# Linear Algebra Theorems for Fuzzy Relation Equations 

Irina Perfilieva

Institute for Research and Applications of Fuzzy Modeling
University of Ostrava, 30. dubna 22, 70103 Ostrava 1, Czech Republic
Irina.Perfilieva@osu.cz

## ManyVal

Jujy 4-7, 2012
$\square$

## Outline

## (1) Introduction

(2) Algebras of Scalars
(3) Algebra of Matrices

- Special Matrices
- Permanent and Bideterminant
- Ranks of Matrix

4 System of Linear-like Equations
(5) Cramer Rule

## Outline

## (1) Introduction

2) Algebras of Scalars
(3) Algebra of Matrices

Special Matrices

- Permanent and Bideterminant
- Ranks of Matrix
(4) System of Linear-like Equations
(5) Cramer Rule


## Introduction

## Dialogues with Antonio Di Nola



Available online at www.sciencedirect.com

Fuzzy Sets and Systems 158 (2007) 1-22

## FUZ2Y <br> sets and systems

www.elsevier.com/locate/fss

# Algebraic analysis of fuzzy systems ${ }^{\text {T}}$ 

Antonio Di Nola ${ }^{\text {a }}$, Ada Lettieri ${ }^{\text {b }}$, Irina Perfilieva ${ }^{\mathrm{c}, *}$, Vilém Novák ${ }^{\text {c }}$

${ }^{\text {a }}$ Universitá di Salerno, Facoltá di Scienze, Dipt. di Matematica e Informatica, Via S. Allende, 84081 Baronissi, Salerno, Italy
${ }^{\mathrm{b}}$ Universitá di Napoli, Dipt. di Costruzioni e Metodi Matematici in Architettura, Via Monteoliveto 3, 80134 Napoli, Italy
${ }^{\text {c }}$ University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava 1, Czech Republic
Received 28 December 2004; received in revised form 4 September 2006; accepted 6 September 2006
Available online 2 October 2006

## Outline

$\square$
(2) Algebras of ScalarsAlgebra of Matrices

- Special Matrices
- Permanent and Bideterminant
- Ranks of Matrix

4) System of Linear-like Equations
(5) Cramer Rule

## Semiring

A semiring $\mathcal{R}=(R,+, \cdot, 0,1)$ is an algebra where

- $(R,+, 0)$ is a commutative monoid,
- $(R, \cdot, 1)$ is a monoid,
- for all

$$
\alpha, \beta, \gamma \in R, \quad \alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma, \quad(\beta+\gamma) \cdot \alpha=\beta \cdot \alpha+\gamma \cdot \alpha,
$$

- for all $\alpha \in R, \quad 0 \cdot \alpha=\alpha \cdot 0=0$.

A semiring is commutative if $(R, \cdot, 1)$ is a commutative monoid. A semiring is zerosumfree if $\alpha+\beta=0$ implies $\alpha=\beta=0$.

## Example

( $\mathbb{R} \cup-\infty$, max $,+,-\infty, 0$ ) - max-plus (schedule) algebra.

## Incline

## Definition

Incline is a commutative semiring $\mathcal{R}$ where for all $\alpha \in R$, $\alpha+1=1$.

In details,
$\mathcal{R}=(R,+, \cdot, 0,1)$ is an incline if

- $(R,+, 0)$ is a semilattice,
- $(R, \cdot, 1)$ is a commutative monoid,
- for all $\alpha, \beta, \gamma \in R, \quad \alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$,
- for all $\alpha, \beta \in R, \quad \alpha+\alpha \cdot \beta=\alpha$.


## Example

$(L, \vee, *, 0,1)$-semiring reduct of a residuated lattice.

## Outline


$\square$
(3) Algebra of Matrices

- Special Matrices
- Permanent and Bideterminant
- Ranks of Matrix
(4) System of Linear-like Equations
(5) Cramer Rule


## Algebra of Matrices

## Let

- $\mathcal{R}=(R,+, \cdot, 0,1)$ - semiring,
- $R^{n \times m}, n, m \geq 1$, - set of $n \times m$-matrices over $R$,
- $A, B \in R^{n \times m}, C \in R^{m \times k}$


## Operations

- $\mathbf{0}_{n \times m}$ - zero matrix, $E_{n}$ - unit square matrix,
- $(A+B)_{n \times m}=\left(a_{i j}+b_{i j}\right)$,
- $(\lambda A)_{n \times m}=\left(\lambda \cdot a_{i j}\right)$,
- $(A \cdot C)_{n \times k}=\sum_{j=1}^{m}\left(a_{i j} \cdot c_{j l}\right)$.


## Semiring of Matrices

Let

- $M_{n}(R)=R^{n \times n}, n \geq 1$, - set of square matrices over $R$.

Then

- $\left(M_{n}(R),+, \cdot, \mathbf{0}_{n \times n}, E_{n}\right)$ - semiring.


## Elementary Transformations of Matrices

$$
\text { Let } A, B \in R^{n \times m} \text {. }
$$

## Elementary transformations of rows (columns)

Addition of a row (column) multiplied by a non-zero element from $R$ to another row (column).

## Elementary Transformations of Matrices

$$
\text { Let } A, B \in R^{n \times m} \text {. }
$$

## Elementary transformations of rows (columns)

Addition of a row (column) multiplied by a non-zero element from $R$ to another row (column).

## Elementary transform $A \Rightarrow^{*} B$

$A \Rightarrow^{*} B$ - matrix $B$ is an elementary transform of $A$, if $B$ can be obtained from $A$ by a finite sequence of elementary transformations of rows (columns).

## Invertible Matrices

## Definition

A square $n \times n$ matrix $A \in M_{n}(R)$ over semiring $R$ is called right (left) invertible if there exists matrix $B \in M_{n}(R)$ such that

$$
A \cdot B=E_{n} \quad\left(B \cdot A=E_{n}\right)
$$

## Proposition (Reutanauer, Straubing, Tan)

For matrix $A \in M_{n}(R)$ where $R$ is a commutative semiring, the following statements are equivalent:

- $A$ is right invertible,
- $A$ is left invertible,
- $A$ is invertible,
- $A \cdot A^{T}$ is an invertible diagonal matrix,
- $A^{T} \cdot A$ is an invertible diagonal matrix. $\square$


## Similarity Matrices

Let $(L, \vee, *, 0,1)$ be a semiring reduct of a residuated lattice.

## Definition

A square $n \times n$ matrix $S$ over $L$ is called a similarity matrix if for all $i, j, k=1, \ldots, n$,

- $s_{i i}=1$, reflexivity
- $s_{i j}=s_{j i}$, symmetry
- $s_{i j} * s_{j k} \leq s_{i k}$, transitivity.


## Permanent and Bideterminant

## Permanent

## Definition

Let $R$ be a semiring. A permanent per $A$ of a $n \times m, m \leq n$, matrix $A \in M_{n}(R)$ is

$$
\operatorname{per} A=\sum_{\sigma \in S_{m, n}} a_{1 \sigma(1)} \cdot \ldots \cdot a_{m \sigma(m)}
$$

where $S_{m, n}$ is a set of all injective mappings from the set $\overline{1, m}$ to the set $\overline{1, n}$.

## Permanent and Bideterminant

## Bideterminant

## Definition (J. Kuntzman, M. Minoux)

Let $R$ be a semiring,

- $A$ - square $n \times n$ matrix over $R$,
- $P(Q)$ - set of even (odd) permutations of $\overline{1, n}$.

A bideterminant $|A|$ of $A$ is an ordered pair

$$
|A|=\left(|A|_{1},|A|_{2}\right)
$$

where

$$
|A|_{1}=\sum_{\sigma \in P} a_{1 \sigma(1)} \cdot a_{2 \sigma(2)} \cdot \ldots \cdot a_{n \sigma(n)}
$$

and

$$
|A|_{2}=\sum_{\sigma \in Q} a_{1 \sigma(1)} \cdot a_{2 \sigma(2)} \cdot \ldots \cdot a_{n \sigma(n)}
$$

## Permanent and Bideterminant

## Properties of Bideterminant

Let $R$ be a commutative semiring.

## Bideterminant of the Unit Matrix

If $E_{n} \in R^{n \times n}$ is the unit matrix, then $\left|E_{n}\right|=(1,0)$.

## Zero Row

Let $A \in R^{n \times n}$ and for at least one $k \in\{1, \ldots, n\}$ and every
$j=1,2, \ldots, n, a_{k, j}=0$. Then $|A|=(0,0)$.

## Permanent and Bideterminant

## Properties of Bideterminant

Let $R$ be a commutative semiring.

Zero Bideterminant
$|A| \equiv 0$, if $|A|_{1}=|A|_{2}$.

## Equivalent bideterminants

If $A \Rightarrow^{*} B$ then there exists $C \in R^{n \times n}$ such that $|C| \equiv 0$ and $|B|=|A|+|C|$. We say that bideterminants $|A|$ and $|B|$ are equivalent and denote: $|A| \equiv|B|$.

## Permanent and Bideterminant

## Properties of Bideterminant

Let $R$ be a commutative semiring.

## Two equal rows

Let $A \in R^{n \times n}$ be a matrix where for some $k$ and for some $/$ such that $k \neq I, a_{k, j}=a_{l, j}, j=1, \ldots, n$.
Then $|A| \equiv 0$.

## Exchange of Two Rows

Let $A \in R^{n \times n}$, and $|A|=\left(|A|_{1},|A|_{2}\right)$. If matrix $\tilde{A}$ arises from $A$ after exchange of two rows then

$$
|\tilde{A}|=\left(|A|_{2},|A|_{1}\right) .
$$

## Permanent and Bideterminant

## Properties of Bideterminant

## Let $R$ be a commutative semiring.

## Linearity

Let $A \in R^{n \times n}$ be a matrix such that $a_{k, j}=\lambda * b_{k, j}+\mu * c_{k, j}$, $j=1, \ldots, n$. Then

$$
|A|=\lambda *\left|\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
b_{k, 1} & \ldots & b_{k, n} \\
\vdots & \ddots & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right|+\mu *\left|\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
c_{k, 1} & \ldots & c_{k, n} \\
\vdots & \ddots & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right|
$$

## Permanent and Bideterminant

## Properties of Bideterminant

Let $R$ be a commutative semiring.

## Row expansion formula

Let $A \in R^{n \times n}$. The following analog of the known row expansion formula is valid for bideterminants:

$$
\begin{aligned}
& |A|=\sum_{\{j \leq n \mid i+j \text { is even }\}} a_{i, j} *\left(\left|A_{i, j}^{\prime}\right|_{1},\left|A_{i, j}^{\prime}\right|_{2}\right)+ \\
& \sum_{i, j} a_{i, j} *\left(\left|A_{i, j}^{\prime}\right|_{2},\left|A_{i, j}^{\prime}\right|_{1}\right)
\end{aligned}
$$

## Ranks of Matrix

## Three Notions of Rank

Let $R$ be a commutative semiring.

## Discriminant Rank

A rank $r(A)$ of $A$ is a maximal number $k$ of rows $\bar{a}_{i t}, \ldots, \bar{a}_{i_{k}}$ (columns $\bar{a}^{j_{1}}, \ldots, \bar{a}^{j} k$ ) such that there exists a nonzero $k$-order minor of the $k \times m$ matrix $A\left(\bar{a}_{i_{1}}, \ldots, \bar{a}_{i_{k}}\right)$.

## Ranks of Matrix

## Three Notions of Rank

Let $R$ be a commutative semiring.

## Column Rank

A column rank $r_{c}(A)$ of $A$ is the least number of linearly independent column vectors of $A$ that are generators of the set $\left\{\bar{a}^{1}, \bar{a}^{2}, \ldots, \bar{a}^{m}\right\}$.

## Ranks of Matrix

## Three Notions of Rank

Let $R$ be a commutative semiring.

## Factor Rank

A factor rank $r_{f}(A)$ is the least positive integer $k$, $k \leq \min (m, n)$, such that there exist matrices $B \in R^{n \times k}$, $C \in R^{k \times m}$ satisfying $A=B C$.

## Ranks of Matrix

## Ranks and Linear Independence

- $r_{f}(A) \leq r_{c}(A)$,
- $r(A) \leq r_{c}(A)$.


## Ranks of Matrix

## Ranks and Linear Independence

- $r_{f}(A) \leq r_{c}(A)$,
- $r(A) \leq r_{c}(A)$.
- If $A \in R^{n \times m}, m \leq n$ and $r_{f}(A)=m$, then column vectors of $A$ are linearly independent.
- If row-vectors $\bar{a}_{1}, \ldots, \bar{a}_{k} \in R^{m}, k \leq \min (n, m)$ of $A$ are linearly dependent then

$$
r\left(A\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)\right)<k .
$$

## Outline

$\square$Algebras of ScalarsAlgebra of Matrices

- Special Matrices
- Permanent and Bideterminant
- Ranks of Matrix

4 System of Linear-like Equations
(5) Cramer Rule

## System of Linear-like Equations

Let $R$ be a commutative semiring, $A \in R^{n \times m}$.

$$
\begin{gather*}
a_{11} \cdot x_{1}+\cdots+a_{1 m} \cdot x_{m}=b_{1} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+a_{n m} \cdot x_{m}=b_{n}  \tag{1}\\
a_{n 1} \cdot x_{1}+\cdots+\cdots
\end{gather*}
$$

is a system of equations with respect to the unknown vector $\bar{x}=\left(x_{1} \ldots, x_{m}\right)^{T} \in R^{m}$. The short denotation of $(1)$ :

$$
A \cdot \bar{x}=\bar{b}
$$

## Kronecker-Capelli Theorem

## Theorem (necessity)

If the system $A \cdot \bar{x}=\bar{b}$ is solvable then

- $r(A)=r(A \bar{b})$,
- $r_{f}(A)=r_{f}(A \bar{b})$.


What
about sufficiency?
$\square$

## Kronecker-Capelli Theorem

## Theorem (necessity)

If the system $A \cdot \bar{x}=\bar{b}$ is solvable then

- $r(A)=r(A \bar{b})$,
- $r_{f}(A)=r_{f}(A \bar{b})$.


What
about sufficiency?

## Sufficiency

- The Kronecker-Capelli Theorem (the form "if and only if") does not hold for the column rank,
- The Kronecker-Capelli Theorem (the sufficiency form) does not hold for discriminant and factor ranks.


## Kronecker-Capelli Theorem. Particular Case

## Theorem (Shu, Wang, 2012)

Let

- $R$-commutative zerosumfree semiring,
- every non-zero element from $R$ is invertible.

Then the system $A \cdot \bar{x}=\bar{b}$ is solvable if and only if

- columns $\bar{a}_{1}, \ldots, \bar{a}_{m}$ of $A$ are orthogonal,
- for every $i=1, \ldots, m,\left(\bar{a}_{i}, \bar{a}_{i}\right)$ is invertible.

Moreover, the solution is unique.

## Outline


(2) Algebras of Scalars
(3) Algebra of Matrices

- Special Matrices
- Permanent and Bideterminant
- Ranks of Matrix
(4) System of Linear-like Equations
(5) Cramer Rule



## Cramer Rule in Zerosumfree Semiring

## Theorem (Tan, 2007)

## Let

- $R$-commutative zerosumfree semiring,
- $A \in M_{n}(R)$ - invertible matrix.

Then the system $A \cdot \bar{x}=\bar{b}$ has a unique solution $\bar{x}=\left(d^{-1} \cdot d_{1}, \ldots, d^{-1} \cdot d_{n}\right)^{T}$ where $d=\operatorname{per} A$ and for all $j=1, \ldots, n$,

$$
d_{j}=\operatorname{per}\left(\begin{array}{ccccccc}
a_{11} & \ldots & a_{i, j-1} & b_{1} & a_{i, j+1} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n, j-1} & b_{n} & a_{n, j+1} & \ldots & a_{n n}
\end{array}\right)
$$

## Cramer Rule in Incline

## Theorem (Han, Li 2004)

Let

- $R$ - incline,
- $A \in M_{n}(R)$ - invertible matrix.

Then the system $A \cdot \bar{x}=\bar{b}$ has a unique solution $A^{T} \bar{b}=\left(d_{1}, \ldots, d_{n}\right)^{T}$ where for all $j=1, \ldots, n$,

$$
d_{j}=\operatorname{per}\left(\begin{array}{ccccccc}
a_{11} & \ldots & a_{i, j-1} & b_{1} & a_{i, j+1} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n, j-1} & b_{n} & a_{n, j+1} & \ldots & a_{n n}
\end{array}\right)
$$



That's nice. But invertible matrices have rather simple structure ...
$\square$

## Equation with Similarity Matrix. Preliminaries

## Let

- ( $L, \vee, *, 0,1)$ - semiring reduct of a residuated lattice,
- $S \in M_{n}(L)$ - similarity matrix over $L$.


## Propositions

- Any similarity matrix can be obtained from $E_{n}$ by a finite sequence of elementary transformations of rows.
- There exists a sequence of matrices
$\left\{E_{n}, \ldots, S_{i}, S_{i+1}, \ldots, S\right\}$ such that a bideterminant of each second matrix in this sequence is equivalent to a bideterminant of the previous one.
- $|S| \equiv(1,0)$.


## Cramer Rule for Equation with Similarity Matrix

The greatest solution of the solvable system

$$
S \cdot \bar{x}=\bar{b}
$$

is equal to $\left(\hat{x}_{1}, \ldots, \hat{x}_{n}\right)^{T}$ where

$$
\hat{x}_{i}=\Delta_{1} \rightarrow \Delta_{i 1}, \quad i=1, \ldots, n
$$

and

- $|S| \equiv\left(\Delta_{1}, \Delta_{2}\right)$ so that $\Delta_{1}=1, \Delta_{2}=0$,
- $\left|S_{i}\right| \equiv\left(\Delta_{i 1}, \Delta_{i 2}\right)$ so that $\Delta_{i 1}=b_{i}, \Delta_{i 2}=0$.


## Cramer Rule for Equation with Similarity Matrix. Particular Case

The greatest solution of the solvable system

$$
S \cdot \bar{x}=\bar{b}
$$

where $S=\left(s_{i, j}\right)$ and for all $i, j, k, I, s_{i, j} \geq s_{k, I}$ if $|i-j| \leq|k-I|$, is equal to $\left(\hat{x}_{1}, \ldots, \hat{x}_{n}\right)^{T}$, such that

$$
\hat{x}_{i}=\Delta_{1} \rightarrow \Delta_{i 1}, \quad i=1, \ldots, n
$$

and

- $|S|=\left(\Delta_{1}, \Delta_{2}\right)=\left(1, \Delta_{2}\right)$,
- $\left|S_{i}\right|=\left(\Delta_{i 1}, \Delta_{i 2}\right)=\left(b_{i}, \Delta_{i 2}\right)$.


## Conclusion

- An overview of solvability of matrix equations in various algebras were given
- Generalized notions of determinant and rank have been discussed,
- Solvability of matrix equations in terms of ranks and generalized determinants has been discussed.


## Happy Birthday, Antonio !




