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Abstract 

The ITEA Project DESS (Software Development Process for Real-Time Embedded Software Systems) aims  at defining a 
methodology for the development of real-time software. The authors of this position paper are involved in the definition of 
methods for the specification and analysis phases. Our goal is to allow analysts to model real-time systems using an 
extension of UML, which can support the translation of models into formal notations. In this way we retain the 
expressiveness and ease of use of UML, while gaining the power of formal methods. 

In this paper we employ our notation to model the proposed car speed regulator, in order to verify that such notation is able 
to represent the desired behavior of the system. 

1. Introduction 

UML [2, 3] provides a semi-formal graphical notation to represent different and often complementary views of software 
systems. However, the information contained in these diagrams is often imprecise, i.e., it lacks formal semantics. 
Moreover, UML does not support well real-time, embedded and resource-constrained system modeling, as it lacks a sound 
support for timing issues. The most well-known real-time extension of UML, UML-RT (based on ROOM methodology 
[4]), defines a very good architectural framework, but does not take into account time and constraints in general. 

Our goal is to apply  (as few as possible) extensions to UML and give it a precise semantic, in order to make it possible to 
translate UML diagrams into formal notations compatible with existent formal methods. The goal is to exploit formal 
methods in activities such as specification validation (e.g. via simulation or model checking) or test case generation. 

More on the DESS approach can be found in [7]. 

In the rest of this paper we apply just one of the extensions of UML which have been defined in DESS: we employ the  
non-deterministic version of the after construct in UML state diagrams. In this extension, after accepts as an argument 
a time range, so after([tLowerBound, tHigherBound)) means that a transition will happen after a time greater than 
or equal to tLowerBound and less than tHigherBound. 

With this simple extension we are able to model the system described in [1] and the constraints the system behavior has to 
comply with. Constraints are expressed in an operational way, being embedded in the model. This is possible because the 
constraints are relatively simple. There are cases when this is not possible or not practical. 

clock : 
Clock

speedFilter : 
Filter

inv:
speedFilter.tFilter + speedFilter.tJitterFilter <=

clock.tClock- clock.tJitterClock
speedDisplay.tSpeed + speedDisplay.tJitterSpeed <=

speedFilter.tFilter - speedFilter.tJitterFilter 

calculator.tCalculator + calculator.tJitterCalculator <=
speedFilter.tFilter - speedFilter.tJitterFilter

speedDisplay : 
SpeedDisplay
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inv:
clock.tClock= 0.5s
speedSensor.velocitySwitch= 14 m/s
enabler.tQuickOff= 0.1s
enabler.tInterruption = 0.2 s
enabler.tReinstatement = 0.25 s
enabler.tSlowOff = 0.5s

controllerDisplay : 
ControllerDisplay

enabler : 
Enabler

speedSensor : 
SpeedSensor

calculator : 
Calculator

clock

speed

speedspeed

sensor

switch

brake

starter

accelerator

sensor state

state

actuator

 

Figure 1: The object diagram describing the complete system (in gray 
the objects out of scope). 
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2. The Model 

In this section we present the model of the system described in [1]. For space reasons we omit the class diagram. Instead an 
Object Diagram (Figure 1) shows the object instances and how they are connected with each other. We rely on the intuition 
of the reader to understanding objects attributes and methods. 

The object diagram also includes constraints. Some of these are logical, involving different attributes of different objects in 
the system. Others are numeric: they assign specific values to constants (these are actually attributes whose value cannot be 
changed once the object is instantiated). 

The following diagrams represent the behavior of every Class (and hence, instance) we introduced. The Clock (Figure 2) is 
very simple, and does not require a thorough explanation. 

ticker

after( [tClock- tJitterClock , tClock+ tJitterClock] ) ̂ clock.tick

inv: 
tJitterClock >= 0
tClock- tJitterClock >= 0

inv: 
tJitterClock >= 0
tClock- tJitterClock >= 0

 

Figure 2: State Diagram of class Clock. 

Note: the object diagram in Figure 1 contains several links having the same name (e.g., links labeled “speed”). This is 
actually a small syntactic extension, which allows the modeler to express message sending in a more compact way: for 
instance, when an object of type Filter (Figure 3) sends a message to the target “speed”, this actually means that the 
message is sent to all the objects reachable by means of links labeled “speed”. The name of the link is often used to 
identify the recipient of a message: for instance the clock (Figure 2) sends its message to the object connected via the 
“clock” link. 

The behavior of the Filter and of the SpeedDisplay are described in Figure 3. Note that to let the filter loose no “ticks” of 
the clock we have to constrain the time response of the filter: this constraint is reported in Figure 1. 

ready read sensor

clock.tick

after( [ tFilter - tJitterFilter , tFilter + tJitterFilter ] ) ̂ speed.speed(speed)

inv:
tFilter - tJitterFilter >= 0

 

ready update

speed.speed

after( [ 0 , tSpeed + tJitterSpeed ) )  

Figure 3: State Diagrams of classes Filter (left) and SpeedDisplay (right). 

The Enabler  (Figure 5) and the Calculator (Figure 4) are part of the regulator (in the design phase they could be 
represented as two parallel threads of the regulator). The main purpose of the enabler is to understand when to turn on and 
off the whole regulator, while the calculator computes the values to be passed to the actuator that controls the engine. 

enabled
ready

working

disabled

ready

working

on

speed( speed )

inv:
tCalculator - tJitterCalculator >= 0

after( [ tCalculator - tJitterCalculator ,
tCalculator + tJitterCalculator ] )
^actuator.set(value)

off ̂ actuator.set(0)
Standby
^actuator.set(0)

 

Figure 4 State Diagram of class Calcula tor  
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accellerator.release
after([0, tReinstatement])
^state.on

transition to 
standby

accellerator.press

after([0, tInterruption]) ^state.standby

quick transition to off slow transition to off

starter.off

sensor.low

after([0, tSlowOff - tQuickOff])
after([0, tQuickOff]) ^state.off

brake.press switch.offsensor.lowstarter.off

starter.on[speedSensor:high and brake:release and accelerator:release and switch:on] ŝtate.on 

Figure 5: Enabler State Diagram.  

In State Diagram of Figure 5 all the timing constraints for turning on, standby and off the regulator are reported. 

Finally we have to specify the behavior of the velocity detector (SpeedSensor) –which sends an event when the velocity is 
higher or lower than the fixed speed of 50 Km/h, or 14 m/s)– and of the ControllerDisplay. They are both quite simple and 
self explaining (see Figure 6). 

lowhigh

speed( speed )[speed < velocitySwitch] ^sensor.low

speed( speed )[speed >= velocitySwitch] ^sensor.high

updateready

off / stateDisplay = "off"

on / stateDisplay = "on"

standby / stateDisplay = "stdy"

setVelocity(velocity)/velocityDisplay = velocity

after([0, tSpeed + tJitterSpeed))  

Figure 6: State Diagrams of classes Speed Sensor (left) and ControllerDisplay (right). 

3. Constraints 

In this section we discuss how the constraints of the case study are satisfied. 

Response times of various instances are bounded by the following invariants: 

speedFiletr.tFilter + speedFiletr.tJitterFilter <= clock.tClock - clock.tJitterClock 
speedDisplay.tSpeed + speedDisplay.tJitterSpeed <= speedFilter.tFilter - 
speedFilter.tJitterFilter 
calculator.tCalculator + calculator.tJitterCalculator <= speedFilter.tFilter - 
speedFilter.tJitterFilter 

These constraints ensure that no single clock tick is missed by the speedFilter, and that speedDisplay and calculator do not 
loose any output of speedFilter. 

The clock frequency is set by: 

clock.tClock = 0.5s 

The possible error is defined by clock.tJitterClock. 

All the constraints of turning on, off and standby are operationally satisfied inside enabler: 

enabler.tQuickOff = 0.1s 
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enabler.tInterruption = 0.2 s 
enabler.tReinstatement = 0.25 s 
enabler.tSlowOff = 0.5s 

Only the velocity threshold of 50km/h (14 m/s) is modeled in speedSensor diagrams (speedSensor fires an event whenever 
the velocity threshold is exceeded): 

speedSensor.velocitySwitch = 14 m/s. 

Following the DESS methodology we would now translate the models described above into formal notations like TRIO [5] 
or Kronos [6]. This would allow us to show that the model satisfies the time requirements. For instance,  the history 
checker of TRIO allows us to verify that stories (system evolutions, or scenarios) which represent acceptable behavior are 
compatible with the given model, while stories which represent unacceptable behavior are not compatible with the model. 
The Kronos model checker would allow to verify that the model satisfies given properties. In this particular case the most 
relevant property to be tested would be non-zenoness, i.e. the system may evolve indefinitely while complying with 
elementary constraints (like transition times). 

However, this particular model is simple enough to allo2w analysts to assess the behavior of the system just by inspecting 
the model. 

4. Conclusions 

We have introduced a very simple extension of the UML language, taken from the work we are carrying out in the DESS 
project. Such extension, together with the usage of OCL, allowed us to specify the system proposed in [1], including the 
time constraints. It is relatively easy to show that the model described above behaves as required. 

It should be noted that the DESS approach to analysis and specification would allow us to formally prove the properties of 
the system. This was not shown here because of space reasons, and because the case study was simple enough not to 
require a formal proof. 

The DESS project also addresses the design, coding and testing phases. The contribution of DESS to these activities is 
reported elsewhere. 
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