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Semiring

A semiring R = (R,+, ·,0,1) is an algebra where
(R,+,0) is a commutative monoid,
(R, ·,1) is a monoid,
for all
α, β, γ ∈ R, α·(β+γ) = α·β+α·γ, (β+γ)·α = β·α+γ·α,
for all α ∈ R, 0 · α = α · 0 = 0.

A semiring is commutative if (R, ·,1) is a commutative monoid.
A semiring is zerosumfree if α + β = 0 implies α = β = 0.

Example
(R ∪ −∞,max,+,−∞,0) - max-plus (schedule) algebra.
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Incline

Definition
Incline is a commutative semiring R where for all α ∈ R,
α + 1 = 1.

In details,

R = (R,+, ·,0,1) is an incline if
(R,+,0) is a semilattice,
(R, ·,1) is a commutative monoid,
for all α, β, γ ∈ R, α · (β + γ) = α · β + α · γ,
for all α, β ∈ R, α + α · β = α.

Example
(L,∨, ∗,0,1) - semiring reduct of a residuated lattice.
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Algebra of Matrices

Let
R = (R,+, ·,0,1) – semiring,
Rn×m,n,m ≥ 1, – set of n ×m-matrices over R,
A,B ∈ Rn×m, C ∈ Rm×k

Operations
0n×m – zero matrix, En – unit square matrix,
(A + B)n×m = (aij + bij),
(λA)n×m = (λ · aij),
(A · C)n×k =

∑m
j=1(aij · cjl).
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Semiring of Matrices

Let
Mn(R) = Rn×n, n ≥ 1, – set of square matrices over R.

Then
(Mn(R),+, ·,0n×n,En) – semiring.
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Elementary Transformations of Matrices

Let A,B ∈ Rn×m.

Elementary transformations of rows (columns)
Addition of a row (column) multiplied by a non-zero element
from R to another row (column).

Elementary transform A⇒∗ B
A⇒∗ B – matrix B is an elementary transform of A, if B can
be obtained from A by a finite sequence of elementary
transformations of rows (columns).
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Special Matrices

Invertible Matrices

Definition
A square n × n matrix A ∈ Mn(R) over semiring R is called
right (left) invertible if there exists matrix B ∈ Mn(R) such that

A · B = En (B · A = En).

Proposition (Reutanauer, Straubing, Tan)
For matrix A ∈ Mn(R) where R is a commutative semiring, the
following statements are equivalent:

A is right invertible,
A is left invertible,
A is invertible,
A · AT is an invertible diagonal matrix,
AT · A is an invertible diagonal matrix.
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Special Matrices

Similarity Matrices

Let (L,∨, ∗,0,1) be a semiring reduct of a residuated lattice.

Definition
A square n × n matrix S over L is called a similarity matrix if
for all i , j , k = 1, . . . ,n,

sii = 1, reflexivity
sij = sji , symmetry
sij ∗ sjk ≤ sik , transitivity.
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Permanent and Bideterminant

Permanent

Definition
Let R be a semiring. A permanent per A of a n ×m, m ≤ n,
matrix A ∈ Mn(R) is

per A =
∑

σ∈Sm,n

a1σ(1) · . . . · amσ(m),

where Sm,n is a set of all injective mappings from the set 1,m to
the set 1,n.
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Permanent and Bideterminant

Bideterminant

Definition (J. Kuntzman, M. Minoux)
Let R be a semiring,

A – square n × n matrix over R,
P (Q) – set of even (odd) permutations of 1,n.

A bideterminant |A| of A is an ordered pair

|A| = (|A|1, |A|2)

where
|A|1 =

∑
σ∈P

a1σ(1) · a2σ(2) · . . . · anσ(n),

and
|A|2 =

∑
σ∈Q

a1σ(1) · a2σ(2) · . . . · anσ(n).
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Permanent and Bideterminant

Properties of Bideterminant

Let R be a commutative semiring.

Bideterminant of the Unit Matrix
If En ∈ Rn×n is the unit matrix, then |En| = (1,0).

Zero Row
Let A ∈ Rn×n and for at least one k ∈ {1, . . . ,n} and every
j = 1,2, . . . ,n, ak ,j = 0. Then |A| = (0,0).
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Permanent and Bideterminant

Properties of Bideterminant

Let R be a commutative semiring.

Zero Bideterminant
|A| ≡ 0, if |A|1 = |A|2.

Equivalent bideterminants

If A⇒∗ B then there exists C ∈ Rn×n such that |C| ≡ 0 and
|B| = |A|+ |C|. We say that bideterminants |A| and |B| are
equivalent and denote: |A| ≡ |B|.
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Permanent and Bideterminant

Properties of Bideterminant

Let R be a commutative semiring.

Two equal rows

Let A ∈ Rn×n be a matrix where for some k and for some l such
that k 6= l , ak ,j = al,j , j = 1, . . . ,n.

Then |A| ≡ 0.

Exchange of Two Rows

Let A ∈ Rn×n, and |A| = (|A|1, |A|2). If matrix Ã arises from A
after exchange of two rows then

|Ã| = (|A|2, |A|1).
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Permanent and Bideterminant

Properties of Bideterminant

Let R be a commutative semiring.

Linearity

Let A ∈ Rn×n be a matrix such that ak ,j = λ ∗ bk ,j + µ ∗ ck ,j ,
j = 1, . . . ,n. Then

|A| = λ ∗

∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

bk,1 . . . bk,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣∣
+ µ ∗

∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,n
...

. . .
...

ck,1 . . . ck,n
...

. . .
...

an,1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣∣
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Permanent and Bideterminant

Properties of Bideterminant

Let R be a commutative semiring.

Row expansion formula

Let A ∈ Rn×n. The following analog of the known row
expansion formula is valid for bideterminants:

|A| =
∑

{j≤n | i+j is even}

ai,j ∗ (|A′i,j |1, |A
′
i,j |2)+

∑
{j≤n | i+j is odd}

ai,j ∗ (|A′i,j |2, |A
′
i,j |1).
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Ranks of Matrix

Three Notions of Rank

Let R be a commutative semiring.

Discriminant Rank
A rank r(A) of A is a maximal number k of rows āi1 , . . . , āik
(columns āj1 , . . . , ājk ) such that there exists a nonzero k -order
minor of the k ×m matrix A(āi1 , . . . , āik ).
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Ranks of Matrix

Three Notions of Rank

Let R be a commutative semiring.

Column Rank
A column rank rc(A) of A is the least number of linearly
independent column vectors of A that are generators of the set
{ā1, ā2, . . . , ām}.
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Ranks of Matrix

Three Notions of Rank

Let R be a commutative semiring.

Factor Rank
A factor rank rf (A) is the least positive integer k ,
k ≤ min(m,n), such that there exist matrices B ∈ Rn×k ,
C ∈ Rk×m satisfying A = BC.
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Ranks of Matrix

Ranks and Linear Independence

rf (A) ≤ rc(A),
r(A) ≤ rc(A).

If A ∈ Rn×m, m ≤ n and rf (A) = m, then column vectors of
A are linearly independent.
If row-vectors ā1, . . . , āk ∈ Rm, k ≤ min(n,m) of A are
linearly dependent then

r(A(ā1, . . . , āk )) < k .
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System of Linear-like Equations

Let R be a commutative semiring, A ∈ Rn×m.

a11 · x1 + · · ·+ a1m · xm = b1,

. . . . . . . . . . . . . . . . . . . . . . . (1)
an1 · x1 + · · ·+ anm · xm = bn,

is a system of equations with respect to the unknown vector
x̄ = (x1 . . . , xm)T ∈ Rm. The short denotation of (1):

A · x̄ = b̄,
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Kronecker-Capelli Theorem

Theorem (necessity)

If the system A · x̄ = b̄ is solvable then
r(A) = r(Ab̄),
rf (A) = rf (Ab̄). What

about sufficiency?

Sufficiency
The Kronecker-Capelli Theorem (the form “if and only if”)
does not hold for the column rank,
The Kronecker-Capelli Theorem (the sufficiency form)
does not hold for discriminant and factor ranks.
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Kronecker-Capelli Theorem. Particular Case

Theorem (Shu, Wang, 2012)
Let

R – commutative zerosumfree semiring,
every non-zero element from R is invertible.

Then the system A · x̄ = b̄ is solvable if and only if
columns ā1, . . . , ām of A are orthogonal,
for every i = 1, . . . ,m, (āi , āi) is invertible.

Moreover, the solution is unique.
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Cramer Rule in Zerosumfree Semiring

Theorem (Tan, 2007)
Let

R – commutative zerosumfree semiring,
A ∈ Mn(R) – invertible matrix.

Then the system A · x̄ = b̄ has a unique solution
x̄ = (d−1 · d1, . . . ,d−1 · dn)T where d = per A and for all
j = 1, . . . ,n,

dj = per

 a11 . . . ai,j−1 b1 ai,j+1 . . . a1n
· · · · · · · · · · · · · · · · · · · · ·
an1 . . . an,j−1 bn an,j+1 . . . ann

 .
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Cramer Rule in Incline

Theorem (Han, Li 2004)
Let

R – incline,
A ∈ Mn(R) – invertible matrix.

Then the system A · x̄ = b̄ has a unique solution
AT b̄ = (d1, . . . ,dn)T where for all j = 1, . . . ,n,

dj = per

 a11 . . . ai,j−1 b1 ai,j+1 . . . a1n
· · · · · · · · · · · · · · · · · · · · ·
an1 . . . an,j−1 bn an,j+1 . . . ann

 .
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That’s nice. But
invertible matrices
have rather simple
structure ...



logo

Introduction Algebras of Scalars Algebra of Matrices System of Linear-like Equations Cramer Rule

Equation with Similarity Matrix. Preliminaries

Let
(L,∨, ∗,0,1) – semiring reduct of a residuated lattice,
S ∈ Mn(L) – similarity matrix over L.

Propositions
Any similarity matrix can be obtained from En by a finite
sequence of elementary transformations of rows.
There exists a sequence of matrices
{En, . . . ,Si ,Si+1, . . . ,S} such that a bideterminant of each
second matrix in this sequence is equivalent to a
bideterminant of the previous one.
|S| ≡ (1,0).
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Cramer Rule for Equation with Similarity Matrix

The greatest solution of the solvable system

S · x̄ = b̄

is equal to (x̂1, . . . , x̂n)T where

x̂i = ∆1 → ∆i1, i = 1, . . . ,n,

and
|S| ≡ (∆1,∆2) so that ∆1 = 1,∆2 = 0,
|Si | ≡ (∆i1,∆i2) so that ∆i1 = bi ,∆i2 = 0.
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Cramer Rule for Equation with Similarity Matrix.
Particular Case

The greatest solution of the solvable system

S · x̄ = b̄

where S = (si,j) and for all i , j , k , l , si,j ≥ sk ,l if |i − j | ≤ |k − l |, is
equal to (x̂1, . . . , x̂n)T , such that

x̂i = ∆1 → ∆i1, i = 1, . . . ,n,

and
|S| = (∆1,∆2) = (1,∆2),
|Si | = (∆i1,∆i2) = (bi ,∆i2).
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Conclusion

An overview of solvability of matrix equations in various
algebras were given
Generalized notions of determinant and rank have been
discussed,
Solvability of matrix equations in terms of ranks and
generalized determinants has been discussed.
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Happy Birthday, Antonio !
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