◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algebras Induced by a Unary Term

William Young

Vanderbilt University

ManyVal '12, Salerno, Italy, July 7, 2012

 Construct free *MV*-algebras from free Abelian *l*-groups, via the Mundici functor Γ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- Construct free MV-algebras from free Abelian ℓ -groups, via the Mundici functor Γ
- Construct free negative cones from free Abelian *l*-groups, via the negative cone functor

(日)、(型)、(E)、(E)、(E)、(Q)

Outline

- Construct free MV-algebras from free Abelian ℓ -groups, via the Mundici functor Γ
- **②** Construct free negative cones from free Abelian ℓ -groups, via the negative cone functor
- Generalize the previous situations to algebras induced by a unary term

(日)、(型)、(E)、(E)、(E)、(Q)

Outline

- Construct free MV-algebras from free Abelian ℓ -groups, via the Mundici functor Γ
- **②** Construct free negative cones from free Abelian ℓ -groups, via the negative cone functor
- Generalize the previous situations to algebras induced by a unary term
- Investigate the subvariety lattice of *pA*, the variety of positively-pointed Abelian *l*-groups

(ロ)、(型)、(E)、(E)、 E) の(の)

Mundici Functor

• Let $\langle \mathbf{G}, a \rangle$ be an Abelian ℓ -group with distinguished element a.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mundici Functor

- Let $\langle \mathbf{G}, a \rangle$ be an Abelian ℓ -group with distinguished element a.
- Let Γ(⟨G, a⟩) be the MV-algebra formed on the interval [e, a ∨ e].

Mundici Functor

- Let $\langle \mathbf{G}, a \rangle$ be an Abelian ℓ -group with distinguished element a.
- Let Γ(⟨G, a⟩) be the MV-algebra formed on the interval [e, a ∨ e].
- $\bullet\,$ We observe that Γ is a straight-forward generalization of the Mundici functor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Free MV-algebras - 1

• We wish to use this functor to construct free MV-algebras from free Abelian ℓ -groups.

- We wish to use this functor to construct free MV-algebras from free Abelian ℓ -groups.
- Let X be any set. Let $Y = X \cup \{y\}$, where $y \notin X$.

(日)、(型)、(E)、(E)、(E)、(Q)

- We wish to use this functor to construct free *MV*-algebras from free Abelian ℓ-groups.
- Let X be any set. Let $Y = X \cup \{y\}$, where $y \notin X$.
- Let **F** be the free Abelian ℓ -group over Y.

(日)、(型)、(E)、(E)、(E)、(Q)

- We wish to use this functor to construct free *MV*-algebras from free Abelian ℓ-groups.
- Let X be any set. Let $Y = X \cup \{y\}$, where $y \notin X$.
- Let **F** be the free Abelian ℓ -group over Y.
- Consider the interval $[e, y \lor e]$ in **F**.

- We wish to use this functor to construct free *MV*-algebras from free Abelian ℓ-groups.
- Let X be any set. Let $Y = X \cup \{y\}$, where $y \notin X$.
- Let **F** be the free Abelian ℓ -group over Y.
- Consider the interval $[e, y \lor e]$ in **F**.
- Let **A** be the *MV*-subalgebra of this interval generated by $\bar{X} = \{(x \lor e) \land (y \lor e) \mid x \in X\}.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Free *MV*-algebras - 2

Theorem

This **A** constructed above is the free MV-algebra over the set \bar{X} .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Free *MV*-algebras - 2

Theorem

This **A** constructed above is the free MV-algebra over the set \overline{X} .

For any *MV*-algebra **B** and any function *f* : *X* → *B*, consider the unital Abelian *l*-group (**G**, *a*) such that [*e*, *a*] = **B**.

Free *MV*-algebras - 2

Theorem

This **A** constructed above is the free MV-algebra over the set \overline{X} .

- For any *MV*-algebra **B** and any function *f* : *X* → *B*, consider the unital Abelian *l*-group (**G**, *a*) such that [*e*, *a*] = **B**.
- Then, defining g : Y → G by g(x) = f(x), for x ∈ X, and g(y) = a, we know that g can be extended to a homomorphism ḡ : F → G.

Free *MV*-algebras - 2

Theorem

This **A** constructed above is the free MV-algebra over the set \overline{X} .

- For any *MV*-algebra **B** and any function *f* : *X* → *B*, consider the unital Abelian *l*-group (**G**, *a*) such that [*e*, *a*] = **B**.
- Then, defining g : Y → G by g(x) = f(x), for x ∈ X, and g(y) = a, we know that g can be extended to a homomorphism ḡ : F → G.
- **③** Letting \overline{f} be \overline{g} restricted to A, we see that $\overline{f} : \mathbf{A} \to \mathbf{B}$ is a homomorphism that extends f.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Every free *MV*-algebra is a subalgebra of an interval in a free Abelian ℓ-group.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollaries

- Every free *MV*-algebra is a subalgebra of an interval in a free Abelian ℓ-group.
- Since Z generates the variety of Abelian ℓ-groups, we see that the class of finite MV-chains generates the variety of MV-algebras.

Corollaries

- Every free *MV*-algebra is a subalgebra of an interval in a free Abelian ℓ-group.
- Since Z generates the variety of Abelian ℓ-groups, we see that the class of finite MV-chains generates the variety of MV-algebras.
- The *MV*-algebra [0,1] ⊆ ℝ generates the variety of *MV*-algebras.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Projective MV-algebras

Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Projective *MV*-algebras

Theorem

If $\langle \mathbf{G}, a \rangle$ is the unital Abelian ℓ -group corresponding to a projective MV-algebra \mathbf{A} , then \mathbf{G} is projective (as an Abelian ℓ -group).

 Assume that there are homomorphisms f : G → H and surjective g : K → H.

Projective *MV*-algebras

Theorem

- Assume that there are homomorphisms f : G → H and surjective g : K → H.
- ② Then, restricting to the intervals, we get homomorphisms $f' : \mathbf{A} \rightarrow [e, f(a)]$ and surjective $g' : [e, b] \rightarrow [e, f(a)]$.

Projective *MV*-algebras

Theorem

- Assume that there are homomorphisms f : G → H and surjective g : K → H.
- ② Then, restricting to the intervals, we get homomorphisms $f' : \mathbf{A} \rightarrow [e, f(a)]$ and surjective $g' : [e, b] \rightarrow [e, f(a)]$.
- Since **A** is projective, there is a homomorphism $k' : \mathbf{A} \to [e, b]$ such that $g' \circ k' = f'$.

Projective *MV*-algebras

Theorem

- Assume that there are homomorphisms f : G → H and surjective g : K → H.
- ② Then, restricting to the intervals, we get homomorphisms $f' : \mathbf{A} \rightarrow [e, f(a)]$ and surjective $g' : [e, b] \rightarrow [e, f(a)]$.
- Since **A** is projective, there is a homomorphism $k' : \mathbf{A} \to [e, b]$ such that $g' \circ k' = f'$.
- **③** Extending k' to $k : \mathbf{G} \to \mathbf{K}$, we see that $g \circ k = f$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Free Negative Cones

• Let **F** be the free Abelian ℓ -group over X.

Free Negative Cones

- Let **F** be the free Abelian ℓ -group over X.
- Consider the subalgebra generated by X[−] = {x ∧ e | x ∈ X} in F[−].

Free Negative Cones

- Let **F** be the free Abelian ℓ -group over X.
- Consider the subalgebra generated by X[−] = {x ∧ e | x ∈ X} in F[−].
- As in the previous situation, this algebra is the free algebra over X⁻ in the variety A⁻ of negative cones of Abelian *l*-groups.

Baker-Beynon-McNaughton-type Theorem

Theore<u>m</u>

For any natural number n, $\mathbf{F}(n)$, the n-generated free algebra in \mathcal{A}^- , is a subalgebra of $(\mathbb{R}^-)^{(\mathbb{R}^-)^n}$. In particular, the functions that make up $\mathbf{F}(n)$ are precisely the continuous, piecewise-linear functions with integer coefficients.

Baker-Beynon-McNaughton-type Theorem

Theorem

For any natural number n, $\mathbf{F}(n)$, the n-generated free algebra in \mathcal{A}^- , is a subalgebra of $(\mathbb{R}^-)^{(\mathbb{R}^-)^n}$. In particular, the functions that make up $\mathbf{F}(n)$ are precisely the continuous, piecewise-linear functions with integer coefficients.

We will first use a similar result about the free *n*-generated Abelian ℓ-group (Baker-Beynon Theorem).

Baker-Beynon-McNaughton-type Theorem

Theorem

For any natural number n, $\mathbf{F}(n)$, the n-generated free algebra in \mathcal{A}^- , is a subalgebra of $(\mathbb{R}^-)^{(\mathbb{R}^-)^n}$. In particular, the functions that make up $\mathbf{F}(n)$ are precisely the continuous, piecewise-linear functions with integer coefficients.

- We will first use a similar result about the free *n*-generated Abelian ℓ-group (Baker-Beynon Theorem).
- **②** Then, by the previous slide, we know that $\mathbf{F}(n)$ is generated by the π_i^- , where π_i is the *i*-th projection of \mathbb{R}^n .

Baker-Beynon-McNaughton-type Theorem

Theorem

For any natural number n, $\mathbf{F}(n)$, the n-generated free algebra in \mathcal{A}^- , is a subalgebra of $(\mathbb{R}^-)^{(\mathbb{R}^-)^n}$. In particular, the functions that make up $\mathbf{F}(n)$ are precisely the continuous, piecewise-linear functions with integer coefficients.

- We will first use a similar result about the free *n*-generated Abelian ℓ-group (Baker-Beynon Theorem).
- **②** Then, by the previous slide, we know that $\mathbf{F}(n)$ is generated by the π_i^- , where π_i is the *i*-th projection of \mathbb{R}^n .
- Solution State Control (R[−])ⁿ to R[−] is in the subalgebra generated by the π_i[−].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algebras Induced by a Unary Term - 1

• Consider a variety \mathcal{V} in signature L. Let τ be a unary L-term. Also, fix $L' \subseteq L$.

Algebras Induced by a Unary Term - 1

- Consider a variety \mathcal{V} in signature L. Let τ be a unary L-term. Also, fix $L' \subseteq L$.
- For an algebra A ∈ V, define A_τ = {τ(a) | a ∈ A}. Also, for any operation f ∈ L', define f_τ on A_τ by

$$f_{\tau}(x_1,...,x_n) = \tau^{\mathbf{A}}(f^{\mathbf{A}}(x_1,...,x_n)), \text{ for } x_1,...,x_n \in A_{\tau}.$$

Algebras Induced by a Unary Term - 1

- Consider a variety \mathcal{V} in signature L. Let τ be a unary L-term. Also, fix $L' \subseteq L$.
- For an algebra A ∈ V, define A_τ = {τ(a) | a ∈ A}. Also, for any operation f ∈ L', define f_τ on A_τ by

$$f_{ au}(x_1,...,x_n) = au^{\mathbf{A}}(f^{\mathbf{A}}(x_1,...,x_n)), ext{ for } x_1,...,x_n \in A_{ au}.$$

• Consider the class ${\mathcal W}$ of subalgebras of algebras of ${\mathcal V}$ induced by $\tau.$

Algebras Induced by a Unary Term - 1

- Consider a variety \mathcal{V} in signature L. Let τ be a unary L-term. Also, fix $L' \subseteq L$.
- For an algebra A ∈ V, define A_τ = {τ(a) | a ∈ A}. Also, for any operation f ∈ L', define f_τ on A_τ by

$$f_{\tau}(x_1,...,x_n) = \tau^{\mathbf{A}}(f^{\mathbf{A}}(x_1,...,x_n)), \text{ for } x_1,...,x_n \in A_{\tau}.$$

- Consider the class ${\mathcal W}$ of subalgebras of algebras of ${\mathcal V}$ induced by $\tau.$
- Consider the functor Λ that sends an algebra A ∈ V to its induced algebra A_τ ∈ W.

Algebras Induced by a Unary Term - 2

Theorem

Let $\Lambda : \mathcal{V} \to \mathcal{W}$ be the functor corresponding to the idempotent term τ . Also, assume that \mathcal{W} contains a non-trivial algebra. Then, for any cardinal κ , $\mathbf{F}_{\mathcal{W}}(\kappa)$ is an L'-subalgebra of $\Lambda(\mathbf{F}_{\mathcal{V}}(\kappa))$.

Overview

 It can be shown that the Mundici functor Γ induces a lattice isomorphism between the lattice of equationally-defined subclasses of unital Abelian ℓ-groups and the subvariety lattice of MV.

Overview

- It can be shown that the Mundici functor Γ induces a lattice isomorphism between the lattice of equationally-defined subclasses of unital Abelian ℓ-groups and the subvariety lattice of MV.
- Alternatively, we could consider actual subvarieties of *pA*, the variety of positively-pointed Abelian ℓ-groups. For such a subvariety *W*, it can be easily shown that Γ[*W*] is a subvariety of *MV*.

Overview

- It can be shown that the Mundici functor Γ induces a lattice isomorphism between the lattice of equationally-defined subclasses of unital Abelian *l*-groups and the subvariety lattice of *MV*.
- Alternatively, we could consider actual subvarieties of pA, the variety of positively-pointed Abelian ℓ-groups. For such a subvariety W, it can be easily shown that Γ[W] is a subvariety of MV.
- Let τ(V) be the class of algebras in pA that Γ maps into V.
 Let σ(V) be the variety generated by the unital correspondents of the algebras in V.

Overview

- It can be shown that the Mundici functor Γ induces a lattice isomorphism between the lattice of equationally-defined subclasses of unital Abelian ℓ-groups and the subvariety lattice of MV.
- Alternatively, we could consider actual subvarieties of pA, the variety of positively-pointed Abelian ℓ-groups. For such a subvariety W, it can be easily shown that Γ[W] is a subvariety of MV.
- Let τ(V) be the class of algebras in pA that Γ maps into V.
 Let σ(V) be the variety generated by the unital correspondents of the algebras in V.
- Then, to each variety V of MV-algebras, there is an interval [σ(V), τ(V)] in the subvariety lattice of pA consisting of all of its subvarieties that Γ maps exactly to V.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Figure: The subvariety lattices of pA and MV.

1-1 Correspondence

Theorem

If \mathcal{V} is a non-trivial variety of MV-algebras, then $\tau(\mathcal{V}) = \sigma(\mathcal{V})$. That is, there is exactly one subvariety of $p\mathcal{A}$ that maps via Γ to \mathcal{V} .

1-1 Correspondence

Theorem

If \mathcal{V} is a non-trivial variety of MV-algebras, then $\tau(\mathcal{V}) = \sigma(\mathcal{V})$. That is, there is exactly one subvariety of $p\mathcal{A}$ that maps via Γ to \mathcal{V} .

Lemma

For any totally-ordered Abelian ℓ -group **G** and a > e, $\langle G, a \rangle$ is in the variety generated by $\langle H, a \rangle$, where **H** is the convex subalgebra of **G** generated by a.

1-1 Correspondence

Theorem

If \mathcal{V} is a non-trivial variety of MV-algebras, then $\tau(\mathcal{V}) = \sigma(\mathcal{V})$. That is, there is exactly one subvariety of $p\mathcal{A}$ that maps via Γ to \mathcal{V} .

Lemma

For any totally-ordered Abelian ℓ -group **G** and a > e, $\langle G, a \rangle$ is in the variety generated by $\langle H, a \rangle$, where **H** is the convex subalgebra of **G** generated by a.

Theorem

The functor Γ induces a lattice isomorphism between the subvariety lattice of pA (excluding the trivial variety) and the subvariety lattice of \mathcal{MV} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank You!