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Fuzzy type theory

Seven virtues of simple type theory

W. Farmer
1 STT has a simple and highly uniform syntax
2 The semantics of STT is based on a small collection of

well-established ideas
3 STT is a highly expressive logic
4 STT admits categorical theories of infinite structures
5 There is a simple, elegant, and powerful proof system for

STT
6 Techniques of first-order model theory can be applied to

STT; distinction between standard and nonstandard
models is illuminated

7 There are practical extensions of STT that can be
effectively implemented
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Fuzzy type theory

Why FUZZY type theory

(i) Using FTT, a model of some deep manifestations of the
vagueness phenomenon is formed

(ii) Using FTT, the type-theoretical model of concepts and
linguistic semantics can be extended to include vagueness

(iii) Using FTT, the FLb-logic (Fuzzy Logic in Broader Sense)
can be further developed; formal theory of commonsense
reasoning can be brought closer to the human way of
thinking.

Expressive power of FTT makes the task easier

Need for a well developed model theory of FTT
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Fuzzy type theory

Structure of truth values

EQ-algebra

E = 〈E ,∧,⊗,∼,1〉

(E1) 〈E ,∧〉 is a ∧-semilattice with the top element 1
(E2) 〈L,⊗,1〉 is a monoid

⊗ is isotone w.r.t. ≤ (a ≤ b iff a ∧ b = a)
(E3) a ∼ a = 1 (reflexivity)
(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution)

(Leibnitz rule of indiscernibility of identicals)
(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence)
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity)
(E7) a⊗ b ≤ a ∼ b (boundedness)
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Fuzzy type theory

Special definitions in EQ-algebras

good if a ∼ 1 = a
a→ b = (a ∧ b) ∼ a (implication)
E is separated if

a ∼ b = 1 iff a = b

If E contains 0 then ¬a = a ∼ 0 (negation)

In linearly ordered structure of truth values:

∆(a) =

{
1 if a = 1,
0 otherwise.
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Virtues of fuzzy type theory

Types and formulas

Elementary types: o (truth values), ε (objects)

Types
(i) ε,o ∈ Types,

(ii) If α, β ∈ Types then (αβ) ∈ Types.

Formulas
(i) Variables and constants of type α are formulas.

(ii) If Bβα and Aα are formulas then (BβαAα) is a formula of
type β.

(iii) If Aβ is a formula and xα ∈ J a variable then λxα Aβ is a
formula of type βα.

Formulas Ao are propositions
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Virtues of fuzzy type theory

Fuzzy equality

Special formula
(Aα ≡ Bα) — formula of type o

m,m′ ∈ Mα

(i) $(m,m) = 1 (reflexivity)
(ii) $(m,m′) = $(m′,m) (symmetry)
(iii) $(m,m′)⊗ $(m′,m′′) ≤$(m,m′′) (⊗-transitivity)

h,h′ ∈ MMα
β

[h $ h′] =
∧

m∈Mα

[h(m) $β h′(m)]
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Virtues of fuzzy type theory

General frame

M = 〈{Mα,$α| α ∈ Types}, E∆〉

Each set Mα is associated with the corresponding type

(i) Mo — set of truth values
(ii) Mε — some (non-empty) set
(iii) $α is a fuzzy equality on Mα

(iv) (a) Standard model: Mβα = MMα

β

(b) General model: Mβα ⊆ MMα

β

(v) Moo ∪M(oo)o is closed w.r.t. operations on truth values
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Virtues of fuzzy type theory

Scheme of general frame

(Mo = {a | a ∈ L},↔) (Mε = {u | ϕ(u)},=ε)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Moo ⊆ {goo | goo : Mo −→ Mo},=oo)
(Moε ⊆ {foε | foε : Mε −→ Mo},=oε)

(Mεε ⊆ {fεε | fεε : Mε −→ Mε},=εε), . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
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Virtues of fuzzy type theory

Interpretation of formulas

Example (interpretation)
M(Ao) ∈ L is a truth value
M(Aoε) is a fuzzy set in Mε

M(A(oε)ε) is a fuzzy relation on Mε

M(Aεε) is a function on objects

In a general modelM, each formula Aα must have an
interpretation

Mp(Aα) ∈ Mα
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Virtues of fuzzy type theory

Many useful properties

Theorem (Completeness)
(a) A theory T of FTT is consistent iff it has a general model
M.

(b) For every theory T of FTT and a formula Ao

T ` Ao iff T |= Ao.
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Models of FTT

Finite models

A modelM is finite if all sets Mα are finite

Theorem
If a modelM is finite then it is standard.
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Models of FTT

Frugal model

A (general) modelM is frugal if Card(Mα) ≤ Card(J) + ℵ0,
α ∈ Types

Theorem
If T a consistent theory and E∆ is finite and then the model
M = 〈{Mα,$α| α ∈ Types}, E∆〉 frugal.
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Models of FTT

Relations between models

M1 = 〈
(

M1
α,$

1
α

)
α∈Types

, E1〉

M2 = 〈
(

M2
α,$

2
α

)
α∈Types

, E2〉

be two models. Let us consider a set of functions

f = {fα : M1
α −→ M2

α | α ∈ Types} (1)
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Models of FTT

Relations between models

(i) For all α, β ∈ Types, (fα, f β, f βα) forms a commuting triple.

M1
α

fα−−−−→ M2
α

m1
βα

y ym2
βα=fβα(m1

βα)

M1
β

fβ−−−−→ M2
β

(ii) f o : E1 −→ E2 preserves all existing infima.
(iii) For each constant cα

fα(M1(cα)) =M2(cα).

Homomorphism ofM1 andM2

f :M1 −→M2.
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Models of FTT

Relations between models

Embedding

f :M1 −→M2

all functions fα are injections

Lemma
Each homomorphism f is necessarily an embedding of the
modelM1 in the modelM2
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Models of FTT

Special definitions

Definition

Let f :M1 −→M2 be an embedding.
(i) M1 is a submodel ofM2,M1 ⊂M2, if f o and f ε are

identities and E1 is a subalgebra of E2.
(ii) Isomorphism betweenM1 andM2

M1 ∼=M2.

All functions in f are bijections



�����

Models and Submodels in Higher-Order Fuzzy Logic

Models of FTT

Special definitions

Definition

(i) Elementary equivalent modelsM1 andM2,M1 ≡M2:

M1(Ao) = 11 iff M2(Ao) = 12

for arbitrary sentence Ao ∈ Formo.
(ii) Strongly elementary equivalent modelsM1 andM2,
M1≡̂M2, if E1 = E2 and

M1(Ao) =M2(Ao)

for arbitrary sentence Ao ∈ Formo
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Models of FTT

Special definitions

Definition

(i) Elementary embedding f :M1 −→M2

f o(M1
p(Ao)) =M2

p◦f(Ao)

for arbitrary formula Ao ∈ Formo and assignment p
(ii) A modelM1 is an elementary submodel ofM2,
M1 ≺M2, ifM1 ⊂M2 and

M1
p(Ao) =M2

p◦f(Ao)

for arbitrary formula Ao ∈ Formo and assignment p.
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Models of FTT

Theorem

(a) IfM1≡̂M2 thenM1 ≡M2. IfM1 ∼=M2 thenM1≡̂M2.
(b) IfM1 ≺M2 thenM1 ≡M2.
(c) If f :M1 −→M2 and g :M2 −→M3 are elementary

embeddings then f ◦ g :M1 −→M3 is an elementary
embedding.

(d) IfM1 ≺M2 andM2 ≺M3 thenM1 ≺M3.
(e) The relations ∼=,≡, ≡̂ are equivalences.
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Models of FTT

Standard modelM
(i) If Mo,Mε are finite then all Mα for α ∈ Types are finite.

(ii) Let Card(Mε) < ℵ0 and Card(Mo) ∈ {ℵ0,ℵ1}.
If α does not contain the type o then Card(Mα) < ℵ0.

(iii) Thus, if Card(Mα) = ℵη and Card(Mβ) < ℵ0 then
Card(Mβα) = ℵη+1 and Card(Mαβ) = ℵη.

(iv) Analogously for Card(Mo) < ℵ0 and Card(Mε) ∈ {ℵ0,ℵ1}.
(v) If Card(Mo),Card(Mε) ∈ {ℵ0,ℵ1}, or one (or both) of the

former are finite then Card(Mα) < ℵω for all α ∈ Types.
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Models of FTT

Analogue of the downward Löwenheim-Skolem theorem

Theorem
letM be a model with infinite Mo,Mε. Let κ be a cardinal such
that for γ ∈ {o, ε}

max(p(Mo),Card(Form),ℵ0) ≤ κ ≤ Card(Mγ)

Then there is an elementary submodel Y ≺M such that
Card(Yα) ≤ κ, α ∈ Types.
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