Linear Algebra Theorems for Fuzzy Relation Equations

Irina Perfilieva

Institute for Research and Applications of Fuzzy Modeling University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic Irina.Perfilieva@osu.cz

ManyVal

Jujy 4-7, 2012

(日) (日) (日) (日) (日) (日) (日)

Introduction	Algebras of Scalars	Algebra of Matrices	System of Linear-like Equations	Cramer Rule

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

- 2 Algebras of Scalars
- 3 Algebra of Matrices
 - Special Matrices
 - Permanent and Bideterminant
 - Ranks of Matrix
- System of Linear-like Equations

5 Cramer Rule

Introduction	Algebras of Scalars	Algebra of Matrices	System of Linear-like Equations
Outling			

Cramer Rule

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 2 Algebras of Scalars
- 3 Algebra of Matrices
 - Special Matrices
 - Permanent and Bideterminant
 - Ranks of Matrix
- System of Linear-like Equations

5 Cramer Rule

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

Introduction

Dialogues with Antonio Di Nola

Introduction

Algebras of Scalars

www.elsevier.com/locate/fss

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

System of Linear-like Equations

Cramer Rule

Algebraic analysis of fuzzy systems[☆]

Antonio Di Nola^a, Ada Lettieri^b, Irina Perfilieva^{c,*}, Vilém Novák^c

^aUmiversitá di Salerno, Facoltá di Scienze, Dipt. di Matematica e Informatica, Via S. Allende, 84081 Baronisto, Salerno, Italy ^bUniversitá di Napoli, Dipt. di Costrazioni e Mendi Matematici in Architettura, Via Monteoliveto 3, 80134 Napoli, Italy ^cUniversity of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 7010 39 Ostrava 1, Czech Republic

Received 28 December 2004; received in revised form 4 September 2006; accepted 6 September 2006 Available online 2 October 2006

Introduction	Algebras of Scalars	Algebra of Matrices	System of Linear-like Equations	Cramer

Rule

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2 Algebras of Scalars

Algebra of Matrices

- Special Matrices
- Permanent and Bideterminant
- Ranks of Matrix

System of Linear-like Equations

5 Cramer Rule

A semiring $\mathcal{R} = (\textit{R}, +, \cdot, 0, 1)$ is an algebra where

- (*R*, +, 0) is a commutative monoid,
- $(R, \cdot, 1)$ is a monoid,
- for all

$$\alpha, \beta, \gamma \in \mathbf{R}, \quad \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma, \quad (\beta + \gamma) \cdot \alpha = \beta \cdot \alpha + \gamma \cdot \alpha,$$

• for all $\alpha \in \mathbf{R}$, $\mathbf{0} \cdot \alpha = \alpha \cdot \mathbf{0} = \mathbf{0}$.

A semiring is commutative if $(R, \cdot, 1)$ is a commutative monoid. A semiring is zerosumfree if $\alpha + \beta = 0$ implies $\alpha = \beta = 0$.

Example

 $(\mathbb{R}\cup -\infty, max, +, -\infty, 0)$ - max-plus (schedule) algebra.

Introduction	Algebras of Scalars	Algebra of Matrices	System of Linear-like Equations	Cramer Rule
Incline				

Definition

Incline is a commutative semiring \mathcal{R} where for all $\alpha \in \mathbf{R}$, $\alpha + 1 = 1$.

In details,

 $\mathcal{R} = (\textit{R}, +, \cdot, 0, 1)$ is an incline if

- (R, +, 0) is a semilattice,
- $(R, \cdot, 1)$ is a commutative monoid,
- for all $\alpha, \beta, \gamma \in \mathbf{R}$, $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$,
- for all $\alpha, \beta \in \mathbf{R}$, $\alpha + \alpha \cdot \beta = \alpha$.

Example

 $(L, \lor, *, 0, 1)$ - semiring reduct of a residuated lattice.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Outline

- Algebras of Scalars
- 3 Algebra of Matrices
 - Special Matrices
 - Permanent and Bideterminant
 - Ranks of Matrix
- System of Linear-like Equations

5 Cramer Rule

System of Linear-like Equations

Algebra of Matrices

Let

- $\mathcal{R} = (R, +, \cdot, 0, 1)$ semiring,
- $R^{n \times m}$, $n, m \ge 1$, set of $n \times m$ -matrices over R,

•
$$A,B\in R^{n imes m},\ C\in R^{m imes h}$$

Operations

• $\mathbf{0}_{n \times m}$ – zero matrix, E_n – unit square matrix,

•
$$(A+B)_{n\times m}=(a_{ij}+b_{ij}),$$

•
$$(\lambda A)_{n \times m} = (\lambda \cdot a_{ij}),$$

•
$$(\mathbf{A} \cdot \mathbf{C})_{n \times k} = \sum_{j=1}^{m} (\mathbf{a}_{ij} \cdot \mathbf{c}_{jl}).$$

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Semiring of Matrices

Let

• $M_n(R) = R^{n \times n}$, $n \ge 1$, – set of square matrices over R. Then

•
$$(M_n(R), +, \cdot, \mathbf{0}_{n \times n}, E_n)$$
 – semiring.

System of Linear-like Equations

Cramer Rule

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Elementary Transformations of Matrices

Let $A, B \in \mathbb{R}^{n \times m}$.

Elementary transformations of rows (columns)

Addition of a row (column) multiplied by a non-zero element from R to another row (column).

Elementary transform $A \Rightarrow^* B$

 $A \Rightarrow^* B$ – matrix B is an **elementary transform** of A, if B can be obtained from A by a finite sequence of elementary transformations of rows (columns).

Elementary Transformations of Matrices

Let $A, B \in \mathbb{R}^{n \times m}$.

Elementary transformations of rows (columns)

Addition of a row (column) multiplied by a non-zero element from R to another row (column).

Elementary transform $A \Rightarrow^* B$

 $A \Rightarrow^* B$ – matrix *B* is an **elementary transform** of *A*, if *B* can be obtained from *A* by a finite sequence of elementary transformations of rows (columns).

System of Linear-like Equations

Special Matrices

Invertible Matrices

Definition

A square $n \times n$ matrix $A \in M_n(R)$ over semiring R is called **right (left) invertible** if there exists matrix $B \in M_n(R)$ such that

$$A \cdot B = E_n \quad (B \cdot A = E_n).$$

Proposition (Reutanauer, Straubing, Tan)

For matrix $A \in M_n(R)$ where *R* is a commutative semiring, the following statements are equivalent:

- A is right invertible,
- A is left invertible,
- A is invertible,
- A · A^T is an invertible diagonal matrix,
- $A^T \cdot A$ is an invertible diagonal matrix.

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

(日) (日) (日) (日) (日) (日) (日)

Special Matrices

Similarity Matrices

Let $(L, \lor, *, 0, 1)$ be a semiring reduct of a residuated lattice.

Definition

A square $n \times n$ matrix *S* over *L* is called a **similarity matrix** if for all i, j, k = 1, ..., n,

- $s_{ii} = 1$, reflexivity
- *s_{ij}* = *s_{ji}*, symmetry
- $s_{ij} * s_{jk} \le s_{ik}$, transitivity.

Introduction	Algebras of Scalars	Algebra of Matrices	System of Linear-like Equations	Cramer Rule
Permanent and	Bideterminant			
Perma	nent			

Definition

Let *R* be a semiring. A **permanent** per *A* of a $n \times m$, $m \le n$, matrix $A \in M_n(R)$ is

per
$$A = \sum_{\sigma \in S_{m,n}} a_{1\sigma(1)} \cdot \ldots \cdot a_{m\sigma(m)},$$

where $S_{m,n}$ is a set of all injective mappings from the set $\overline{1, m}$ to the set $\overline{1, n}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

System of Linear-like Equations

Permanent and Bideterminant

Bideterminant

Definition (J. Kuntzman, M. Minoux)

Let R be a semiring,

- A square $n \times n$ matrix over R,
- P(Q) set of even (odd) permutations of $\overline{1, n}$.

A bideterminant |A| of A is an ordered pair

$$|\boldsymbol{A}|=(|\boldsymbol{A}|_1,|\boldsymbol{A}|_2)$$

where

$$|\mathbf{A}|_1 = \sum_{\sigma \in \mathbf{P}} a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)},$$

and

$$|\mathbf{A}|_2 = \sum_{\sigma \in Q} a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}.$$

an

System of Linear-like Equations

Permanent and Bideterminant

Properties of Bideterminant

Let *R* be a commutative semiring.

Bideterminant of the Unit Matrix

If $E_n \in \mathbb{R}^{n \times n}$ is the unit matrix, then $|E_n| = (1, 0)$.

Zero Row

Let $A \in \mathbb{R}^{n \times n}$ and for at least one $k \in \{1, ..., n\}$ and every j = 1, 2, ..., n, $a_{k,j} = 0$. Then |A| = (0, 0).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

System of Linear-like Equations

(日) (日) (日) (日) (日) (日) (日)

Permanent and Bideterminant

Properties of Bideterminant

Let *R* be a commutative semiring.

Zero Bideterminant

 $|A| \equiv 0$, if $|A|_1 = |A|_2$.

Equivalent bideterminants

If $A \Rightarrow^* B$ then there exists $C \in R^{n \times n}$ such that $|C| \equiv 0$ and |B| = |A| + |C|. We say that bideterminants |A| and |B| are **equivalent** and denote: $|A| \equiv |B|$.

System of Linear-like Equations

Permanent and Bideterminant

Properties of Bideterminant

Let *R* be a commutative semiring.

Two equal rows

Let $A \in \mathbb{R}^{n \times n}$ be a matrix where for some k and for some l such that $k \neq l$, $a_{k,j} = a_{l,j}, j = 1, ..., n$. Then $|A| \equiv 0$.

Exchange of Two Rows

Let $A \in \mathbb{R}^{n \times n}$, and $|A| = (|A|_1, |A|_2)$. If matrix \tilde{A} arises from A after exchange of two rows then

$$|\tilde{A}| = (|A|_2, |A|_1).$$

System of Linear-like Equations

Cramer Rule

Permanent and Bideterminant

Properties of Bideterminant

Let *R* be a commutative semiring.

Linearity

Let $A \in \mathbb{R}^{n \times n}$ be a matrix such that $a_{k,j} = \lambda * b_{k,j} + \mu * c_{k,j}$, j = 1, ..., n. Then

$$|\mathbf{A}| = \lambda * \begin{vmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ b_{k,1} & \dots & b_{k,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix} + \mu * \begin{vmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ c_{k,1} & \dots & c_{k,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

System of Linear-like Equations

Cramer Rule

Permanent and Bideterminant

Properties of Bideterminant

Let *R* be a commutative semiring.

Row expansion formula

Let $A \in \mathbb{R}^{n \times n}$. The following analog of the known row expansion formula is valid for bideterminants:

$$|\mathbf{A}| = \sum_{\{j \le n \mid i+j \text{ is even}\}} a_{i,j} * (|\mathbf{A}'_{i,j}|_1, |\mathbf{A}'_{i,j}|_2) + \sum_{\{j \le n \mid i+j \text{ is odd}\}} a_{i,j} * (|\mathbf{A}'_{i,j}|_2, |\mathbf{A}'_{i,j}|_1).$$

▲ロト▲圖ト▲目ト▲目ト 目 のへで

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Ranks of Matrix

Three Notions of Rank

Let *R* be a commutative semiring.

Discriminant Rank

A rank r(A) of A is a maximal number k of rows $\bar{a}_{i_1}, \ldots, \bar{a}_{i_k}$ (columns $\bar{a}^{i_1}, \ldots, \bar{a}^{i_k}$) such that there exists a nonzero k-order minor of the $k \times m$ matrix $A(\bar{a}_{i_1}, \ldots, \bar{a}_{i_k})$.

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Ranks of Matrix

Three Notions of Rank

Let *R* be a commutative semiring.

Column Rank

A column rank $r_c(A)$ of A is the least number of linearly independent column vectors of A that are generators of the set $\{\bar{a}^1, \bar{a}^2, \dots, \bar{a}^m\}$.

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Ranks of Matrix

Three Notions of Rank

Let *R* be a commutative semiring.

Factor Rank

A factor rank $r_f(A)$ is the least positive integer k, $k \le \min(m, n)$, such that there exist matrices $B \in \mathbb{R}^{n \times k}$, $C \in \mathbb{R}^{k \times m}$ satisfying A = BC.

Algebras of Scalars

Algebra of Matrices ○○○○○● System of Linear-like Equations

Cramer Rule

Ranks of Matrix

Ranks and Linear Independence

- $r_f(A) \leq r_c(A)$,
- $r(A) \leq r_c(A)$.
- If A ∈ R^{n×m}, m ≤ n and r_f(A) = m, then column vectors of A are linearly independent.
- If row-vectors ā₁,..., ā_k ∈ R^m, k ≤ min(n, m) of A are linearly dependent then

$$r(A(\bar{a}_1,\ldots,\bar{a}_k)) < k.$$

▲□▶▲□▶▲□▶▲□▶ = のへ⊙

Algebra of Matrices ○○○○○● System of Linear-like Equations

Cramer Rule

Ranks of Matrix

Ranks and Linear Independence

- $r_f(A) \leq r_c(A)$,
- $r(A) \leq r_c(A)$.
- If A ∈ R^{n×m}, m ≤ n and r_f(A) = m, then column vectors of A are linearly independent.
- If row-vectors ā₁,..., ā_k ∈ R^m, k ≤ min(n, m) of A are linearly dependent then

$$r(A(\bar{a}_1,\ldots,\bar{a}_k)) < k.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

I	10	ł w	~	2	 cti	2	n

System of Linear-like Equations

Cramer Rule

Outline

- 2 Algebras of Scalars
- 3 Algebra of Matrices
 - Special Matrices
 - Permanent and Bideterminant
 - Ranks of Matrix

System of Linear-like Equations

5 Cramer Rule

▲□▶▲□▶▲□▶▲□▶ □ のへで

System of Linear-like Equations

Cramer Rule

(日) (日) (日) (日) (日) (日) (日)

System of Linear-like Equations

Let *R* be a commutative semiring, $A \in R^{n \times m}$.

is a system of equations with respect to the unknown vector $\bar{x} = (x_1 \dots, x_m)^T \in \mathbb{R}^m$. The short denotation of (1):

$$A \cdot \bar{x} = \bar{b},$$

System of Linear-like Equations

Cramer Rule

Kronecker-Capelli Theorem

Theorem (necessity)

If the system $A \cdot \bar{x} = \bar{b}$ is solvable then

•
$$r(A) = r(A\overline{b}),$$

•
$$r_f(A) = r_f(A\bar{b})$$

What

about sufficiency?

Sufficiency

- The Kronecker-Capelli Theorem (the form "if and only if") does not hold for the column rank,
- The Kronecker-Capelli Theorem (the sufficiency form) does not hold for discriminant and factor ranks.

System of Linear-like Equations

Cramer Rule

Kronecker-Capelli Theorem

Theorem (necessity)

If the system $A \cdot \bar{x} = \bar{b}$ is solvable then

•
$$r(A) = r(A\overline{b}),$$

•
$$r_f(A) = r_f(A\bar{b})$$

What

about sufficiency?

Sufficiency

- The Kronecker-Capelli Theorem (the form "if and only if") does not hold for the column rank,
- The Kronecker-Capelli Theorem (the sufficiency form) does not hold for discriminant and factor ranks.

System of Linear-like Equations

Cramer Rule

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Kronecker-Capelli Theorem. Particular Case

Theorem (Shu, Wang, 2012)

Let

- R commutative zerosumfree semiring,
- every non-zero element from R is invertible.

Then the system $A \cdot \bar{x} = \bar{b}$ is solvable if and only if

- columns $\bar{a}_1, \ldots, \bar{a}_m$ of A are orthogonal,
- for every $i = 1, ..., m, (\bar{a}_i, \bar{a}_i)$ is invertible.

Moreover, the solution is unique.

ntrodu	uction	Alg	jebra

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- Ranks of Matrix
- System of Linear-like Equations

5 Cramer Rule

System of Linear-like Equations

Cramer Rule

Cramer Rule in Zerosumfree Semiring

Theorem (Tan, 2007)

Let

• R - commutative zerosumfree semiring,

• $A \in M_n(R)$ – invertible matrix.

Then the system $A \cdot \bar{x} = \bar{b}$ has a unique solution $\bar{x} = (d^{-1} \cdot d_1, \dots, d^{-1} \cdot d_n)^T$ where d = per A and for all $j = 1, \dots, n$,

$$d_j = \operatorname{per} \left(\begin{array}{cccccccc} a_{11} & \dots & a_{i,j-1} & b_1 & a_{i,j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{n,j-1} & b_n & a_{n,j+1} & \dots & a_{nn} \end{array} \right).$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

System of Linear-like Equations

Cramer Rule

Cramer Rule in Incline

Theorem (Han, Li 2004)

Let

• R - incline,

• $A \in M_n(R)$ – invertible matrix.

Then the system $A \cdot \bar{x} = \bar{b}$ has a unique solution $A^T \bar{b} = (d_1, \dots, d_n)^T$ where for all $j = 1, \dots, n$,

$$d_j = per \begin{pmatrix} a_{11} & \dots & a_{i,j-1} & b_1 & a_{i,j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{n,j-1} & b_n & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introductio	۶n

That's nice. But invertible matrices have rather simple structure ...

Equation with Similarity Matrix. Preliminaries

Let

- $(L, \lor, *, 0, 1)$ semiring reduct of a residuated lattice,
- $S \in M_n(L)$ similarity matrix over L.

Propositions

- Any similarity matrix can be obtained from *E_n* by a finite sequence of elementary transformations of rows.
- There exists a sequence of matrices
 {*E_n,...,S_i, S_{i+1},...,S*} such that a bideterminant of each
 second matrix in this sequence is equivalent to a
 bideterminant of the previous one.

•
$$|S| \equiv (1,0).$$

Cramer Rule for Equation with Similarity Matrix

The greatest solution of the solvable system

 $S \cdot \bar{x} = \bar{b}$

is equal to $(\hat{x}_1, \ldots, \hat{x}_n)^T$ where

$$\hat{x}_i = \Delta_1 \rightarrow \Delta_{i1}, \quad i = 1, \dots, n,$$

and

•
$$|S| \equiv (\Delta_1, \Delta_2)$$
 so that $\Delta_1 = 1, \Delta_2 = 0$,
• $|S_i| \equiv (\Delta_{i1}, \Delta_{i2})$ so that $\Delta_{i1} = b_i, \Delta_{i2} = 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Cramer Rule for Equation with Similarity Matrix. Particular Case

The greatest solution of the solvable system

$$S \cdot \bar{x} = \bar{b}$$

where $S = (s_{i,j})$ and for all $i, j, k, l, s_{i,j} \ge s_{k,l}$ if $|i - j| \le |k - l|$, is equal to $(\hat{x}_1, \dots, \hat{x}_n)^T$, such that

$$\hat{x}_i = \Delta_1 \rightarrow \Delta_{i1}, \quad i = 1, \dots, n,$$

and

•
$$|S| = (\Delta_1, \Delta_2) = (1, \Delta_2),$$

• $|S_i| = (\Delta_{i1}, \Delta_{i2}) = (b_i, \Delta_{i2}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

System of Linear-like Equations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

- An overview of solvability of matrix equations in various algebras were given
- Generalized notions of determinant and rank have been discussed,
- Solvability of matrix equations in terms of ranks and generalized determinants has been discussed.

Algebras of Scalars

Algebra of Matrices

System of Linear-like Equations

Cramer Rule

Happy Birthday, Antonio !

ヘロト 人間 とくほ とくほとう

æ