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Mundici Functor Negative Cones General Situation Subvarieties of pA

Outline

1 Construct free MV -algebras from free Abelian `-groups, via
the Mundici functor Γ

2 Construct free negative cones from free Abelian `-groups, via
the negative cone functor

3 Generalize the previous situations to algebras induced by a
unary term

4 Investigate the subvariety lattice of pA, the variety of
positively-pointed Abelian `-groups
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Mundici Functor

Let 〈G, a〉 be an Abelian `-group with distinguished element a.

Let Γ(〈G, a〉) be the MV -algebra formed on the interval
[e, a ∨ e].

We observe that Γ is a straight-forward generalization of the
Mundici functor.
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Free MV -algebras - 1

We wish to use this functor to construct free MV -algebras
from free Abelian `-groups.

Let X be any set. Let Y = X ∪ {y}, where y /∈ X .

Let F be the free Abelian `-group over Y .

Consider the interval [e, y ∨ e] in F.

Let A be the MV -subalgebra of this interval generated by
X̄ = {(x ∨ e) ∧ (y ∨ e) | x ∈ X}.
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Free MV -algebras - 2

Theorem

This A constructed above is the free MV -algebra over the set X̄ .

1 For any MV -algebra B and any function f : X → B, consider
the unital Abelian `-group 〈G, a〉 such that [e, a] = B.

2 Then, defining g : Y → G by g(x) = f (x), for x ∈ X , and
g(y) = a, we know that g can be extended to a
homomorphism ḡ : F → G.

3 Letting f̄ be ḡ restricted to A, we see that f̄ : A → B is a
homomorphism that extends f .
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Corollaries

Every free MV -algebra is a subalgebra of an interval in a free
Abelian `-group.

Since Z generates the variety of Abelian `-groups, we see that
the class of finite MV -chains generates the variety of
MV -algebras.

The MV -algebra [0, 1] ⊆ R generates the variety of
MV -algebras.
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Projective MV -algebras

Theorem

If 〈G, a〉 is the unital Abelian `-group corresponding to a projective
MV -algebra A, then G is projective (as an Abelian `-group).

1 Assume that there are homomorphisms f : G → H and
surjective g : K → H.

2 Then, restricting to the intervals, we get homomorphisms
f ′ : A → [e, f (a)] and surjective g ′ : [e, b] → [e, f (a)].

3 Since A is projective, there is a homomorphism k ′ : A → [e, b]
such that g ′ ◦ k ′ = f ′.

4 Extending k ′ to k : G → K, we see that g ◦ k = f .
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Free Negative Cones

Let F be the free Abelian `-group over X .

Consider the subalgebra generated by X− = {x ∧ e | x ∈ X}
in F−.

As in the previous situation, this algebra is the free algebra
over X− in the variety A− of negative cones of Abelian
`-groups.
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Baker-Beynon-McNaughton-type Theorem

Theorem

For any natural number n, F(n), the n-generated free algebra in
A−, is a subalgebra of (R−)(R

−)n . In particular, the functions that
make up F(n) are precisely the continuous, piecewise-linear
functions with integer coefficients.

1 We will first use a similar result about the free n-generated
Abelian `-group (Baker-Beynon Theorem).

2 Then, by the previous slide, we know that F(n) is generated
by the π−i , where πi is the i-th projection of Rn.

3 Lastly, one can show that every continuous, piecewise-linear
function with integer coefficients from (R−)n to R− is in the
subalgebra generated by the π−i .
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Algebras Induced by a Unary Term - 1

Consider a variety V in signature L. Let τ be a unary L-term.
Also, fix L′ ⊆ L.

For an algebra A ∈ V, define Aτ = {τ(a) | a ∈ A}. Also, for
any operation f ∈ L′, define fτ on Aτ by

fτ (x1, ..., xn) = τA(f A(x1, ..., xn)), for x1, ..., xn ∈ Aτ .

Consider the class W of subalgebras of algebras of V induced
by τ .

Consider the functor Λ that sends an algebra A ∈ V to its
induced algebra Aτ ∈ W.
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Algebras Induced by a Unary Term - 2

Theorem

Let Λ : V → W be the functor corresponding to the idempotent
term τ . Also, assume that W contains a non-trivial algebra. Then,
for any cardinal κ, FW(κ) is an L′-subalgebra of Λ(FV(κ)).
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Overview

It can be shown that the Mundici functor Γ induces a lattice
isomorphism between the lattice of equationally-defined
subclasses of unital Abelian `-groups and the subvariety
lattice of MV.

Alternatively, we could consider actual subvarieties of pA, the
variety of positively-pointed Abelian `-groups. For such a
subvariety W, it can be easily shown that Γ[W] is a subvariety
of MV.

Let τ(V) be the class of algebras in pA that Γ maps into V.
Let σ(V) be the variety generated by the unital
correspondents of the algebras in V.

Then, to each variety V of MV-algebras, there is an interval
[σ(V), τ(V)] in the subvariety lattice of pA consisting of all of
its subvarieties that Γ maps exactly to V.
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Diagram
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Figure: The subvariety lattices of pA and MV.
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1-1 Correspondence

Theorem

If V is a non-trivial variety of MV -algebras, then τ(V) = σ(V).
That is, there is exactly one subvariety of pA that maps via Γ to V.

Lemma

For any totally-ordered Abelian `-group G and a > e, 〈G, a〉 is in
the variety generated by 〈H, a〉, where H is the convex subalgebra
of G generated by a.

Theorem

The functor Γ induces a lattice isomorphism between the
subvariety lattice of pA (excluding the trivial variety) and the
subvariety lattice of MV.
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