
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

1

A FORMALIZATION OF UML STATECHARTS FOR
REAL-TIME SOFTWARE MODELING

Vieri Del Bianco, Luigi Lavazza, Marco Mauri
CEFRIEL and Politecnico di Milano
Via Fucini, 2 - 20133 Milano (Italy)

e-mail: {delbianc|lavazza|mmauri@cefriel.it}
Phone: +39-02-239541 Fax: +39-02-23954254

ABSTRACT
The work presented here is part of a project that aims

at the definition of a methodology for developing real-
time software systems based on UML. In fact, being
relatively easy to learn and use, UML is very popular,
unlike formal methods. However, formal models provide
developers with several benefits: they can be used for
activities –like property verification, simulation, test case
generation, etc.– which are vital for the development of
real-time software. Such activities are more difficult, more
error-prone or less effective when carried out on UML
models, because UML is not formally defined.

In this paper we explore the possibility to formalize
the part of UML that is more important for the
specification of real-time behavior, namely the statecharts.

Actually, previous experiences indicated that UML
statecharts have to be extended in order to cope with real-
time issues. Therefore we aim at a formalization of a
suitable extension of UML statecharts. For this purpose
we do not develop a new formalism, instead we exploit
the Timed Statecharts formalism proposed by Kesten and
Pnueli.

The contributions of the paper are: the evaluation of
the difference between Timed Statecharts and UML
(properly extended for modeling real-time issues), a
mapping of extended UML statecharts to Timed
Statecharts, the application of the proposed approach to a
case study.

Keywords: Real-time software, formal methods, state
machines, statecharts, UML.

1 INTRODUCTION
UML is a de facto standard for documenting the

specification and design of object-oriented systems. The
continuously growing popularity of this notation has led
software developers to use UML to model application
domains that were originally out of the language scope.
These domains include business processes, Web-based
applications, information systems, component-based
systems, etc. In general the rich set of diagrams provided
by UML, together with a flexible extension mechanism,
allow developers to model all the relevant features of
software systems.

The structure of UML is quite formal, since it is based
on a meta-language (defined using a reduced set of UML)
which is used to specify the diagrams that compose UML.
The meta-model of UML can be effectively used to
expand and enhance UML according to specific needs,
when the usual extension mechanisms of UML
(stereotypes, tagged values, and constraints) are not
enough flexible to achieve the desired expressiveness.

Although the syntax of UML is formally defined, the
semantics is quite loose. This was not originally perceived
as a problem, since the main purpose of the language was
to be easy to use and to adapt to various needs: in order to
achieve such goals, it was decided that the semantics of
diagrams would be given informally. Currently this view
is changing, as UML is growingly employed in new
application domains that call for a better formalization,
even at the expense of flexibility. This is usually the case
for real-time, safety-critical and embedded systems. In
such cases it is much preferable that the modeling notation
is formal, as ambiguities and inconsistencies could have
catastrophic consequences. Another issue in this field is
the abundance of formal methods and supporting tools:
although they have been proven useful to support the
development of complex software, they are not much used
in industry. This is due to the variety of formal methods
and to the difficulty to use the tools, which often require
sophisticated logical or mathematical skills.

In order to solve this kind of problems, we adopted a
dual approach to real-time software development
(Lavazza, Quaroni, Venturelli, 2001). In a first phase
models are written in UML: this is expected to be a
relatively inexpensive activity, since UML does not
require a big learning effort, and it is well supported by
tools. In a second phase UML models are automatically
translated into one or more formal notations, which
provide support to activities such as the verification of
properties, test case generation, etc. In this way,
developers exploit the advantages of formal notations
while skipping the complex and expensive formal
modeling phase. The optimal situation is when the derived
models can be used by fully automatic tools: the modeler
gets the results without even being aware of the
underlying formal methods.

Of course, in order to apply such approach the
semantics of UML must be formally defined. In previous
work (Lavazza, Quaroni, Venturelli, 2001) we defined

2

UML’s semantics implicitly, in terms of the translation
from UML to TRIO (a first order temporal logic (Ghezzi
et al., May 1990)). Here we address the problem of
explicitly defining the semantics of UML, or at least of
those parts of UML that are most relevant for real-time
software. In particular, we consider object diagrams, class
diagrams and state diagrams as the fundamental elements
to model real-time systems. The former two types of
diagrams do not need to be modified, while the state
diagrams, which specify the behavior of the system, need
to be suitably extended (as discussed in Lavazza, Quaroni,
Venturelli (2001)).

Our approach is mainly based on Timed Statecharts
(TS), as formally defined by Kesten and Pnueli (1992),
i.e., we extend UML’s syntax and semantics, and provide
a mapping to Timed Statecharts’ concepts. It is possible to
identify four key parts of our approach:
• A mapping between UML and TSs is defined. In this

step we use an extension of the standard definition of
UML (UML Specification, 2001) that takes into
account the need to express real-time constraints
(Lavazza, Quaroni, Venturelli, 2001) as well as the
need to keep close to TSs.

• UML Metamodel is modified to accommodate the
previously identified changes. We call the resulting
language UML+.

• XMI DTD is modified to represent UML+ diagrams
and models by means of XML documents. We call
XMI+ this extension of XMI.

• Translations to formal notations: a translator
transforms the XMI+ documents equivalent to UML+
models into documents written in some formal
notation. The latter can then be used by tools
implementing formal methods. We developed two
translators to convert UML+ models into TRIO logic
formulas and Kronos timed automata, respectively. So
a UML+ model can be verified without forcing the
user to understand the underneath formal methods.
In this paper we illustrate the first point of the list

given above. Translation from UML+ to TRIO is
described in Lavazza, Quaroni, Venturelli (2001).
Translation from UML+ to Kronos is described in
Lavazza, Del Bianco, Mauri (2001).

This paper is organized as follows: Section 2 briefly
illustrates the extensions to standard UML that were
defined for real-time modeling. Section 3 illustrates how
our extended version of UML is given a precise semantics
by means of Timed Statecharts. Section 4 presents the
application of extended UML to a case study involving
the representation of a real-time system: the advantages
deriving from the availability of a well-defined UML are
illustrated. Section 5 briefly accounts for related work,
while Section 6 draws some conclusions.

2 UML STATE DIAGRAM EXTENSION
The work presented is part of a larger project (DESS)

whose aim is to employ UML in the specification of real-
time systems. For this purpose we need a specification

language that is both enough expressive to represent the
features of real-time systems (with special reference to
time constraints) and precise enough to support activities
like property verification, test case generation, etc. The
extensions of UML that are considered necessary for
modeling real-time systems are described in Lavazza,
Quaroni, Venturelli (2001) and Lavazza, Del Bianco,
Mauri (2001). Here we summarize such extensions, which
concern the state diagrams of UML.

A first limit of UML concerns the management of
concurrent events. UML forces the events to be treated
one at a time, thus making impossible to specify the
behavior of the system when several events occur
concurrently (unless the system behaves exactly as though
the events occurred sequentially, of course). Our
extension allows the modeler to associate a set of events
to a transition, indicating that the transition is triggered by
the concurrent occurrence of the set of events (see Figure
1).

A second problem with UML is that it does not allow
the guards associated with transitions to contain
references to events. Thus it is impossible, for instance, to
specify that a given transition is executed if event A
occurs while event B is not occurring. We simply
removed this limitation by allowing guards to make
reference to events, as illustrated in Figure 2.

In the specification of a real-time system it is often
the case that a transition occurs at a time that depends on
the occurrence time of another transition. It is therefore
necessary to make reference to a given transition’s
occurrence time. In UML names may be placed on
transitions to designate the times at which they fire.
However these names can only be used within constraint
expressions. We removed this limitation by allowing the
modeler to make reference to these labels also in guards
(see for instance Figure 4).

The last limitation we identified is probably the most
relevant for real-time modeling. In fact the specification
of a real-time system has often to prescribe that a given
transition must occur in a well-defined time interval,
maybe without specifying exactly when the transition has
to occur. In other words, the specifications of real-time
systems are often non-deterministic with respect to the
times when transitions occur. The After() construct
provided by UML is not suitable for modeling this type of
situations. We removed this limitation by allowing the
modeler to associate a time interval to a transition, thus
indicating that the transition occurs at a time (not known
a-priori) belonging to the interval (see Figure 4).

3 MAPPING EXTENDED UML TO TIMED
STATECHARTS

3.1 A brief introduction to Timed Statecharts
The extensions described above clearly indicate the

necessity to redefine the state diagram notation of UML.
The Timed Statecharts proposed by Kesten and Pnueli
(1992) suit well our needs and can be easily integrated in

3

the UML metamodel. It’s important to observe that these
changes cannot be expressed through UML extension
mechanisms, thus they cannot be implemented as a UML
profile. We need to introduce some new elements in the
UML meta-metamodel as well as to modify the meaning
of existing elements. The modified meta-metamodel
defines the new language that we call UML+.

Timed statecharts extend the traditional statecharts by
specifying time limits for the execution of transitions. The
semantics is defined with reference to a dense time
domain. This implies that the system may deal with
arbitrarily close time events. Transitions are classified in
two types: immediate ones and timed, or waiting,
transitions.

Immediate transitions do not depend on time: they are
(they actually must be) executed when a triggering event
occurs. When no immediate transition is enabled, the time
can flow with the state of the system remaining
unchanged. On the contrary, timed transitions are
independent from events. They are associated with a time
interval specified giving a minimum and a maximum
waiting time: the transition cannot be executed before the
minimum or after the maximum waiting time. If no event
changes the current state, the timed transition must be
executed before the maximum waiting time.

Timed Statecharts allow to express negated events
among the conditions which can determine the execution
of a transition. Kesten and Pnueli (1992) propose a so
called “weak time” semantics, i.e., transitions requiring no
enabling event and with an associated delay τ and timeout
υ may be performed (nondeterministically) at any time
between τ and υ. The concept of “step” is associated with
the execution of an immediate transition; a reaction to an
event may occur several steps after its generation, but still
in the same timestamp. This kind of semantics is based on
the fact that every generated event “persists” until the time
does not flow. The time may flow only if all the
transitions which were enabled by that event have been
executed. In this way, several transitions triggered by the
same event e are executed before the time becomes grater
than the time of the occurrence of e.

3.2 Extension of Timed Statecharts
TSs define mechanisms and constructs that are similar

to the ones described in Lavazza, Quaroni, Venturelli
(2001). We therefore decided to define the semantics of
our extensions in terms of TSs.

UML+ diagrams in Figure 1 and in Figure 2 already
have a well-defined meaning in terms of TSs, therefore no
specific discussion is necessary. However, we considered
useful to introduce two modifications to the syntax of TSs,
in order to facilitate modeling the behavior of a system:
• In UML+ we allow the modeler to associate both a

set of triggering events and a time interval with
transitions, as shown in Figure 3. This also has a well-
defined meaning in TSs, provided that transitions like
the one from S1 to S2 are interpreted as discussed
below.

• The possibility to refer to a specific transition (state)
in order to use the execution (entrance) time is
illustrated in Figure 4.
In the example illustrated in Figure 4 the transition

from S3 to S1 is modeled exploiting the labels (or timing
marks) associated with the transition from S1 to S2 (T1)
and the transition from S2 to S3 (T2). Transition T3 must
be executed at a time t such that
T ≤ t ≤ T+(T2-T1), where T indicates the instant when
state S3 was entered. Labels associated with transitions let
us model precisely the time constraints governing the
execution of transitions. For instance, we can specify that
transition T3 has to be executed exactly after a
permanence in S3 of duration (T2-T1) by associating it
with the interval [T2-T1; T2-T1]. Note that the transition
labeled T1 (for instance) can be executed several times.
Therefore, it is necessary to specify which of its
occurrences is associated with time T1. We assume that
every timing mark indicates the latest execution of the
associated transition.

We have also introduced the possibility of associating
both triggering events and time constraints with a
transition, as shown in Figure 5. The behavior of the
diagram reported in Figure 5 is equivalent to the one
reported in Figure 6. State S1.1 is entered exactly l time
units after S1 (more precisely, S1.0) is entered. If event e1
occurs in next u-l time units state S1.2 is entered and
event e1_bis is generated: as a consequence state S1 is
immediately left and S2 is entered (we did not use a
transition from S1.1 to S2 because inter-level transitions
are not allowed in TSs). If e1 does not occur in a period of
u-l time units after S1.1. is entered, then S1.2 becomes the
new state. In this case the object will never leave state S1,
since only event e1_bis can trigger the transition to S2,
but the only chance to generate e1_bis has been missed.
S1.2 can be considered as a “terminal state”.

“Mixed” transitions are useful to model typical real-
time constraints in a compact and intuitive way.

3.3 Adapting Timed Statecharts to UML
In the previous section we described the features

(both syntactic and semantic) of TSs that can be readily
incorporated in UML+. In this section we discuss how to
adapt the features of TSs that do not match very well
UML (or UML+). Note that the introduction of Timed
Statecharts in UML doesn’t require any modification of
other diagrams.

A first fundamental issue is with the semantics of
events, or how the evolution of the system is determined
by events. In fact in UML events are processed
sequentially, each event causing the execution of a run-to-
completion (RTC) step. The next external event is
processed after the current RTC step has completed, and
the state machine has reached a stable state. In TSs there
is no RTC concept, there is no queue of events nor
dispatcher. TSs evolve according to a “chain semantics”:
according to this semantics it is possible to perform
sequentially several transitions in the same step. This is
also consistent with the interpretation of UML state

4

machines given in Lavazza, Quaroni, Venturelli (2001),
therefore we adopted the event management principles of
Timed Statecharts.

Other differences between the two notations are due
to the fact that UML has been provided with several
constructs –like transitions between states belonging to
different levels in a hierarchy of states– which are not
strictly necessary, but make it easier to model object-
oriented systems. It is therefore interesting to define the
meaning of these constructs by means of TSs.

Differences between UML state diagrams and TSs are
summarized in Table 1. The most important differences
mentioned in Table 1 are discussed in next subsection.

3.3.1 Inter-level transitions
Inter-level transitions involve states belonging to

different hierarchy levels, or to different composite states.
For instance, transitions T2 and T3 in Figure 7 are inter-
level transitions.

Figure 8 shows a legal TS (not employing inter-level
transitions) whose behavior is equivalent to the state
diagram reported in Figure 7. The conversion is
straightforward and is therefore not discussed.

3.3.2 Fork transitions
A fork transition has one origin state and multiple

destination states, belonging to different concurrent
regions of a composite state (see for instance Figure 9).

In the Timed Statecharts, a transition to a composite
state implies that the initial sub-states of the concurrent
regions are activated. Thus, transitions like the one
depicted in Figure 9 can be described using TSs as
illustrated in Figure 10.

3.3.3 Final states
In UML a final state indicates that the evolution in a

region of a composite state has reached a conclusion.
When all the regions of a composite state reach a final
state, a completion event is generated and the composite
state is abandoned. TSs do not have final states, but can
simulate them quite easily: final states are replaced by
normal states; transitions to such states generate
completion events. If the final states belong to concurrent
regions, only the last region reaching a final state has to
generate the completion event: this effect can be easily
obtained using a counter.

3.3.4 Entry and exit actions
Entry (and exit) actions are sequences of atomic

actions that are executed every time a state is entered
(exited).

In TSs, these actions can simply be associated with
every entering (exiting) transition. Attention must be paid
to preserve the correct activation sequence: entry actions
are performed after the actions associated with the
entering transitions; exit actions are performed before the
actions associated with the exiting transitions.

4 A CASE STUDY: THE CSMA/CD PROTOCOL
In this section we apply UML+ to a case study

described in Yovine (Oct. 1997). The presented use case
is a typical real-time system, i.e., a system where timely
response is extremely important, while data processing is
marginal.

4.1 The CSMA/CD Protocol
In any broadcast network with a single channel the

key issue is how to assign the use of the channel when
many stations compete for it. A well-known protocol that
solves this problem is the Carrier Sense, Multiple Access
with Collision Detection, or CSMA/CD, protocol.

The CSMA/CD protocol works as follows. When a
station has data to send, it first listens to the channel. If it
is idle (i.e., no other station is transmitting), the station
begins sending its message. However, if it detects a busy
channel, it waits for a random amount of time and then
repeats the operation. When a collision occurs, because
several stations transmit simultaneously, then all of them
detect it, abort their transmissions immediately and wait a
random time to start all over again. If two messages
collide then they are both lost.

The propagation delay of the channel plays an
important role in the performance of the CSMA/CD
protocol. It is possible that just after a station begins
sending, another one becomes ready to send. If it senses
the channel before the signal of the former arrives, it will
find the channel idle and will start sending too. Hence, a
collision will happen. Let s be the time for a signal to
propagate between the two farthest stations. Suppose that
at time t0 a station S0 begins sending a message. Thus,
within the time interval [t0 ; t0+s), it is still possible that
some station Si transmits, causing a collision. However,
after time t0+s, the channel will be sensed busy by all the
stations until the current message is delivered. Hence, the
maximum time the channel could be sensed idle by any
station after the beginning of a transmission is s.

Based on the fact above, we might think that a station
that does not hear a collision for a time equal to s, could
be sure that no other station would interfere. However,
this conclusion is wrong. Due to the propagation delay,
the noise burst caused by the collision could take a time s
to arrive. In fact, in the worst case it would take 2s for a
station to detect a collision.

In case of collision, each station waits randomly a
time between 0 and 2s before trying again.

At last we consider the transmission time. Assume
that only messages of equal length are sent and let l be the
time spent to send a message. Then if no collision occurs,
a message will be completely delivered in a time equal to
l+s .

4.2 The model of the system
The static structure of the system is given in Figure

11. For simplicity we suppose the channel error-free and
do not consider any buffering. The meaning of the
attributes and methods reported in Figure 11 does not
need comments.

5

The behavior of the system is described by the UML+
diagrams reported in Figure 12 and Figure 13. Such
behavior is consistent with the textual description given in
section 4.1.

4.3 Using the models
The model described above was created by means of a

tool (derived from ARGO/UML,
http:\\www.argouml.tigris.org) that is being developed at
CEFRIEL. The tool exports the model in a format which
is a suitable extension of XMI (see Lavazza, Del Bianco,
Mauri (2001) for details concerning the definition of the
extended XMI format).

The model was then translated by means of an
automated translator (see Lavazza, Del Bianco, Mauri,
2001) into a set of Kronos automata. These where
analyzed by means of the Kronos tool (Yovine, Oct 1997)
in order to check the desired properties of the protocol. In
particular, we have verified the following real-time
properties, which were expressed using TCTL logic (Alur
et al., 1993):
1. The system is NonZeno, that is, every finite run

starting at the initial state is the prefix of some infinite
divergent run, or equivalently, time may diverge in
every state.

2. When a collision occurs, because two distinct senders
transmit simultaneously, they both detect it at most s
time units later.

3. When one of the senders begins transmitting, there
exists a behavior that leads to a successful
transmission without collisions such that the message
is delivered in a time l.
In conclusion, the case study showed that it is

possible to model a real-time system (namely the
CSMA/CD protocol) employing a notation that though
very close to UML is formally defined, so that the model
can be analyzed by a model-checker.

5 RELATED WORK

5.1 Extensions of UML for consistency
Several efforts have been done to employ UML in the

development of real-time software.
Douglass (1998) has shown how several features of

UML can be exploited in the specification and design of
real-time software. However, he has not solved the
problems connected with the lack of formal semantics of
UML. Moreover, he has not tackled difficult problems
which –like the Generalized Railroad Crossing (see
Lavazza, Quaroni, Venturelli, 2001)– cannot be modeled
by means of plain UML.

Selic et al. (1999) have proposed the Real-Time
Object-Oriented Modeling (ROOM) language, which has
been merged with standard UML to form a proposal of
‘UML for real-time’. This language is being used in
several tools, like Rose for Real-Time and Anylogic.
ROOM favours the design and coding activities, at the
expenses of the specification phase. The language

provides rich information on the structure of the system
thanks to the facilities provided to describe active objects
and their communications, and tools are available to
translate the models into executable code which behaves
like the models. The limits of ROOM are in the lack of
constructs to describe non-trivial time constraints, as well
as in the lack of formal semantics (semantics is hardwired
in the ROOM virtual machine). As a consequence, a
ROOM model cannot be analyzed in order to prove
whether the model has desirable properties such as safety.

5.2 Formalization of UML
Other efforts are being spent in order to improve the

formality of UML.
cTLA (Graw et al., 2000) adds temporal logic to

existing UML diagrams. cTLA+ (Herrmann, 1997) is a
compositional specification and verification technique
based on Leslie Lamport's Temporal Logic of Actions
TLA (Lamport, 1992). cTLA+ supports modular process
type definitions and the composition of processes into
systems. Processes can model components of an
implementation. Moreover, they can represent modular
logical constraints.

There are many other approaches aiming at a
formalization of UML, all of these make UML more
usable in critical, embedded and real time systems.

Two main efforts that are now converging in UML
2.0 (still in draft version) are ROOM (see above) and
Catalysis (Francis D’Souza and Cameron Wills, 1998).

The approach in Catalysis is to use OCL (see UML
Specification, 2001) constraints to eliminate most of the
ambiguities that UML leaves unaccounted, i.e., OCL is
used to formally define the diagrams in UML. Catalysis
also introduces a notation to model components in a
similar yet more accurate way than ROOM.

UML 2.0 adopts most of the notations of ROOM and
some of Catalysis ones (in particular the usage of OCL to
define diagrams).

Catalysis also inspired the Precise UML (pUML)
project, which eventually evolved in the 2U (Unambigous
UML) consortium. The approach in pUML is to formally
express the UML Metamodel through OCL, with special
attention dedicated to conformance and compatibility
between different UML views, as well as to refinement.

The pUML project has developed a Meta-Modeling
Framework (MMF) (Clark et al., 2001 and Álvarez et al.,
2001) as a replacement of the original UML Meta Model,
in order to eliminate many of the current ambiguities and
deficiencies, and to make UML more modular and
extensible. OMG is considering to fully adopt this
approach in UML 2.0 (ad/00-09-01 and ad/00-09-02,
UML 2.0).

Other approaches propose the usage of UML
combined with a formal language. For example, in Bruel
and France, Fusion approach and Object-Z language are
integrated in UML. In Raghavan and Larrondo-Petrie a
package to address real-time constraints is added to UML,
but ambiguities in UML are not addressed.

6

Our work has similarities with both the efforts
devoted to extending UML and those oriented to the
formalization of the language. However our work is
different from the mentioned approaches as UML is not
integrated with other languages (as in cTLA or in the
Object-Z based approach). Moreover, the formalization of
UML+ based on Timed Statecharts allows the UML+
models to be translated in a relatively straightforward way
into other notations (like TRIO logic or Kronos automata).
Finally, we emphasize usability, and maintain UML as the
unique “interface” to the model: neither the underlying
formal model (based on TSs) nor the target notations
(TRIO or timed automata) are visible by the modeler.

6 CONCLUSION
Our goal is to correct UML shortcomings (lack of

real-time modeling facilities, ambiguity) while preserving
the advantages (ease to use and learn). We defined a set of
extensions oriented to real-time system modeling
(Lavazza, Quaroni, Venturelli, 2001) and gave formal
semantics to these extensions in terms of Timed
Statecharts.

The result is a language which, although still easy to
learn and use, is formally defined. Therefore we can
translate real-time models into other formal notations in
order to use existing tools. For instance, we were able to
translate the extended UML model presented in Section
4.2 into timed automata and to analyze the latter with
Kronos, in order to prove some properties of the modeled
protocol.

In particular, when the formal methods can be applied
automatically (as for Kronos) the user is not even aware of
being using anything else than the extended UML
language and the associated graphical editor. This is –in
our opinion– a very important step for the diffusion of
formal methods.

ACKNOWLEDGMENTS
The work described here was carried out as part of the

ITEA project DESS (www.dess-itea.org) (Software
Development Process for Real-Time Embedded Software
Systems). Project DESS is partly supported by MIUR.

REFERENCES

OMG, XML Metadata Interchange (XMI)
Specification, November 2000, Version 1.1,
ftp://ftp.omg.org/pub/docs/formal/00-11-02.pdf.

OMG, Unified Modeling Language (UML)
Specification, September 2001, Version 1.4.

Harel, D., 1987, Statecharts: A visual formalism for
complex systems, Science of Computer Programming,
8:231-274.

Kesten, Y., and Pnueli, A., 1992, Timed and Hybrid
Statecharts and their Textual Representation, Weizmann
Institute of Science, In Formal Techniques in Real-Time
and Fault-Tolerant Systems 2nd International Symposium.

Yovine, S., October 1997, Kronos, A Verification
Tool for Real-Time Systems (Kronos User's Manual
Release 2.2), Springer International Journal of Software
Tools for Technology Transfer, Vol. 1.

Graw, G., Herrmann, P., and Krumm, H., 2000,
Verification of UML-based real-time system designs by
means of cTLA, In Object-Oriented Real-Time
Distributed Computing (ISORC 2000) Proceedings, Third
IEEE International Symposium on , 2000 Page(s): 86 –95.

Lavazza, L., Quaroni, G., and Venturelli, M., 2001,
Combining UML and formal notations for modelling real-
time systems, Joint 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE), Wien, September 10-14.

Lavazza, L., Del Bianco, V., and Mauri, M., December
2001, An introduction to the DESS approach to the
specification of real-time software, CEFRIEL Technical
Report RT 01125.

Ghezzi, C., Mandrioli, D., and Morzenti, A., May
1990, TRIO, a logic language for executable
specifications of real-time systems. The Journal of
Systems and Software, 12, 2.

Selic, B., Gullekson, G., and Ward, P.T., 1999, Real-
Time Object-Oriented Modeling, Wiley.

Douglass, B.P., 1998, Real-Time UML, Addison
Wesley.

Alur, R., Courcoubetis, C., and Dill, D.L., 1993,
Model checking in dense real-time, Information and
Computation, 104(1):2(34).

Bruel, J.M., and France, R., Transforming UML
Models to Formal Specifications.

Raghavan, G., and Larrondo-Petrie, M., A formal
UML Package for Specifying Real-Time System
Constraints.

Francis D'Souza, D., and Cameron Wills, A., 1998,
Objects, Components, and Frameworks With Uml: The
Catalysis Approach, Addison-Wesley.

The precise UML group,
http://www.cs.york.ac.uk/puml.

2U Consortium Unambiguous UML,
http://www.2uworks.org/documents.html.

Clark, T., Evans, A., and Kent, S., 2001, Engineering
modelling languages: A precise meta-modelling approach,
http://www.2uworks.org/documents.html.

7

Álvarez, J., Evans, A., and Sammut, P., 2001, MML
and the Metamodel Architecture,
http://www.2uworks.org/documents.html.

Initial submission to ad/00-09-02 (UML 2.0
Superstructure), 22/10/2001,
http://www.2uworks.org/documents.html.

Initial submission to ad/00-09-01 (UML 2.0
Infrastructure) ad/00-09-03 (UML 2.0 OCL), 22/10/2001,
http://www.2uworks.org/documents.html.

Lamport, L., 1992, Hybrid Systems in TLA+,
http://citeseer.nj.nec.com/lamport93hybrid.html.

Herrmann, P., Specification of Hybrid Systems in
cTLA+, 1997, http://citeseer.nj.nec.com/herrmann97spe
cification.html.

DESS project official Web site, http://www.dess-
itea.org

FIGURES
A, B

S1 S2

Figure 1: A transition with multiple concurrent events.

S1
A [not B]

S2

Figure 2: A transition guard involving a negated event.

e1 [t1; t2]

{e1, e2} [not e3]

S1 S2

S3
[t3; t4]

e3

Figure 3 A UML+ statechart.

T1: open

T2: closeT3: [0; T2-T1]

S1 S2

S3

Figure 4 A statechart with timing marks.

[l; u] e1
S1 S2

Figure 5 “Mixed” transition, with both triggering events and
time constraints.

[u-l,u-l]
S1.1 S1.2

S2

S1

S1.0 [l;l]
e1_bis

e1/e1_bis

Figure 6 A diagram with no mixed transitions, equivalent to
the diagram in Figure 6

T2: B

S1

T3: C

S5

S6

A

S2

S3

S4

S7

CS

Figure 7: UML diagram containing
inter-level transitions.

T2: B/e2

S1

T3: C/e3

S5

S6

A/e1

S2

S3

S4

S7

CS

CS0 e2

e3

e1

Figure 8: Timed Statechart equivalent to
the state diagram given in Figure 7

T2: B

S1
S3.1 S3.2

T1: A

S2 S4.2

S4.3

S4.1

CS

Figure 9: UML diagram containing a fork transition

T2: B/e2

S1
S3.1 S3.2

T1: A/e1

S2 S4.2

S4.3

S4.1

CS

S4.0 e1

e2

S3.0 e1

e2

Figure 10: Timed Statechart equivalent to
the state diagram given in Figure 9

8

Bus

-busy : Boolean

+beginTrans()
+endTrans()

Bus

-busy : Boolean

+beginTrans()
+endTrans()

Sender

+send(msg)
+CD()

Sender

+send(msg)
+CD()

12..*

Figure 11: Class diagram of the system

CD

[0; 2*s] / bus.beginTrans

send[not Bus.busy] / bus.beginTrans

send, CD

[l;l] / bus.endTrans

[0; s] CD

Wait

Retry

Trasm

send[Bus.busy]

[0; 2*s] CD

Figure 12: UML+ statechart of class Sender

[s; s] / busy=True

beginTrans / busy=False

[0; s] / sender.CD

endTrans

beginTrans[busy=False]

Idle

Collision

Active

Figure 13: UML+ Statechart of class Bus

TABLES

Table 1: Differences between UML state machines and Timed Statecharts.

UML state diagrams Timed Statecharts
Origin and destination states of a transition can belong to
different hierarchy levels.

No inter-level transitions allowed.

Fork and Join transitions can be used to model concurrent
processes and their synchronization.

No Fork and Join transitions.

Branch transitions have one origin and several destination
states.

No branches: one transition must be defined
for each possible condition.

A transition originating from the composite state S has
lower priority with respect to those originating by
substates of S.

Preemption can be used by a state with
respect to any of its substates.

Deferred events can be executed after the current RTC
step.

Deferred events can be modeled by means
of timed transitions.

“History” pseudostates allow to go back to the most recent
substate of a composite state.

As long as there are no inter-level
transitions, history states are not needed.

Activities (having non-null duration) can be specified in
states. They can be terminated by a transition.
Completion transitions occur when the activity carried out
in the considered state completes.
Final states indicate that an object has completed its
evolution, reaching a definitive state.

There is no “activity” concept.

Atomic actions (having negligible duration) can be
associated to entering or exiting states.

Actions must be associated to transitions
entering or exiting states.

