FIXPOINT SEMANTICS FOR EXTENDED LOGIC PROGRAMS ON BILATTICE BASED MULTIVALUED LOGICS AND APPLICATIONS

Daniel Stamate and Ida Pu Goldsmiths, University of London

IMPERFECT INFORMATION

• Imperfect information

- Conflicting mutually contradictory sources
- Missing incomplete sources
- Uncertain sources of limited reliability
- Multivalued logics provide one of the most capable approaches to handle all the 3 aspects in imperfect information

BILATTICES AS MULTIVALUED LOGICS

- Definition A bilattice is a triplet $\langle B, \leq_t, \leq_i \rangle$ in which the set *B* forms a complete lattice with each of the orders, called the truth and information orders.
- Induced inf and sup operations: $\land,\lor,\otimes,\oplus$
- Adding negation ¬ as a unary function:
 - Antimonotone w.r.t. \leq_t
 - Monotone w.r.t. \leq_i
 - ¬¬x=x

•
$$\neg (a \land b) = \neg a \lor \neg b \dots \neg (a \otimes b) = \neg a \otimes \neg b \dots$$

- $\wedge B = false$ $\vee B = true$ $\otimes B = \bot$ $\oplus B = \top$
- infinitely distributive bilattices =>
 interlacing laws / monotonicity

BILATTICES — EXAMPLES Confidence-Doubt logic

 $\leq i$

 $L^{CD} = [0,1]^2, (L^{CD}, \leq_t, \leq_i)$ $\langle c, d \rangle \quad \text{confidence, doubt}$ $\langle x, y \rangle \land \langle z, w \rangle = \langle \min(x, z), \max(y, w) \rangle$ $\langle x, y \rangle \lor \langle z, w \rangle = \langle \max(x, z), \min(y, w) \rangle$ $\langle x, y \rangle \oplus \langle z, w \rangle = \langle \min(x, z), \min(y, w) \rangle$ $\langle x, y \rangle \oplus \langle z, w \rangle = \langle \max(x, z), \max(y, w) \rangle$ $\neg \langle x, y \rangle = \langle y, x \rangle$

Belnap's four valued logic

Experts' support bilattice $2^{ExpSet} \times 2^{ExpSet}$

DEFINITIONS

Formula: an expression built up of literals and elements of bilattice *B* using $\land,\lor,\otimes,\oplus,\neg,\exists,\forall$

Rule: a construct of the form $H(v_1,...,v_n) \leftarrow F(v_1',...,v_m')$

It is assumed that the free variables from body (right) appear in the head (left)

Extended Program: a finite set of rules, assuming that no predicate letter appears in the head of more than one rule (no real restriction – see Clark's completion)

Interpretations: $I: HB_P \to B$ $Int_P = B^{HB_P}$

Orders on interpretations:

 $I \leq_{t} J \text{ if } I(A) \leq_{t} J(A) \qquad I \leq_{i} J \text{ if } I(A) \leq_{i} J(A)$ $I \leq_{p} J \text{ if } I(A) \neq \perp \text{ then } I(A) = J(A)$ for any ground atom A

5

FORMULA EVALUATION

Closed formula evaluation:

 $I(X \land Y) = I(X) \land I(Y) \qquad I(X \lor Y) = I(X) \lor I(Y)$ $I(X \otimes Y) = I(X) \otimes I(Y) \qquad I(X \oplus Y) = I(X) \oplus I(Y)$ $I(\neg X) = \neg I(X)$ $I(\exists xF(x)) = \lor_{s \in GT} I(F(s) \qquad I(\forall xF(x)) = \land_{s \in GT} I(F(s))$

Ultimate evaluation:

The ultimate evaluation U(I,C) of a closed formula C w.r.t. I is a logical value α defined by: if J(C)=I(C) for any interpretation $J\geq_p I$ then $\alpha=I(C)$, else $\alpha=\perp$

Proposition 1 If $I(C)=I_{T}(C)$ then U(I,C)=I(C), else $U(I,C)=\bot$

REASONING WITH IMPERFECT INFORMATION IN BILATTICES

Two approaches to infer information:

- 1. Applying the rules
- 2. Completing missing information with default information
 - Conventional CWA: negative information is advantaged. The value false plays a special role as logical value by default
 - OWA: Any logical value can be assigned by default Default Interpretation *⊅*

• Particular operators are defined for (1), (2)

PROGRAM OPERATORS AND PROPERTIES

Production operator $\Phi_p: Int_p \to Int_p$ $\Phi_p(I)(A) = U(I,C)$ if there is $A \leftarrow C \in P$, else $\Phi_p(I) = \bot$ Proposition 2: Φ_p is monotone w.r.t. \leq_i and \leq_p .

Revision operator $\operatorname{Re} v : \operatorname{Int}_P \to \operatorname{Int}_P$ Revises interpretation X via interpretation J: $\operatorname{Re} v(X, J) = X$'s.t. X'(A) = X(A) for any ground atom A for which either $J(A) = \bot$ or X(A) = J(A), and $X'(A) = \bot$ for any other ground atom.

PROGRAM OPERATORS AND PROPERTIES

Refining operator $\Psi_P : Int_P \times Int_P \to Int_P$

 $\Psi_P(X,I) = \operatorname{Re} v(X,\Phi_P(\operatorname{Re} v(X,I) \oplus I))$

Proposition 3

Let I be an interpretation, and \mathcal{D} a default interpretation. $(\lambda X)\Psi_P(X,I)$ has a greatest fixpoint below \mathcal{D} w.r.t. \leq_p that can be obtained as limit of the decreasing sequence w.r.t. the same order, defined by: $X_0 = \mathcal{D}: X_n = \Psi_P(X_{n-1},I)$ if *n* is a successor ordinal, and $X_n = \inf_{\leq_n,m < n} X_m$ if n is a limit ordinal.

The limit $Def_P^{\mathcal{D}}(I)$ is the default information to complete missing information

PROGRAM OPERATORS AND PROPERTIES. FIXPOINT SEMANTICS

Integrating Operator $\Gamma_P : Int_P \to Int_P$ $\Gamma_P(I) = \Phi_P(I) \oplus Def_P^{\mathcal{O}}(I)$

Theorem 1 Γ_p is monotone w.r.t. \leq_p order and has a least fixpoint given by the limit of the increasing sequence:

 $I_0 = Const_{\perp}; \quad I_n = \Gamma_P(I_{n-1}) \text{ for a successor ordinal n};$ $I_n = \sup_{\leq_p, m < n} I_m \text{ for a limit ordinal n}$

The fixpoint semantics of P is defined as the limit of the sequence from Theorem 1.

Theorem 2 The fixpoint semantics s of P satisfies $\Phi_P(s) = s$ 10

RELATION TO OTHER SEMANTICS

- **Theorem 3** Let *P* be an extended program and *mstable(P)* be is multivalued stable model as defined by Fitting, which is the smallest in the information/ knowledge order. Then the fixpoint semantics of *P* w.r.t. the default interpretation that assigns the value *false* to any ground atom coincides with mstable(P).
- Theorem 4 Given an extended program P, for any logical value α from the underlying bilattice, the α -fix model of Pas previously defined by us, coincides with the fixpoint semantics of P w.r.t. the default interpretation that uniformly assigns the value α to any ground atom.
- Corollary 1 The fixpoint semantics captures the well-founded semantics, Przymusinki's three-valued stable semantics, and the Kripke-Kleene semantics.

COMPUTATIONAL ASPECTS

Proposition 4 If *Values(P)* is the set of logical values appearing in *P* to which one adds the four extreme values of the bilattice, then $\langle Closure(Values(P)), \leq_t, \leq_i \rangle$ is a finite bilattice.

Theorem 5 If *P* is function free then the computation of its fixpoint semantics finishes in a finite number of steps. Moreover, the complexity class is PTIME.

COMPUTATIONAL ASPECTS

Algorithm based on a bottom up approach to computing the fixpoint semantics

```
1. function Rev(Y, Z)
2. W := Y:
    for every pair (A, v1) \in W
3.
       if v1 \neq \bot and (A, v2) \in Z and v2 \neq \bot and
5.
       v2 \neq v1
            then replace (A, v1) with (A, \bot) in W;
6.
return W;

 function Phi(P,I)

9. I_T := I;
10. J = \emptyset;
11. for any pair (A, v) \in I_{\top}
12.
        if v = \bot then
            replace (A, v) with (A, T) in I_T;
13.
14. for any rule A \leftarrow B in P
         if I(B) = I_{\top}(B) then insert (A, I(B)) in J
15.
            else insert (A, \bot) in J;
16.

    for any atom A not appearing in J insert (A, ⊥) in J;

return J;

    function FixpointSemantics(P,D)

20. I_2 := Const_{\perp};
repeat
22
        I1 := I2:
        J_2 := \mathcal{D};
23.
24.
        repeat
25.
             J1 := J2;
             J2 := Rev(J1, Phi(P, Rev(J1, I1) \oplus I1))
26.
        until J1 = J2;
27.
        I2 := Phi(P, I1) \oplus J1
28.

 until I1 = I2;

 return 11.
```

13

POSSIBLE EXTENSION OF THE APPROACH

• Considering sets of logical values assigned to atoms instead of a punctual logical value.

$$Int_P = (2^B)^{HB_P}$$

• Apart from the 3 orders seen so far on Int_P , there will be a 4th order related the idea of imprecision.

APPLICATIONS

Imperfect information integrationUncertain knowledge bases

IMPERFECT INFORMATION INTEGRATION

Example:

integrating imperfect information in medical diagnosing: does patient P have condition C?

 $\begin{array}{l} Diagnosis(P,C) \leftarrow Tests(P,C) \land MDsSuspect(P,C) \\ Tests (P,C) \leftarrow Test1(P,C) \oplus Test2(P,C) \\ MDsSuspect(P,C) \leftarrow MD1Suspects(P,C) \otimes MD2Suspects(P,C) \end{array}$

UNCERTAIN KNOWLEDGE BASES

An Uncertain Knowledge Base is a pair *KB=(F, R)* in the context of a bilattice as underlying logic

- *F* set of Facts or stored information. A fact is a pair of an atom and a logical value.
- *R* set of Rules or the inference mechanism
- The content of KB is expressed by the fixpoint semantics of the associated extended program facts are transformed in rules that take priority over the rules in R

Data Complexity: the time complexity to answer an atomic query w.r.t. the size of F

Theorem 6 The data complexity for KB as defined above is PTIME

UNCERTAIN KNOWLEDGE BASES

- A query can be defined as being a rule
- A query Q is evaluated by being integrated in the extended program associated to the KB
- Query optimisation an essential topic in Computer Science
- We are currently studying the problems of query containment and equivalence, and their complexity classes in such a framework
- The framework is restricted to non recursive sets of rules (due to non decidability problem when recursion is allowed)
- Established result: Equivalence of non-recursive queries on \wedge, \otimes is decidable: NP-complete and \prod_{P}^{2} -complete 18

Thank you!