ui, with
an estimation of the position of ui and a quality
Wi ∈ Robust, Unknown,Malicious.

4.2.1. Simulation. We used OMNET++ (ver. 3.3p1,
[16], [17]) to set up a simulation of the secure local-
ization algorithm. A claimant node u to be localized
resides at the center of a 100m×100m field, i.e., at
point < 50, 50 >. Since the best approach to lay
out three verifiers is on the vertexes of an equilateral
triangle [14], we fixed their coordinates to be the points
< 1, 1 >,< 99, 1 >,< 50, 85 >. If u is faithful,
it answers to verifiers’ beacons without any delay.
Otherwise, if u is malicious it adds a variable delay
to the answers, in order to dissimulate a fake position
u′: i.e., for each vi, if the distance ¯viu′ is greater
than ¯viu a proper delay is added by u to the answer
beacon to vi. We assumed that signals travel at the
speed of light and that time can be measured with an
error whose standard deviation is 2ns. As described
above, the timing information collected by verifiers vi

can be used by the base station to classify the claimant
as Malicious, Unknown, or Robust. Figure 2(a)
shows the effect of the choice of the δmax in the δ-
test on 10000 runs with 3 verifiers: the only sensible
value is 35, since lower levels have an overwhelming
rate of false positives (i.e., faithful nodes classified as
Malicious), and a higher δ gives too much false
negatives (i.e., malicious nodes classified as Robust)
and unknowns. About 50% of malicious claimants and
90% of faithful ones were classified as Unknown: the
error in taking the estimated position instead of the real

Figure 3. Empirical Cumulative Distribution Func-
tion (ECDF) of deception for Unknown nodes
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Figure 4. Deception when a malicious node is
classified as Robust

one is pretty high, as one can see from Figure 3 that
plots the Empirical Cumulative Distribution Function
of deception. The situation is clearly improved when a
fourth verifier is added (see Figure 2(b)): the setting is
now with a verifier at each corner of the field and all
the values less than 2.5 give acceptable results; there
are no Unknowns. It is worth noting that the range of δ
considered is different, since by increasing the number
of verifiers, the maximum acceptable error δmax should
decrease. There are still some false negatives, but
the deception induced by a malicious node taken as
Robust is always less than 1m with δ ≤ 1. Figure 4
plots the density distribution of the deception — i.e.,
the distance between the real position and the estimated
one — at different values of δ. Adding a fifth verifier
randomly deployed significantly decreases the rate of
false negatives, as shown in Figure 2(c).
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Figure 2. Classification by secure localization

4.3. Cross-layer Assessment of Data Quality

The sink receives a message encrypted by the
scheme sketched in Section 4.1. Once decrypted, the
sink has the aggregated datum, together with the
guarantee of its integrity and confidentiality. It could,
however, embed fake data coming from malicious
nodes which had mocked faithful nodes. The sink has
also data about the localization of nodes, together with
a marking of their trustworthiness quality. Since each
aggregated datum d refers to a given region Ξi, in order
to assess the quality of d, the sink might use the local-
ization information about any node ni ∈ Ξi and each
node nj ∈ Ξj , j 6= i whose quality is Malicious
or Unknown and the region Ξj confines with the
region Ξi. In other words, the sink can use cross-
layer information to guess how many possibly fake
data were deceptively aggregated in the final result. It
is still possible that an attacker decided to not lie on its
position, but only in the datum sent to the aggregator.
In that case, however, the position is faithful and other
consistency properties could be exploited: for example,
since temperature is a continuous quantity, a datum
of 40◦C could be found as anomalous if its close to
other measures that are about 20◦C. Unfortunately, this
kind of considerations are application specific and no
general rule can be given. In specific cases, a fake
datum associated to a truthful localization can always
snake in; however, at least the true position might be
used to spot the malicious sensor. All in all, the cross-
layer analysis enables a more careful assessment of the

overall quality of the received data, and data possibly
affected by too many attackers can be discarded, thus
avoiding malicious poisoning.

Use case
A simple numerical example should be sufficient to

illustrate the application of the proposed approach.
A base station b has received the average tempera-

ture (25◦C) of a rectangular region defined by the four
points < 0, 0 > − < 10, 0 > − < 10, 10 > − <
10, 0 >. b has built the following table listing all the
information received about sensor nodes localization:

xi yi Wi

2 3 Robust
4 5 Robust
5 2 Malicious

11 3 Malicious
12 4 Robust

Therefore, b may now asses the quality of the aggre-
gated data received: thus, the average 25◦C contains
the data coming from the two sensors positioned in
< 2, 3 > and < 4, 5 >, and possibly from the two
sensors positioned in < 5, 2 > (maliciously asserting
to be inside the region, but probably outside) and
< 11, 3 > (maliciously asserting to be outside the
region, but possibly inside). Since the datum could be
affected by two malicious nodes, b decides to discard
it.



5. Conclusions

Data quality is a fundamental requirement in any
wireless sensor network scenario. Although it is very
difficult to provide data trustworthiness due to the
distributed nature and the limited resource in terms
of power of WSN, the proposed methodology allows
to analyze data trustworthiness by exploiting consis-
tency on cross-layer information, i.e., node localization
and data aggregation. The proposed solution improves
the knowledge about the security behavior of nodes
that handle data. More specifically, the trustworthiness
about the node position information is used as a
metrics for evaluating data trustworthiness. In fact node
position, being target of different kind of attacks — i.e.,
node malicious displacement, or distance enlargement
— is a good alarm for revealing malicious behavior.
Our methodology is flexible, in fact it results largely
independent from the adopted routing protocols, the
verification localization algorithm, and the secure data
aggregation strategy. Our approach can also be applied
on wireless multimedia sensor networks, due to its
independence from the kind of sensing data (multi-
media or monomedia data). At the moment possible
extensions for modelling privacy policies and the re-
lated enforcement mechanisms are under investigation.
Moreover the application of game theory for modelling
malicious behavior and reason about rational choices,
represents a future goal.
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