IMPERFECT INFORMATION

- Imperfect information
- Conflicting - mutually contradictory sources
- Missing - incomplete sources
- Uncertain - sources of limited reliability
- Multivalued logics - provide one of the most capable approaches to handle all the 3 aspects in imperfect information

Bilattices as multivalued logics

Definition A bilattice is a triplet $\left\langle B, \leq_{t}, \leq_{i}\right\rangle$ in which the set B forms a complete lattice with each of the orders, called the truth and information orders.

- Induced inf and sup operations: $\wedge, \vee, \otimes, \oplus$
\circ Adding negation \neg as a unary function:
- Antimonotone w.r.t. \leq_{t}
- Monotone w.r.t. \leq_{i}
- $\urcorner \mathrm{xx}=\mathrm{x}$
- $\neg(a \wedge b)=\neg a \vee \neg b \ldots \quad \neg(a \otimes b)=\neg a \otimes \neg b \ldots$
- $\wedge B=$ false $\quad \vee B=$ true
$\otimes B=\perp \quad \oplus B=\top$
- infinitely distributive bilattices => interlacing laws / monotonicity

BILATTICES - EXAMPLES

Confidence-Doubt logic
$L^{c D}=[0,1]^{2},\left(L^{c D}, \leq_{i}, \leq_{i}\right)$

$\langle c, d\rangle$ confidence, doubt
$\langle x, y\rangle \wedge\langle z, w\rangle=\langle\min (x, z), \max (y, w)\rangle$
$\langle x, y\rangle \vee\langle z, w\rangle=\langle\max (x, z), \min (y, w)\rangle$

$\langle x, y\rangle \otimes\langle z, w\rangle=\langle\min (x, z), \min (y, w)\rangle$
$\langle x, y\rangle \oplus\langle z, w\rangle=\langle\max (x, z), \max (y, w)\rangle$
$\neg\langle x, y\rangle=\langle y, x\rangle$
Belnap's four valued logic
Experts' support bilattice $2^{\text {ExpSet }} \times 2^{\text {ExpSet }}$

DEFINITIONS

Formula: an expression built up of literals and elements of bilattice B using $\wedge, \vee, \otimes, \oplus, \neg, \exists, \forall$
Rule: a construct of the form $H\left(v_{1}, \ldots, v_{n}\right) \leftarrow F\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right)$
It is assumed that the free variables from body (right) appear in the head (left)
Extended Program: a finite set of rules, assuming that no predicate letter appears in the head of more than one rule (no real restriction - see Clark's completion)
Interpretations: I: $H B_{P} \rightarrow B \quad$ Int $_{P}=B^{H B_{P}}$
Orders on interpretations:

$$
\begin{aligned}
& I \leq_{t} J \text { if } I(A) \leq_{t} J(A) \quad I \leq_{i} J \text { if } I(A) \leq_{i} J(A) \\
& I \leq_{p} J \text { if } I(A) \neq \perp \text { then } I(A)=J(A)
\end{aligned}
$$

for any ground atom A

FORMULA EVALUATION

Closed formula evaluation:

$$
\begin{array}{ll}
I(X \wedge Y)=I(X) \wedge I(Y) & I(X \vee Y)=I(X) \vee I(Y) \\
I(X \otimes Y)=I(X) \otimes I(Y) & I(X \oplus Y)=I(X) \oplus I(Y) \\
I(\neg X)=\neg I(X) & \\
I(\exists x F(x))=\vee_{s \in G T} I(F(s) & I(\forall x F(x))=\wedge_{s \in G T} I(F(s)
\end{array}
$$

Ultimate evaluation:
The ultimate evaluation $U(I, C)$ of a closed formula C w.r.t.
I is a logical value a defined by:
if $J(C)=I(C)$ for any interpretation $J \geq_{p} I$ then $\alpha=I(C)$, else $\alpha=\perp$
Proposition 1 If $I(C)=I_{\mathrm{T}}(C)$ then $U(I, C)=I(C)$, else $U(I, C)=\perp$

REASONING WITH IMPERFECT INFORMATION IN BILATTICES

Two approaches to infer information:

1. Applying the rules
2. Completing missing information with default information

- Conventional CWA: negative information is advantaged. The value false plays a special role as logical value by default
- OWA: Any logical value can be assigned by default Default Interpretation D
- Particular operators are defined for (1), (2)

Program operators and properties

Production operator $\quad \Phi_{P}:$ Int $_{P} \rightarrow$ Int $_{P}$ $\Phi_{P}(I)(A)=U(I, C)$ if there is $A \leftarrow C \in P$, else $\Phi_{P}(I)=\perp$
Proposition 2: Φ_{P} is monotone w.r.t. \leq_{i} and \leq_{p}.

Revision operator $\operatorname{Re} v: \operatorname{Int}_{P} \times \operatorname{Int}_{P} \rightarrow \operatorname{Int}_{P}$ Revises interpretation X via interpretation J :
$\operatorname{Re} v(X, J)=X^{\prime}$ s.t. $X^{\prime}(A)=X(A)$ for any ground atom A for which either $J(A)=\perp$ or $X(A)=J(A)$, and $X^{\prime}(A)=\perp$ for any other ground atom.

PROGRAM OPERATORS AND PROPERTIES

Refining operator $\Psi_{P}: \operatorname{Int}_{P} \times \operatorname{Int}_{P} \rightarrow \operatorname{Int}_{P}$

$$
\Psi_{P}(X, I)=\operatorname{Re} v\left(X, \Phi_{P}(\operatorname{Re} v(X, I) \oplus I)\right)
$$

Proposition 3

Let I be an interpretation, and \mathcal{D} a default interpretation. ($\lambda X) \Psi_{P}(X, I)$ has a greatest fixpoint below D w.r.t. \leq_{p} that can be obtained as limit of the decreasing sequence w.r.t. the same order, defined by: $X_{0}=0: X_{n}=\Psi_{P}\left(X_{n-1}, I\right)$ if n is a successor ordinal, and $X_{n}=\inf _{S_{p}, m<n} X_{m}$ if n is a limit ordinal.

The limit $D e f_{P}^{D}(I)$ is the default information to complete missing information

Program operators and properties. Fixpoint semantics

Integrating Operator $\quad \Gamma_{P}:$ Int $_{P} \rightarrow$ Int $_{P}$

$$
\Gamma_{P}(I)=\Phi_{P}(I) \oplus D e f_{P}^{D}(I)
$$

Theorem $1 \Gamma_{P}$ is monotone w.r.t. \leq_{p} order and has a least fixpoint given by the limit of the increasing sequence:

$$
\begin{aligned}
& I_{0}=\text { Const }_{\perp} ; \quad I_{n}=\Gamma_{P}\left(I_{n-1}\right) \text { for a successor ordinal } \mathrm{n} ; \\
& I_{n}=\sup _{\leq_{p}, m<n} I_{m} \text { for a limit ordinal } \mathrm{n}
\end{aligned}
$$

The fixpoint semantics of P is defined as the limit of the sequence from Theorem 1.

Theorem 2 The fixpoint semantics s of P satisfies $\Phi_{P}(s)=s$

RELATION TO OTHER SEMANTICS

Theorem 3 Let P be an extended program and mstable (P) be is multivalued stable model as defined by Fitting, which is the smallest in the information/ knowledge order. Then the fixpoint semantics of P w.r.t. the default interpretation that assigns the value false to any ground atom coincides with $m s t a b l e(P)$.
Theorem 4 Given an extended program P, for any logical value a from the underlying bilattice, the a-fix model of P as previously defined by us, coincides with the fixpoint semantics of P w.r.t. the default interpretation that uniformly assigns the value a to any ground atom.
Corollary 1 The fixpoint semantics captures the well-founded semantics, Przymusinki's three-valued stable semantics, and the Kripke-Kleene semantics.

Computational aspects

Proposition 4 If $\operatorname{Values}(P)$ is the set of logical values appearing in P to which one adds the four extreme values of the bilattice, then $\left\langle\operatorname{Closure}(\operatorname{Values}(P)), \leq_{t}, \leq_{i}\right\rangle$ is a finite bilattice.

Theorem 5 If P is function free then the computation of its fixpoint semantics finishes in a finite number of steps. Moreover, the complexity class is PTIME.

Computational aspects

function $\operatorname{Rev}(Y, Z)$
$W:=Y$;
for every pair $(A, v 1) \in W$
if $v 1 \neq \perp$ and $(A, v 2) \in Z$ and $v 2 \neq \perp$ and $v 2 \neq v 1$
then replace $(A, v 1)$ with (A, \perp) in W;
return W;
function $\operatorname{Phi}(P, I)$
9. $I_{\mathrm{T}}:=I$;
10. $J=\emptyset$;
11. for any pair $(A, v) \in I_{\mathrm{T}}$ bottom up approach to computing the fixpoint semantics

Possible extension of the approach

- Considering sets of logical values assigned to atoms instead of a punctual logical value.

$$
\operatorname{Int}_{P}=\left(2^{B}\right)^{H B_{P}}
$$

- Apart from the 3 orders seen so far on Int_{P}, there will be a $4^{\text {th }}$ order related the idea of imprecision.

APPLICATIONS

- Imperfect information integration
- Uncertain knowledge bases

Imperfect Information Integration

Example: integrating imperfect information in medical diagnosing: does patient P have condition C ?

Diagnosis $(\mathrm{P}, \mathrm{C}) \leftarrow \operatorname{Tests}(\mathrm{P}, \mathrm{C}) \wedge$ MDsSuspect (P, C) Tests $(\mathrm{P}, \mathrm{C}) \leftarrow \operatorname{Test1}(\mathrm{P}, \mathrm{C}) \oplus \operatorname{Test2}(\mathrm{P}, \mathrm{C})$ MDsSuspect $(\mathrm{P}, \mathrm{C}) \leftarrow$ MD1Suspects $(\mathrm{P}, \mathrm{C}) \otimes$ MD2Suspects (P, C)

Uncertain Knowledge bases

An Uncertain Knowledge Base is a pair $K B=(F, R)$ in the context of a bilattice as underlying logic

- F set of Facts or stored information. A fact is a pair of an atom and a logical value.
- R set of Rules or the inference mechanism
- The content of KB is expressed by the fixpoint semantics of the associated extended program - facts are transformed in rules that take priority over the rules in R

Data Complexity: the time complexity to answer an atomic query w.r.t. the size of F

Theorem 6 The data complexity for KB as defined above is

Uncertain Knowledge Bases

- A query can be defined as being a rule
- A query Q is evaluated by being integrated in the extended program associated to the KB
- Query optimisation - an essential topic in Computer Science
- We are currently studying the problems of query containment and equivalence, and their complexity classes in such a framework
- The framework is restricted to non recursive sets of rules (due to non decidability problem when recursion is allowed)
- Established result: Equivalence of non-recursive queries on \wedge, \otimes is decidable: NP-complete and Π_{P}^{2}-complete

Thank you!

