
Requirements-based Estimation of Change Costs
LUIGI LAVAZZA
CEFRIEL and Politecnico di Milano

GIUSEPPE VALETTO
CEFRIEL

Abstract. We present a case study that aims at quantitative assessment of the impact of requirements changes, and
quantitative estimation of costs of the development activities that must be carried out to accomplish those changes.
Our approach is based on enhanced traceability and an integrated view of the process and product models. The
elements in the process and product models are quantitatively characterised through proper measurement, thus
achieving a sound basis for different kinds of sophisticated analysis concerning the impact of requirements
changes and their costs. We present the results of the application of modelling and measurement to an industrial
project dealing with real-time software development. The ability to predict the impact of changes in requirements
and the cost of related activities is shown.

Keywords: requirements management, change management, software process modelling, software measurement,
cost estimation.

1. Introduction

Both software development and maintenance are characterized by frequent changes in user
requirements. These changes are normally formalized in Change Requests (CR). In order to
keep the software development or maintenance process under control it is extremely
important to be able to assess the consequences of CRs, in terms of the amount of artifacts
to be modified, the amount of testing to be performed, etc. In particular, it is important to be
able to estimate the effort required to carry out the required change.

In the normal practice the consequences of a CR are best assessed by an “expert” who
knows the product to be changed and the process employed to carry out the required
modifications, since the cost of maintenance depends on the features of the product and of
the process.

We propose an approach that:

- Exploits the knowledge of both the software product and the process employed to
develop and modify it. This knowledge is expressed in terms of models of the process
and artifacts (by artifact we mean any piece of software or document produced, used
and/or modified during the development process). The proposed approach applies to
development from scratch as well as to maintenance. In the case of maintenance the
product already exists, thus it is easier to build a reliable model; nevertheless, it is also
possible to devise models of artifacts still to be built.

- Defines the quantitative characteristics of the process and product through proper
measurement, so that the aforementioned models are quantitatively characterized.

- Takes as input CRs, i.e., it operates at the requirements level.

The latter point makes our approach quite different from traditional methods, which are
based on measures such as lines of code (Boehm, 1981) or function points (Albrecht, 1979).
In fact these measures are defined on features of artifacts (the code and the specifications,
respectively) that do not yet exist when the CR is issued, and thus have to be estimated. We
adopted a more radical approach, trying to use the quantitative characterization of
requirements and requirements changes as a base for assessment. In this way, we can base

2

our estimations on the CRs themselves, without having to guess how many SLOCs or FPs
will be changed or added.

Our approach was made possible by the features of the software product being considered
in the case study, where requirements are described thoroughly at a quite fine granularity,
traceability relations are represented and maintained carefully, and the product is well
modularized, so that every functional requirement is implemented by only a few
procedures. We simply exploited the requirements structuring and classification practices
already used in the considered project. In fact, pieces of requirements were labelled, and
labels used for recording traceability relations. We just had to count labels, in order to have
a rough (yet effective) measure of requirements. In other contexts (especially where a
requirement can be traced down to several artifacts) this practice could prove inapplicable.

The paper describes an experimental application of the approach mentioned above. The rest
of the paper is organized as follows: in Section 2 the process and product models of the
pilot project are illustrated; Section 3 describes in some detail the metrics that were used,
while Section 4 illustrates data analysis and the resulting impact and cost models. Section 5
reports results and lessons learned. Section 6 accounts for related work. Section 7 draws
some conclusions and outlines future work.

2. Modelling the process and product

We used as a test-bed an industrial project aiming at the development of real-time, safety-
critical software, being carried out at TXT Ingegneria Informatica (http://www.txt.it/). The
detailed characteristics of the project are confidential.

2.1 Product model

The product is organized into “units” (there are about ten units in the product). Every unit is
itself decomposed into up to four subsystems, each implementing a set of related
functionality. This kind of modularization of the product affects the process and the way it
is organized. For instance, every unit is assigned to a programmer (or to a small team of
programmers). Figure 1 reports a UML class diagram illustrating the main artifacts
involved in the process and their relationships:

- Requirements. The complete set of requirements of every product release is
documented. Each requirement is a single functional or non-functional feature of the
product, as indicated by the procurer.

- Design Document. It defines the design of every unit. It includes both high-level design
and detailed design. Every unit is organized into subsystems: each subsystem is a
software deliverable that can be tested against requirements. Each subsystem is further
decomposed into modules.

- Source Code files implement the specification of a module. They collect a set of
coherent procedures.

- Test Design Document. It describes the testing strategy and procedures for the
corresponding unit. It is composed of a high-level description of the testing procedure
for the unit it refers to, and the whole set of test cases which must be carried out on the
units. The entire set of test cases is subdivided into Module Test Cases and Subsystem
Test Cases. Test reports contain the pass/fail state of the tests for the corresponding unit,
as well as the number and types of bug found (and fixed) during the testing.

Requirements are univocally identified by means of labels. A database application
specifically developed in TXT maintains the relations of labels with artifacts in the lower
phases of the development process, specifically with: procedures, module test cases, and
sub-system test cases.

Currently, product traceability information is thus focused on the coding and testing
artifacts and does not address directly the by-products of the intermediate phases of the

3

process (e.g. Design artifacts). Nevertheless, it is still possible to trace a requirement to a
design document, with some effort.

Change Request

Procedure

Source file

1..*1..*

Module1..11..1

Requirement
1..*1..* 1..*1..*

Subsystem

1..*1..*

Subs.Test case
1..11..1 1..11..1

Module Test case

1..1
1..1

1..1
1..1

Test designDesign Document

1..*

1..*

1..*

1..*

1..41..4

1..11..1 1..11..1

Figure 1: Artifact types involved in the software development process.

2.2 Process model

We rely on a relatively detailed model of the process activities carried out in order to build
a new release of the product, according to new or changed requirements. For our case study
we had to rely on existing data, i.e., no specific measurement process was carried out in
order to support our work; as a consequence, we had to adopt a simplified model, consistent
with the available data.

The actual process model of reference is shown in Figure 2. A fundamental feature of our
models is that their elements (i.e., activities and artifacts) must be quantitatively
characterized. Since we had no data characterizing design documents, we decided to
collapse design and coding into a single activity.

new SW reqs

old SW reqs

Test reports
Test design Test

Test specs.
Implementation

(Design & Coding)

SW RequirementsRequirement
understanding

Code

Design
documents

Figure 2. The process model actually used in the case study.

All of the above activities are regularly measured as part of the development process at
TXT. The detailed description of the available metrics is reported in Section 3.

2.3 Impact and cost functions

In order to clarify the role of impact and cost functions, let us consider the implementation
activity described in Figure 3.

4

Implementation
(Design & Coding)

SW Requirements Design documents

Code

Implementation
team

Figure 3. The implementation activity.

Our objective is to estimate the effort required to carry out the activity. It is reasonable to
expect that such effort will depend on the characteristics of the inputs, outputs, and
resources associated to the activity. Of course, when we start the estimation for this activity
we do not know the characteristics of the outputs, while in general the characteristics of the
inputs are either known or they have been estimated as the output of previous activities.

Therefore, we organize the estimation in two steps:

- Characteristics of the outputs are estimated on the basis of inputs and resources. For
instance, the size and complexity of the code are estimated on the base of the size and
complexity of the requirements, and on the skill and experience of the implementation
team. The estimation is based on the knowledge of the relations that link inputs to
outputs.

- The effort is estimated taking into account all the relevant characteristics the activity,
including the expected characteristics of the outputs, as computed at the preceding step.
The estimation is based on the knowledge of the relations that link inputs, outputs and
resources to effort.

The mentioned relations are derived by means of statistical analysis on previously collected
data. We call such quantitative relations impact and cost functions, respectively.

3. Metrics

3.1 Goals and definitions

The main goal of the proposed approach is the early estimation of the overall
implementation effort due to new/changed requirements, computed on the basis of the cost
of the activities that compose the process (as described in Figure 2).

The metrics for the process and product model described above were defined according to
the GQM method (Basili et al., 1994). However, TXT management required to employ
only existing data, rather than carrying out a full-fledged GQM process. Nevertheless we
used the GQM plan (not reported here for space reasons) to provide a rigorous framework
for the interpretation of the existing data.

3.2 Available metrics

Available metrics concerned 21 unit releases, characterized by the following ranges of
values:
- Total number of requirements: 17-499 per unit;
- Number of updated requirements per unit release: 2-72;
- Unit size in SLOCs: 1158-22184;
- Total effort: 6-99 persondays.

Historic data concerning the activities of the process reported in Figure 2 were available. In
particular, the following attributes of the activities and of the employed resources were
represented:

- Effort spent to carry out each activity;

- Number of resources employed to carry out each activity;

5

- Skill of personnel employed to carry out the activity (subjective measure, given by the
manager of the employed people);

- Level of knowledge of the application domain owned by the personnel employed to
carry out the activity (partly subjective measure, based on the experience in the field).

Historic data concerning the product artifacts were also available. In particular, every
release of every unity of the product was described by the following data :

- Number of updated requirements.

- Total number of requirements before the changes.

- Number of modified/added SLOC.

- Number of deleted SLOC.

- Complexity of each unit (subjectively evaluated by the project leader).

- Number of SLOC for the involved unit before the changes.

- Type of error raised during the internal test (classification of errors).

- Required level of target quality (it refers mainly to documentation).

- Required level of testing coverage.

Given the above list of available metrics, it is clear that some artifacts are not well
characterized. For instance, we had no data whatsoever concerning design documents. We
managed this situation by considering only activities whose inputs and outputs were well
characterized by the available data. The activities satisfying this requirement are those
reported in Figure 2.

4. Derivation of cost models

In this section we describe the derivation of the impact functions and cost functions. We
also describe how these functions are used to compute the impact and cost of changes.

4.1 Feasibility study

Before proceeding to quantitatively characterize (through measurement and analysis) the
different activities of the process we performed a little feasibility study. The goal of this
study was to understand whether the hypothesis of basing the impact and cost functions on
measures of requirements was viable. In fact it is well known that measuring requirements
is often very difficult, since requirements can be expressed in a great variety of ways, with
different levels of details, precision and abstraction.

Since we know from COCOMO and other studies that several characteristics of the
software process and products (such as effort to develop, faultiness, etc.) are related to the
size of the products, we investigated whether the size of our software units was somehow
related to the “amount” of the corresponding requirements.

TXT made available measures concerning the overall number of requirements implemented
in every release of every unit of the system1. It was therefore possible to verify whether
there is a logical dependency of the size of the product on the number of requirements. The
constraint to use existing data prevented us from adopting more precise metrics (such as the
size –in text lines– of each requirement).

We discovered a good (exponential) correlation between the number of requirements and
the size of the units. In order to further improve the correlation we took into account the
complexity evaluated at the unity level. Again, the constraint to use only existing data
prevented us from evaluating the complexity of each requirement. The result was a function
that estimates the size of a unit given the number of requirements and their overall
complexity with an error2 less than 19% (the estimation errors being less than 30% for 70%
of the unit releases).

6

On one side this is a good result, since it proved that we were reasoning on a sound basis.
On the other side, it is clear that the imprecision of the relation that links the number of
requirements with the size of code will be present (possibly amplified) also in all the other
estimates, which partly rely on this fundamental underlying relation. In order to get better
results we would need to collect more metrics concerning the nature of requirements (e.g.,
individual complexity of requirements). This is an objective of future work.

4.2 Impact and cost functions

In this section we describe the feature of the impact and cost functions. Since the data we
used is confidential, we do not report the coefficients of the functions we derived. We
believe that this is not a big limit, since the actual values of the coefficients is meaningful in
the environment where measures were collected, i.e., TXT, while would not be easily
usable outside this environment. In fact our approach is not meant to provide generally
applicable results; instead it is tailored on a single organization or process.

The size of the development team was not considered, even though this is known to be an
important factor for determining productivity, because of the communication overhead. In
our particular case requirement changes were performed by “teams” composed of one or
two persons, thus making this variable not much relevant. In the derivation of the following
cost functions, also the complexity of code was not taken into account, because the
available data refer to whole units, while we would have been interested in the complexity
of the portion of code actually affected by a requirement change (one to four procedures,
out of the several tens that compose a unit).

Cost function for the requirements understanding phase

We found a good linear correlation of effort employed to understand the requirements of a
CR with respect to a set of independent variables including:
- Total requirements;
- Number of updated requirements;
- Size of the code;
- Level of knowledge of the application domain.

The average error was less than 32% (less than 40% in 66% of cases). This is an acceptable
prediction error, also considering that the effort dedicated to this phase is small with respect
to the overall effort required by the project.

An interesting fact is that the contribution of the total number of requirements to the effort
is negligible, while the contribution of the code characteristics is relevant. This means that
the mental process required to understand new requirements takes into account the
implementation of the previous requirements instead than the requirements themselves.

Impact function for the implementation phase

The implementation phase (represented by activity "Implementation (Design & Coding)" in
Figure 2) yields two types of results: code and design documents. No data were available
concerning design documents, thus we decided to adopt measures concerning code alone as
representative of the whole activity results.

Therefore, impact function for the implementation phase correlates the size of the change
(in terms of lines of code added, modified or deleted) to the number of change
requirements.

We found that there exists a good exponential correlation between the number of
updated/added/deleted lines of code and a set of data including:
- the number of requirements,
- the number of updated requirements,
- the size of code,

7

- the skill and experience of the development team.

The average error is about 28%. The linear regression yields a slightly greater error,
probably because of the small size of changes –less than 10% of the total LOCs of a unit in
80% of the cases.

Cost function for the implementation phase

We found a relatively good correlation between the implementation effort (encompassing
design and coding) and a set of variables including:

- the number of requirements,
- the number of updated requirements,
- the size of code,
- the number of modified (i.e., updated/added/deleted) LOCs,
- the skill and experience of the implementation team.

Linear regression can be used to estimate effort with an average error less than 27%.

We found that the effort can be predicted with almost no loss of precision even not
considering the deleted LOCs. This is reasonable, since in the considered application
requirements are seldom cancelled, more often they are replaced. As a consequence, deleted
lines are generally replaced by others, therefore the required effort is naturally proportional
to the number of new or modified lines.

Cost function for test design

The effort to be employed for designing the test cases was assumed to depend on the
following quantities:
- total number of requirements,
- number of changed requirements,
- size of code,
- number of modified/added/deleted LOCs,
- skill and experience of the team.

We found a good linear correlation among the aforementioned quantities and the effort for
test design. The prediction error is less than 17% (less than 30% in 80% of the cases).

Cost function for the test phase

The effort employed for testing (including both the unit-level and the system-level testing
activities) was assumed to depend on the following quantities:
- total number of requirements;
- number of changed requirements;
- size of code;
- number of modified/added/deleted LOCs;
- skill and experience of the team.

We found a good linear correlation among the aforementioned quantities and the effort for
system test. The prediction error is about 29% (less than 40% in 75% of the cases).

We were not able to find a correlation between the effort for unit-level testing and the set of
variables reported above. This was due to the low number and quality of available data
concerning effort employed for unit test.

Effectiveness of the test phase

The number of errors found was assumed to depend on the following quantities:
- effort employed for testing (including both the unit-level and the system-level testing

activities);

8

- total number of requirements;
- number of changed requirements;
- size of code;
- number of modified/added/deleted LOCs;
- skill and experience of the team.

We found a good linear correlation among the aforementioned quantities and the number of
errors found. The prediction error is about 24% (less than 30% in more than 60% of the
cases).

This correlation, together with the function estimating the effectiveness of the test phase,
allows to put in relation the number of requirements changes to the number of errors
introduced while implementing those changes. Of course, this correlation would be fully
significant only if we could consider also residual errors left over in the code at release
time. Unfortunately those metrics were not available to us.

We plan to collect data (concerning the residual errors) that allow to estimate the all-
important relationship between requirements changes and the total number of errors
introduced during maintenance.

4.3 Combining input and cost functions

As mentioned in Section 2.3, cost functions often have arguments whose values are
estimated by means of impact functions. For instance, the cost function of the
implementation activity reported in Figure 3 has among its arguments the modified/added
LOCs. We applied the impact function described in Section 4.2 in order to estimate the
number of modified/added LOCs, then we used the resulting values as arguments of the
cost function (also described in Section 4.2). In this way we obtained an estimation of the
required implementation effort having an average error around 32% (less than 40% in 60%
of the cases).

5. Achievements

The results observed in the TXT case study allowed us to predict with reasonably good
precision the effort/cost of major software maintenance activities. Since we were able to
quantitatively correlate such effort to requirement artifacts (either new or modified), we
have achieved early predictive capabilities that can be fully exploited for contracting as
well as for project management purposes.

It is particularly noticeable that in our approach the estimation of effort is performed at the
level of the single process activity. This approach features additional predictive capabilities,
such as:

- Relating software size at the unit level to characteristics of requirements, as discussed in
Section 4.1 (currently, only the number of relevant requirements, but in the future we
plan to extract and exploit other characteristics, to attain even better precision).

- Relating the size of code changes at the unit level to the number of requirements
changes, and in parallel to the point above.

- Relating effort spent in the implementation phase to the number of requirements
changes. Further valuable and more precise results could derive from splitting the
implementation phase in the design and coding activities, and being able to evaluate
their effort in isolation.

- Relating effort spent in system testing to requirements changes.

- Relating the number of errors introduced to requirements changes. This has been only
indirectly and partially achieved, and will be the object of future investigation.

9

6. Related work

In this Section, we relate our work to various frameworks for the estimation of software
development effort/cost. We also position our work with respect to other research efforts
that use observable properties of requirements to obtain a forecast of (some characteristics
of) a software projects.

6.1 COCOMO

COCOMO II models (COCOMO Research Group, 1997; Boehm et al., 1995) correlate
effort mainly to code size. The COCOMO II Early Design model and Post-Architecture
model both address issues, such as re-use and maintenance, that are tightly linked to
changing requirements. COCOMO II accommodates the effect of software re-use, by
adjusting code size according to the percentage of modification (which is not generally
known in advance). Moreover, COCOMO II provides a way to compute a “maintenance
size” that correlates to maintenance effort. The maintenance size is expressed in terms of
factors, such as the size of additions and modifications to the pre-existing code base, but
again the model assumes those figures are somehow known.

In our method, impact and cost functions are tailored upon a given organization or even a
given project. On the contrary, COCOMO II models are derived from data originated by
different organizations, and are intended to be generally valid (although the calibration of
the model with respect to a specific environment can be difficult and lead to unsatisfactory
results). Our method instead demands for precise product and process knowledge, together
with corresponding quantitative data sufficient to statistically derive reliable correlations.
The effort and time for the collection and analysis of those metrics may not be negligible,
although in mature organizations the required information can be obtained at little cost. In
any case, the resulting models are reliably applicable in the originating environment.

COCOMO II bases its effort estimates on the size of the code, either physical (Lines of
Code) or functional (Function Points). In both cases the required information is generally
not available at the time designated for the estimation, thus it has to be estimated itself.
Since COCOMO II does not indicate how to obtain LOC or FP estimates, an independent
and reliable estimation of size is an implicit pre-requisite. Our method employs impact
functions for exactly this purpose, and can be used earlier than COCOMO II models (see
Figure 4), since it is based mainly on quantitative characteristics of requirements, which are
observable upfront in the development lifecycle.

COCOMO II provides a fixed set of estimates (namely effort and duration) for a fixed set
of development phases. The extension of the capabilities of COCOMO II requires to extend
the model, as is being done with COQUALMO, the model that estimates the number of
introduced and removed errors (Chulani, 1998). On the contrary, our approach considers,
estimates and combines the contributions of every single development activity in a given
process. This finer granularity represents a way to account and adjust intrinsically for
idiosyncrasies found in a project and its process; hence it can capture precisely the peculiar
software development economics of a given organization. Furthermore, the corresponding
model and formulas remain at all times completely in the ownership of that organization.

6.2 Function points count and estimation

Function Points (Albrecht, 1979; IFPUG, 1994; Behrens, 1983) based techniques can be
used relying on productivity values that have been either derived outside the target
organization - e.g. for a whole application domain - or computed on the basis of historical
data collected within the target organization. The latter case is comparable to our approach,
and requires similar set-up effort and time.

It is known that the precise count of the Function Points of a software system can be carried
out only after the complete functional specifications become available (as shown in Figure
4), when a relevant amount of effort has already been expended. In order to better guide

10

contracting and project management, various approaches for early estimation of Function
Points have been proposed (Santillo and Meli, 1998; Bundschuh, 1998; Tichenor, 1997).
All of them exploit early/incomplete specifications (e.g., feasibility studies) for forecasting
the Function Point count. This is represented in Figure 4 by the curved arrow originating
from the Requirement Analysis task. It is immediately noticeable that our method offers the
advantage of earlier applicability. Moreover, estimated FP provide a more indirect path to
the estimation with respect to our method.

FP-based techniques take into account the entire development as a whole. The idea of
considering the characteristics of intermediate artifacts and activities, which is applied in
our approach, is completely out of the principles of the FP-based techniques. In principle it
is possible to correlate several qualities (such as reliability) to FPs, but this generally
requires measurement campaigns that take into account the driving factors affecting the
considered qualities (e.g., design methods, testing tools, features of the target platform,
etc.). In summary, as for tailorability FP-based techniques are similar to our approach while
their granularity is definitely coarser (and fixed).

Our Method

Design
Specifications

SW
Architecture

Functional
Specifications

Requirement
Analysis

Architectural
Design

Detailed
Design

Coding

Requirements Source code

Characteristics of
Requirements

Count of
Function Points

Size of source
code

Observable
Characteristics:

Estimations:
Estimated

Function Points*

COCOMO II
Post-Architecture

Model

COCOMO II
Early Design

Model

* Notice that Function Point estimation methods provide
estimates of Unadjusted Function Points, rather than
directly of effort.

Software
artifacts:

LEGEND:

Indicates earliest availability of an observable characteristic

Indicates earliest applicability moment of an estimation technique

Figure 4. A comparison of various estimation approaces with respect to their earliest application moments.

6.3 MERMAID

MERMAID (Kitchenham and Kirakowski, 1990) is a method for software sizing, effort
estimation, risk analysis, and other management-oriented activities, developed at the
beginning of the 90’s. The MERMAID approach is equipped with toolsets for effort
estimation. Just like our approach, MERMAID generates local statistical models (i.e.,
organization or even project-specific models) based on the analysis of phase-based
measurement data.

With respect to MERMAID, our approach deals more specifically with requirements
(changes), while considering the characteristics of the whole development process.
Moreover, our approach advocates the usage of explicit process and product models, which
on one hand can describe development activities at a finer granularity than MERMAID, on
the other allow a rich description of the properties of software artifacts and inter-artifact
relationships.

6.4 SQUID

SQUID (Bøegh et al., 1999) is a methodology for quality modelling and controlling. Both
SQUID and our approach require product and process modelling throughout the
development process. Both rely heavily on measures, for which they provide a rigorous
definition, collection and interpretation framework. Both advocate the collection of

11

organisation or project specific data. However our approach is definitely oriented to cost
estimation, and emphasizes the role of requirements (changes), while SQUID focuses on
quality issues, and addresses quality planning and control rather than effort estimation.

6.5 Other work

Other research efforts aim at exploiting the availability of requirements early on in the
software development lifecycle, in order to forecast some facets of a software project.
Many of them build upon results of Requirements Engineering and Management, such as
the concept of traceability (Ramesh et al., 1997).

A good example is the definition of metrics for measuring characteristics of requirements,
with the objective of estimating project risks (Hammer et al., 1996). Such metrics include
not only the number, size and traceability of requirements, but also requirements quality
indicators such as ambiguity, (in)completeness, understandability, etc. This approach can
be seen as complementary with respect to ours: those metrics could be applied in our case
study, aiming to improve the reliability of estimates.

In (Meli, 199) software requirements are bridged - via traceability – to the Early Function
Point Analysis (Boehm, 1981) estimation technique, in order to be able to revise the
relevant risks as well as the budget of a project, whenever its requirements change. Once
again, our approach is different principally due to the explicit inclusion of process and
product information in the estimation process, which provides tailorability as well as finer
granularity of the estimations, leading to more flexibility.

7. Conclusions

We report an experimental application of a method aiming at the estimation of the impact
and cost of changes in user requirements. The method exploits models of the product being
changed and of the change implementation process. These models are quantitatively
characterized through proper measurement. Estimations are based on the knowledge of the
change requests and of their characteristics: in this way the cost of a CR can be estimated as
soon as CRs are known, thus earlier than with other methods (like those relying on lines of
code or function points), which exploit information that becomes available at later stages.

We have achieved good results in the pilot project, i.e., prediction of impact and cost of
requirements changes with acceptable precision. The ability to exploit information
concerning user requirements was due to good requirement descriptions and good
modularization. In fact, requirements were described at a constant and fine granularity, and
were each implemented by a small number of procedures: these features made measures of
requirements reliable and usable for estimations.

The work described here not only justified the collection of metrics and their usage in
project planning, but also suggested the opportunity to collect more metrics. In fact, future
work will aim at collecting new types of metrics –such as the cyclomatic complexity
(McCabe, 1976) of every procedure– in order to understand whether the precision of the
impact and cost functions presented above can be improved by accounting for such
variables. Moreover, we adopted a very simple approach to requirements quantification: we
just counted the labels placed on pieces of textual requirements for identifying requirements
and tracing them to design and code elements. It is our intention to take into account also
the size and structure of every requirement, in order to evaluate whether these quantities
improve the precision of cost functions.

Acknowledgments

The work presented here was partly funded by the CEC as ESPRIT-IV project n. 23156
SACHER We wish to thank Alberto Salerno and Leandro Vitali of TXT Ingegneria
Informatica for their cooperation.

12

Notes

1. In the rest of the paper the granularity of the evaluations is always the unit release.

2. Throughout the paper by “error” we mean the average absolute error.

References

Boehm B. 1981. Software Engineering Economics. Prentice-Hall.

Santillo L. and Meli R. 1998. Early Function Points: Some practical Experiences of Use.
Proc. European Software Control and Metrics Conf., Rome, Italy.

Bundschuh M. 1998. Function Point Prognosis. Proc. First European Software
Measurement Conference (FESMA 98), Antwerp, Belgium.

Tichenor C. 1997. The IRS Development and Application of the Internal Logical File
Model to Estimate Function Point Counts. Proc. IFPUG 1997 Fall Conference, Scottsdale,
USA.

COCOMO Research Group 1997. COCOMO II Model Definition Manual, available at
http://sunset.usc.edu/COCOMOII/cocomo.html

Boehm B., Clark B., Horowitz E., Madachy R., Shelby R. and Westland C. 1995. Cost
Models for Future Software Life Cycle Processes: COCOMO 2.0. Annals of Software
Engineering. Vol. 1 pp. 57-94, J.D. Arthur and S.M. Henry Eds. Amsterdam: Baltzer
Science Publishers.

IFPUG 1994. IFPUG Function Point Counting Practices: Manual release 4.0. Westerville:
International Function Point Users’ Group.

McCabe T.J. 1976. A complexity measure IEEE Trans. Software Engineering. 4: 308-320.

Behrens C. 1983. Measuring the Productivity of Computer Systems Development Activities
with Function Points. IEEE Trans. Software Engineering 9:648-652.

R. Meli R. 1999. Risks, Requirements, and Estimation of a Software Project. Proc. 10th
European Software Control and Metrics Conf., Herstmonceux Castle, United Kingdom.

Albrecht A. J. 1979. Measuring Application Development Productivity. . Proc. IBM
Applications Develop. Symp. Monterey, USA.

Albrecht A. J. and Gaffney J. E. 1983. Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Trans. Software
Engineering. 9:639-648.

Chulani S. 1998. Incorporating Bayesian Analysis to Improve the Accuracy of COCOMO
II and Its Quality Model Extension. Report n. 98056 University of Southern California.

Basili V., Caldiera G. and Rombach D. 1994. Goal/Question/Metric Paradigm. In
Encyclopedia of Software Engineering, vol. 1, J. C. Marciniak, Ed. Wiley.

Ramesh B., Stubbs C., Powers T. and Edwards M. 1997. Requirements Traceability:
Theory and Practice. Annals of Software Engineering. 3:397-415.

Hammer T., Huffman L., Wilson W., Rosenberg L. and Hyatt L. 1996. Requirement
Metrics for Risk Identifiaction. Proc. Ann. Software Eng. Workshop, NASA-GSFC, USA.

Bøegh J., Depanfilis S., Kitchenham B., and Pasquini A.1999. A Method for Software
Quality Planning, Control, and Evaluation. IEEE Software. 16(2), 69-77.

Kitchenham B. A., Kirakowski J. 1990. The MERMAID approach to software cost
estimation. Proc. Annual ESPRIT Conference, Brussels, Belgium.

