
Introducing Privacy
in a Hospital Information System

Stefano Braghin Alberto Coen-Porisini Pietro Colombo
Sabrina Sicari Alberto Trombetta

Dipartimento di Informatica e Comunicazione – Università degli Studi dell’Insubria
via Mazzini 5, 21100 Varese, Italy

{stefano.braghin, alberto.coenporisini, pietro.colombo,
sabrina.sicari, alberto.trombetta}@uninsubria.it

ABSTRACT
Security and privacy issues in healthcare data management play a
fundamental role in the widespread adoption of medical
information systems. As a consequence, it is very important to
define the right means for expressing and managing policies in
order to comply with privacy-related standards and regulations.
In this work, we extend an open source hospital information
system in order to provide support for expressing and enforcing
privacy-related policies, using as a starting point a conceptual
model the authors developed in a previous work.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Medical information systems.
K.4.1 [Public Policy Issues]: Privacy

General Terms: Security

Keywords: Privacy policies, conceptual models, software
engineering applications, hospital information system
1. INTRODUCTION
In the last few years, hospitals have increasingly adopted
Information Technology-supported healthcare solutions in order to
manage health-related information and to provide a
(semi)automated administration of clinical functions.
Usually, healthcare-related data of patients are stored in a digital
version of medical/health records, called Electronic
Medical/Health Records (EMR/EHR) and managed by
corresponding medical information systems that enable
communication of patients’ data among healthcare professionals.
Sharing sensitive patients’ data in a large, distributed and
heterogeneous environment introduces security and privacy risks.
Such risks are further enhanced by the inherent openness of the
web-based applications and interfaces through which medical
information systems can be accessed. As a consequence, it is
widely recognized that security and privacy concerns are the main
obstacles to the deployment of medical information systems. On
the other side, the relevance of such concerns is proved by the
activities of regulatory bodies. For instance, in the US, the Health
Insurance Portability and Accountability Act (HIPAA)[3]
established standards for the

security of digital healthcare information, while in the European
Union, the Directive for personal data [1] acts similarly.
In order to comply with such standards and regulations, healthcare
organizations have to define suitable management processes,
which often entail the publication of privacy policies (e.g., on
websites) intended to inform patients about the management of
their data. Such policies are expressed in a very high-level
language and have to be translated into privacy policies expressed
in a proper formal language before being applied for access
control at the implementation level.
In order to address the shortcomings of traditional access control
systems, which usually lack support for privacy-related policies, in
[5] a privacy-oriented extension of the well-known RBAC model
has been defined. Choosing RBAC as a starting point has some
advantages since one can map roles – which are an important
indirection between users and permissions – directly onto
healthcare organizational positions such as physicians, nurses,
administrative staff, etc. In [4] we presented an UML-based
conceptual model providing a sound basis for the definition and
enforcement of privacy policies
At the moment, however, there seems to be a gap between the
functionalities offered by standard, off-the-shelf healthcare
information systems and the requirements regarding health-related
data privacy, as stated by regulatory bodies. In this paper we use
the approach and the techniques presented by the authors in [4],
for extending a well-known open source healthcare information
system in order to express, manage and enforce privacy policies.
The paper is organized in the following way: Section 2 introduces
the privacy model and discusses its main features; Section 3
presents an application scenario in the healthcare domain; Section
4 discusses the related works, while Section 5 draws some
conclusions and provides hints on the future work.

2. MODELING PRIVACY
A privacy policy defines the way in which data referring to
individuals can be collected, processed and diffused according to
the rights that individuals are entitled to.
The rest of the paper adopts the terminology introduced by the EU
directive [1], which is summarized in what follows:
• personal data means any information relating to an identified

or identifiable natural person (referred to as data subject or
subject).

• processing of personal data (processing) means any operation
or set of operations which is performed upon personal data,
whether or not by automatic means, such as collection,
recording, organization, storage, adaptation or alteration,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SESS’08, May 17–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-042-5/08/05...$5.00.

9

retrieval, consultation, use, disclosure by transmission,
dissemination or otherwise making available, alignment or
combination, blocking, erasure or destruction;

• controller means the natural or legal person, public authority,
agency or any other body which alone or jointly with others
determines the purposes and means of the processing of
personal data;

• processor means a natural or legal person, public authority,
agency or any other body which processes personal data on
behalf of the controller;

• the data subject's consent (consent) means any freely given
specific and informed indication of his/her wishes by which
the data subject signifies his/her agreement to personal data
relating to him/her being processed.

As a distinctive feature of a privacy policy, the processor is
required to state for what purpose data are processed. A purpose
can be defined either as a high-level activity (e.g., “marketing”,
“customer satisfaction”) or as a set of actions (e.g., “compute the
average price”, “evaluate the customer needs”). Moreover, an
obligation is a set of actions that the processor guarantees to
perform, after the data have been processed. Also obligations have
to be stated by the processor. Subjects, whenever their data are
collected, must be informed of the purposes and of the obligations
related to any processing. Moreover, subjects must grant their
consent before any processing can be done. Finally, the consent
can be given selectively that is, a subject can grant the consent for
one purpose while denying it for another one.
The conceptual model proposed in [4] is described by means of
UML and it provides a clear and simple way for representing
every concept occurring in a privacy policy along with their
relationships. Furthermore, this approach provides a
straightforward way towards the enforcement of privacy policies.

2.1 The UML Model
In the following we give a short overview of the basic features that
are relevant for the present work. Due to space limitations, we
omit the discussion on the behavioural features of our model,
which can be found in [4].
The structural aspects are defined using UML classes and their
relationships such as associations, dependencies and
generalizations. Figure 1 depicts a class diagram that provides a
high level view of the basic structural elements of the model.

Figure 1: The Privacy Policy Class Diagram
A PrivacyPolicy is characterized by three types of classes: User,
Data and Action. Users interact among them in order to perform
some kind of action on data that refer to other users. Thus, an
instance of PrivacyPolicy is characterized by specific instances of
User, Data and Action, and by the relationships among such
entities. Let us focus on the classes introduced by the diagram:

• User represents an actor either interested in processing data or
involved by such processing. Since role [4] is a key concept of
this approach, users are characterized depending on the role
they play. User is extended by means of three distinct classes
to represent the different roles: Subject, which is anyone
whose data are referred to, Processor, which is anyone who
asks for processing data by performing some kind of action on
them and Controller, which defines the allowed actions that
can be performed by the processors.

• Data represents the information referring to subjects that can
be processed by processors. Data is extended by means of
Identifiable data (e.g., name, address, phone n.) and Sensible
data (e.g., health, religion). The former represents the
information that can be used to uniquely identify subjects,
while the latter represents information that deserves particular
care and that should not be freely accessible.

• Action represents any operation performed by User (usually
Processor). Action has been defined using an abstract class
and it is extended by Obligation, Processing and Purpose.
Moreover, each action can be recursively composed of
purposes and obligations and therefore it is defined by means
of an aggregation relationship between Action and both
Purpose and Obligation.

Figure 2 depicts the aforementioned entities along with their
relationships. For instance, the dependency relationship between
Action and Data means that data are processed by actions, while
the association between Subject and Data expresses data
ownership.
Notice that this model can be extended in order to support the
definition of policies related to different application domains. For
example, to specify privacy policies compliant with the Italian
privacy legislation [2], it is necessary to extend the model
introducing the concept of “judicial data”. Such extension can be
easily realized by introducing a class Judicial that extends the
class Data.
All the above entities interact among them exchanging
information through interaction points represented by means of
interfaces. Thus, an interface defines the services that a class can
either implement or use (invoke). The model introduces the
following five interfaces:

• ConsentRequest, which specifies the method notify(), that
taken an instance of Obligation, an instance of Purpose and
the id of Controller, notifies the subject of both the purposes
and the obligations of the data processing. ConsentRequest is
implemented by class Subject and is used by class Controller.

• ConsentAcquisition, which provides the method grant(), that
taken an instance of Purpose, an instance of Obligation, the id
of Subject and a boolean value, specifies whether the subject
has granted the consent for processing his/her data.
ConsentAcquisition is implemented by class Controller and is
used by class Subject.

• Control, which provides the method verify() that, taken an
instance of Action, returns whether the performed action was
authorized that is, the consent has been granted. Control is
implemented by class Controller and is used by class Action.

• FactoryAction, which provides the services to instantiate an
Action. It is implemented by class Controller and is used by
class Processor.

10

Figure 2: Privacy Class Diagram

• ActionBehavior, which provides the method run() that
represents the execution of an action.

Notice that, since the interface ActionBehavior, which defines
the method run(), is provided by Action, each class extending
Action can provide a specific implementation of such method.

3. A CASE STUDY
Healthcare information systems are required to provide support
for managing privacy policies, as prescribed by a growing body
of ad-hoc legislation. In the following, we present a well-known
open source hospital information system named Care2x [18], we
discuss its weaknesses in dealing with privacy-related issues and
we present a set of extensions in order to overcome such
weaknesses.

3.1 Care2x
Care2x is an open source hospital information system created in
year 2000 by the initiative of Mr. Elpidio Latorilla, a nurse
interested in automating hospital information processes. The
project was released to the open source community on May
2002 under the GNU General Public License. Care2x is
currently supported by a team of more than three hundreds
programmers, and its graphical user interface has been translated
into 16 languages.

Care2x has been deployed in more than 20 countries. For
instance, in 2004, the Malaysian Ministry of Health started
experimenting the usage of Care2x in several hospitals, while
the Brazilian Government financed the configuration of Care2x
to support the national healthcare system. In Italy the Care2x
experience involves relevant healthcare organizations, such as
Policlinico Umberto I in Rome and the National Institute of
Sport Medicine (INMS).

Care2x platform comprises the following four major
independent components:

• HIS - Hospital/Healthservice Information System is a
comprehensive, integrated information system designed to
manage the administrative, financial and clinical aspects of a
hospital.

• PM - Practice Management is an information system
designed to support the management of practices of medical
departments and clinics.

• CDS - Central Data Server is a central data repository that
can be used by all the organizations involved in the
healthcare environment. CDS is accessed via the Health
Xchange Protocol (HXP).

11

• HXP - Health Xchange Protocol HXP is the standard data
exchange protocol used by Care2x to communicate with
other healthcare applications. HXP ensures data exchange
among healthcare applications possibly operating into
different environments.

HIS is the core application of Care2x and it provides the basic
functionalities required by all healthcare systems and thus it is
the ideal candidate for experimenting our privacy modelling
approach.

3.2 Care2x HIS
Care2x HIS is a web based modular and scalable application that
integrates different types of services, processes, and data used in
a healthcare system.
Care2x is implemented in PHP 4 [19], using standard relational
DBMSs and it can be deployed by means of common web
servers such as Apache Web Server or Microsoft IIS. The
default installation exploits XAMP, an easy to install platform
composed of a pre configured version of Apache web server that
includes a PHP4 engine and a MySQL DBMS. XAMP allows
the application to be installed and used in most Win/Mac/Unix
based system.
Care2x HIS is a client/server web based application. The client
side of the application provides a communication layer through a
highly configurable GUI. All the computational tasks are
performed on the server side, where services, elaborations, data
processing and data retrieving are executed. Notice that thanks
to the standard communication infrastructure of XAMP, the
server side can be configured as a distributed system.
The application is accessible through a common web browser
supporting Css and JavaScript. Depending on configuration, HIS
can be used either as a stand alone application or as a real
distributed system operating on any TCP/IP compliant network
infrastructure.
Care2x architecture can be thought as a 4 layers structure. The
first layer is made up of a database that stores all the information
used by the platform. The second layer provides DBMS-
independent services to access and manipulate the data stored in
the database. Care2x uses ADOdb [20], an interface that hides to
the developer all the details concerning the currently used
DBMS. All the services for accessing and manipulating data are
handled through ADOdb and SQL. Notice that this solution may
allow one to use any available relational DBMS. So far, known
configurations of Care2x HIS experimented the usage of
MySQL, PostgreSQL, DB2 and Oracle.
The third layer comprises several libraries providing the services
required for the correct behavior of the fourth layer, such as user
authentication, internationalization, GUI configuration.
The last layer includes a series of modules for managing
processes and workflows. For instance, a module deals with
patients admission, while another deals with laboratory analysis.
Each module is completely independent from the others and it
exploits the underneath layer in order to access and execute
basic functionalities and services that may involve data access
and manipulation.
HIS extensions generally involve the definition of innovative
modules designed to satisfy the requirements of a specific
department of a health care institute. The first three layers are
stable and common to any Care2x setup, while the last one may

change from one configuration to another. For instance a new
configuration may contain some new modules, developed ad hoc
to satisfy some domain dependent specific requirements.

3.3 Weaknesses
Care2x is characterized by several weak points that need to be
examined in order to identify possible exploitable paths for
privacy violations, As a consequence Care2x cannot be
considered a privacy-aware system. These vulnerabilities are
mainly due to the lack of role based functionalities.
As mentioned before, the implementation of a privacy-aware
system benefits from a sound role management mechanism, not
yet provided by Care2x. In fact, although Care2x supports the
definition and assignment of new roles, it does not provide any
mean to define the actions for handling patients’ data associated
with each role.
According to [4] each role should be associated with a list of
processing actions that can be performed along with the
purposes of such actions. Moreover, roles can be used as filters
for selecting actions that can be associated with actors belonging
to the system. However, this kind of solution is not implemented
in Care2x and, furthermore, Care2x does not provide any
mechanism to verify the correct application of actions performed
within the system and their compliance with any specific privacy
policy nor there is any enforcement mechanism.
In the following, we present how to extend Care2x in order to
overcome such deficiencies.

3.4 Extending Care2x HIS
This section introduces an approach for extending Care2x HIS,
starting from the identified weaknesses and the privacy model
proposed in a prior work [4].
More specifically, the extensions concern both the definition of
a role-based privacy management mechanism, and the definition
of enforcement techniques that aim at verifying the compliance
of the actions performed with the existing privacy policies.
The preliminary analysis of the platform architecture suggests to
focus on the first and the third layers, since the last one simply
provides the applicative functionalities while the second one is a
standard interface for accessing the database, and therefore it
should not be modified. Therefore, the extensions of Care2x
involve two distinct aspects:
1. Data-layer extensions: it is necessary to add concepts taken

from the conceptual model (e.g., Role, Action), that are
necessary to define any specific role based privacy
mechanism. Notice that these extensions involve the first
layer of the architecture.

2. Services extensions: new services are introduced in the
libraries of the third layer of the architecture. Notice that
these services exploit the extensions introduced in the first
layer.

The rest of the section discusses the main extensions introduced.

3.4.1 Role-based privacy management
Role based management mainly requires the introduction of two
different types of conceptual elements: roles and actions.
According to the conceptual model proposed in [4], three main
roles, named Subject, Processor or Controller are identified.
Each of them is independent from any specific context.

12

Let us consider a complex organization such as a hospital, in
which many employees work with different functions (e.g.,
doctors, nurses, administrative staff , etc.). The first step for the
definition of roles consists in classifying the people that operate
in the hospital according to the functions they perform therein
[17]. Notice that, functions cannot be considered as roles, since
the latter are related to privacy policies, while the former are
related to the tasks performed by employees. As a consequence
roles depend also on actions and are not exclusively related to
functions. For example an employee having the function of
doctor could play as Controller for a given action and as Subject
for another one.

Therefore, it is necessary to analyze the relationships between
the different functions (nurse, doctor, etc) in order to identify the
role associated with each function interacting with the
information system. More specifically it is necessary to define a
function hierarchy in order to provide a dynamic role
assignment.

In turn, functions are characterized by a set of actions. An action
can be either enactive or declarative. The former includes
actions that require to access and process data while the latter
includes simple statements representing activities that do not
require to interact with the system (e.g., send a letter, make a
phone call, etc).

Notice that enactive actions are traceable since at run-time they
interact with the information system, while declarative actions
can not be traced.

For example, let us consider an hospital in which the employees
may have one of the following functions: Head physician,
Physician, Head nurse, Nurse.

The above function hierarchy imposes a corresponding hierarchy
on the actions associated with functions. For instance, the
actions performed by a head nurse can be done by a nurse, since
function Head nurse extends function Nurse.

Moreover, let us consider a physician that during a medical
examination identifies a new symptom in a patient. The
physician performs the following actions: 1) Modify the health
record (of the patient) and 2) Notify the Head physician (of the
new symptom). Notice that action 1) requires to access the
information system, while action 2) does not. Therefore, the
former action is enactive, while the latter is declarative.

Extending the data-layer
Care2x HIS does not support role management nor the Action
concept. In Care2x the term role simply refers to the function of
employees. The function concept is introduced by means of an
entity, named care_role_person, that contains a list of
predefined functions such as physician, nurse, etc.

The function hierarchy is introduced by defining a new entity
named care_function_hierarchy. The entity defines: 1) a
hierarchical structure, and 2) a set of actions associated with
each function.

According to the conceptual model (see Figure 2), actions are
complex structures that may be decomposed into simpler ones.
In order to model the concept of action structure the Composite
design pattern is adopted (see Figure 3).

Action

Simple Action Complex Action

*

Figure 3: Relationships between different types of actions

care_function_hierarchy

care_action_C

care_action

care_action_S

type

care_role_person

id

m

m

type

from
to

idAction

source_code

m

m

3 1

care_role_action

Figure 4: The extended data layer for supporting role
management

At the data level, actions representation is based on the
introduction of three new entities, named care_action,
care_action_S and care_action_C, respectively.

• care_action represents the Action concept.

• care_action_S represents the simple actions that can be
composed into more complex ones. Simple actions exploit
the classification proposed in the conceptual model, that is
actions are tagged as Purpose, Processing or Obligation.

• care_action_C represents complex actions and are
represented using a recursive hierarchical definition, that is
each action is composed of other actions that can be either
simple or complex.

Referring to previous example, the physician performs the
following actions:

1. Purpose1: Diagnostics (care_action_S1)

2. Processing1: Modify the health record (care_action_S2)

3. Obligation1: Notify the head physician (care_action_S3)

The resulting set of actions, care_action_S1, care_action_S2 and
care_action_S3, is represented by means of care_action_C1.

Finally, in order to complete the definition of the role concept, it
is necessary to explicitly associate functions with actions.

As an example, the nurse function could be associated with the
following actions: read patient personal data; modify and read
medical/health records.

13

The relationship between functions and actions is expressed by
means of the relation care_role_action.

Figure 4 shows a E-R diagram that presents the data layer
enhancement.

Extending the control layer
The extension of the control layer starts from the analysis of the
same conceptual elements introduced in the data layer and it is
essentially focused on the introduction of classes Role and
Action, and of some additional classes working as adapters for
the currently existing interface .
Class Action reflects the characteristics of the homonymous
element introduced in the conceptual model (see Figure 2). In
particular, it implements the methods defined in the
ActionBehavior interface. The implementation uses ADOdb for
accessing the data required for executing the action. More
specifically, the method run, which represents the core function,
is implemented by accessing the relation care_role_action in
which all the relations between functions and actions are stored.
Therefore, entities care_role_person, care_action_C, and
care_action_S are accessed in order to retrieve all the
information required to check the execution of the current
action.
Class Role represents another important extension to the existing
control layer. More specifically, the instances of class Role
specify a list of actions that defines the admitted or required
behaviour for the instance.

Role
<<interface>>

Standard
Services

Enhanced
Services

Care2xBasic
Services

Figure 5: Extensions to the existing services

Both Role and Action may require to interact with the existent
library in order to access some of the basic services provided by
the system. Such access is filtered by software adapters that aim
at keeping the existing interface extending the provided
functionalities without modifying the existing code. Extensions
are defined according to the design pattern Adapter as shown in
Figure 5.

3.4.2 Supporting enforcement mechanisms
Privacy policy enforcement consists in verifying the compliance
of the actions performed by users with a given privacy policy.
According to the conceptual model, there are two different ways
in which such verification can be carried out. The first one
consists in providing ex-post enforcement mechanisms, that is,
all the checks are done after all the actions have been performed
(e.g., audit-based mechanisms). The second one consists in
having run-time enforcement mechanisms, that is, the effect of
every action is checked as soon as the action is executed.
In order to support both techniques, it is necessary to further
extend the existing data and control layers.

The data layer extension concerns the introduction of logging
mechanisms that keep track of all the actions that are executed,
while the control layer extension concerns the verification of the
compliance of such actions with the privacy policy.

Extending the data layer
In order to implement the logging mechanism required to
support the enforcement of privacy policies, two entities named
care_log_action_S and care_log_action_C are introduced.

• care_log_action_S, which traces the execution of simple
actions and whether the executed action complies with the
current policy;

• care_log_action_C, which provides logging support for
complex actions.

Referring to the previously introduced example, when the
physician interacts with the system to modify the health record
of his/her patient a new log entry, care_log _action_C1, is
created. Such entry refers to the complex action care_action_C1
that is composed of three simple actions. Therefore a log entry,
named care_log_action_S is created to represent that the
physician acts according to Purpose1 (i.e., Diagnostics). In the
same way when he/she actually modifies the health record
another log entry, named care_log_action_S2 is created. Finally,
when the system notifies the physician that he/she must comply
with Obligation1, the last log entry, care_log_action_S3 is
created. Notice that each time a simple action
(care_action_S1…3) is logged, care_log _action_C1 is updated
with the reference to the corresponding simple log entry
(care_log _action_S1…3).
The ex-post enforcement can be carried out by verifying that
care_log _action_C1 correctly refers to the log entries associated
with the corresponding simple actions
Figure 6 shows the E-R diagram that presents the data layer
enhancement.

care_function_hierarchy

care_action_C

care_action

care_action_S

care_log_action_S care_log_action_C

type

care_role_person

id

m

m

idAction

description
type

from
to

idAction

source_code

m

m

3 1

timestamp
compliant

id

id

1
1

mm

13

care_role_action

Figure 6: The extended data layer for supporting
enforcement

14

Extending the control layer
According to the proposed conceptual model, all actions
required by a privacy policy are defined as instances of classes
Purpose, Obligation and Processing, which are extensions of the
abstract class Action (see Figure 2).
Class Action requires the interface Control that, in turn, defines
the method verify() to represent the verification of the
compliance of any instance of Action with a given policy.

verify()

<<interface>>
ControlAction

Declarative
ActionControl

Enactive
ActionControl

Figure 7: Extensions using the pattern Strategy

The interface Control is realized through different
implementations. We initially provide a basic implementation
for each type of action introduced in the previous sections. As
shown in Figure 7, a dedicated implementation of the control
service is defined according to the design pattern Strategy.
All the verification tasks are carried out by Controller, while
actions are executed by Processor. Starting from these basic
points, different processes can be defined by composing method
calls provided by these classes in different order. As an example,
when Processor executes an action (i.e., it invokes the method
run()), the method verify() is invoked, thus allowing the
Controller to verify that Action is compliant with the policy. As
a consequence, in case of non-compliance, the Controller can
prevent Processor from executing any further action.

4. RELATED WORKS
While research on security is a well-established field, the issues
that arise when dealing with privacy have been under thorough
investigation only in the recent years. The research efforts
aiming at the protection of individuals privacy can be partitioned
in two broad categories: Security-oriented Requirement
Engineering (SRE) methodologies and Privacy Enhancing
Technologies (PETs). The former focuses on methods for taking
into account security issues (including privacy) during the early
stages of systems development, while the latter describes
techniques to ensure privacy.
Several existing requirement engineering methodologies, such as
Kaos[6], Tropos[7][8][9], NFR[10][11]and GBRAM[12], can be
used to take into account security issues at design level. In [13]
the authors present a methodology, called PRIS, to incorporate
privacy requirements into the system design process. PRIS is a
requirement engineering methodology focused on privacy
issues. It provides a set of concepts to model privacy
requirements and a set of rules to transform requirements into
implementation techniques.
All the above methodologies address the problem of how to state
as clearly as possible the requirements that an information
system must satisfy in order to be considered secure (with
respect to a set of given security policies). This is different from
our goal, which is to define a conceptual model for representing
privacy policies. As explained in Section 2, this is achieved

through the deployment of a model that represents all the
relevant concepts of privacy related policies.
In [14] extensions to a RBDMS are provided in order to express
P3P privacy policies, at schema definition level. Furthermore,
the authors define mechanisms for translating P3P privacy
policies into a properly extended SQL-like data definition
language. This is different from our approach, since what we
propose is a conceptual model for the definition of privacy
policies (not to be necessarily expressed in P3P language) and
for the specification of the needed functional modules of an
application in order to enforce such policies. Concerning
medical information systems, to our knowledge there is no
proposal aiming at a unified treatment of privacy-related
policies, as presented in this work.
Finally, in the field of SRE methodologies, several techniques
have been proposed in order to protect private data from
unauthorized users. Typical examples are anonymizing
techniques based on data suppression or randomization[15][16].
However, these techniques do not require the definition of any
privacy policy; rather they can be used as building blocks for
realizing them.

5. CONCLUSIONS
Privacy is a fundamental issue in hospital information systems.
In fact most of the involved data are sensible and therefore their
access and manipulation is strongly regulated.
In this work we have presented extensions to the Care2X
medical information system suitable for expressing, managing
and enforcing privacy policy, as specified by the conceptual
model presented in [4]. Future work will address relevant
features such as the possibility to express and manage complex
hierarchies of actions and functions, along with their related
policies.

REFERENCES

[1] Directive 95/46/EC of the European Parliament and of the

Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the
free movement of such data. Official Journal of the
European Communities of 23 November 1995 No L. 281 p.
31

[2] Decreto Legislativo n. 196, 30 Giugno 2003, Codice in
materia di protezione dei dati personali, Gazzetta Ufficiale
n. 174 del 29-7-2003 - Suppl. Ord. n. 123

[3] http://www.hipaa.org
[4] A. Coen-Porisini, P. Colombo, S. Sicari, A. Trombetta. A

Conceptual Model for Privacy Policies. In Proc. of
Software Engineering Application (SEA’07), Cambridge,
Boston, 2007.

[5] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo. Privacy-
aware Role-Based Access Control. In Proc. of ACM Symp.
on Access Control Methods And Technologies
(SACMAT’07), 2007.

[6] A. V. Lamsweerde and E. Letier. Handling Obstacles in
Goal-Oriented Requirement Engineering. IEEE Trans. Soft.
Eng, 26:978–1005, 2000.

15

[7] L. Liu, E. Yu, and J. Mylopoulos. Analyzing Security
Requirements as Relationships among Strategic Actors. In
SREIS’02, e-proceedings, Raleigh, 2002.

[8] H. Mouratidis, P. Giorgini, and G. Mason. Integrating
Security and Systems Engineering towards the Modelling
of Secure Information System. In 15th Int. Conf. of
Advanced Info. System Engineering (CAiSE’03), vol. 2681
of LNCS, pages 63–78. Springer-Verlang, Berlin, 2003.

[9] H. Mouratidis, P. Giorgini, and G. A. Manson. An
Ontology for Modelling Security: The Tropos Approach. In
V. Palade, R. J. Howlett, and L. C. Jain, editors, KES, vol.
2773 of Lecture Notes in Computer Science, pages 1387–
1394. Springer, 2003.

[10] L. Chung. Dealing with Security Requirements during the
Development of Information System. In 5th Int. Conf. of
Advanced Info.System Engineering (CaiSE’93), Paris
(France).

[11] J. Mylopolulos, L. Chung, and B. Nixon. Representing and
Using non Functional Requirements: a Process Oriented
Approach. IEEE Trans. Soft. Eng., 18:483–497, 1992.

[12] A. Anton. Goal-Based Requirements Analysis. In 2nd IEEE
Int. Conf. on Requirements Engineering (ICRE’96), pages
136–144, Colorado Springs Co, 1996.

[13] E. Kavakli, C. Kalloniatis, P. Loucopoulos, and
S. Gritzalis. Incorporating Privacy Requirements into the
System Design Process. The PRIS Conceptual Framework.
Internet research, 16:978–1005, 2006.

[14] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan,
and W. Rjaibi. Extending Relational Database Systems to
Automatically Enforce Privacy Policies. In ICDE, pages
1013–1022. IEEE Computer Society, 2005.

[15] T. Mielikinen. Privacy Problems with Anonymized
Transaction Databases. In 7th Int. Conf. Discovery Science
(DS 2004), Lecture Notes in Computer Science.

[16] A. Narayanan and V. Shmatikov. Obfuscated Databases
and Group Privacy. In 12th ACM conference on Computer
and communications security (CCS ’05), pages 102–111,
New York, NY, USA, 2005. ACM Press.

[17] Legislazione Sanitaria e Sociale, Edizione giuridiche
Simone, 2006, ISBN 88-244-7728-3

[18] http://www.care2x.org/
[19] http://www.php.net/
[20] http://www.adodb.sourceforge.net/

16

