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R. Carnap, K. Godel, A. Tarski, A. Turing

@ Type theory as a (higher-order) logic

A. Church (1940), L. Henkin (1950, 1963), P. Andrews,
W. Farmer

@ Type theory as an effective theoretical tool
in computer science

P Martin-Lo6f
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Seven virtues of simple type theory

W. Farmer
@ STT has a simple and highly uniform syntax

© The semantics of STT is based on a small collection of
well-established ideas

© STT is a highly expressive logic
© STT admits categorical theories of infinite structures

© There is a simple, elegant, and powerful proof system for
STT

Q@ Techniques of first-order model theory can be applied to
STT; distinction between standard and nonstandard
models is illuminated

@ There are practical extensions of STT that can be
effectively implemented AN
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Why FUZZY type theory

(i) Using FTT, a model of some deep manifestations of the
vagueness phenomenon is formed

(if) Using FTT, the type-theoretical model of concepts and
linguistic semantics can be extended to include vagueness

(iii) Using FTT, the FLb-logic (Fuzzy Logic in Broader Sense)
can be further developed; formal theory of commonsense

reasoning can be brought closer to the human way of
thinking.

Expressive power of FTT makes the task easier

Need for a well developed model theory of FTT
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L Fuzzy type theory

Structure of truth values

EQ-algebra

E=(E,N®,~,1)

(E1) (E, ) is a A-semilattice with the top element 1

(E2) (L,®,1) is a monoid
® is isotone w.r.t. < (a< biffanb=a)

(E3) a~a=1 (reflexivity)

(E4) ((anb)~c)®(d~a)<c~ (dAb) (substitution)
(Leibnitz rule of indiscernibility of identicals)

(E5) (a~b)@(c~d)<(a~c)~(b~d) (congruence)
(E6) (anbrc)~a<(anb)~a (monotonicity)
(E7) asb<a~b (boundedness) | A
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@ goodifa~1=a
@a—~>b=(anb)~a (implication)
@ & is separated if

a~b=1 iff a=b

@ If £ contains 0 then —a=a~ 0 (negation)

4

In linearly ordered structure of truth values:

AGa) = {1 ifa=1,

0 otherwise.
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LVirtues of fuzzy type theory

Types and formulas

Elementary types: o (truth values), ¢ (objects)

(i) €,0 € Types,
(ii) If o, 8 € Typesthen (af) € Types.

(i) Variables and constants of type « are formulas.
(ii) If Bg, and A, are formulas then (Bs,A.) is a formula of
type 5.
(iii) If Agis a formula and x,, € J a variable then Ax, Az is a
formula of type pa.

Formulas A, are propositions

\PQ



Models and Submodels in Higher-Order Fuzzy Logic
LVirtues of fuzzy type theory

Fuzzy equality

Special formula
(Ao = B,) — formula of type o

\RQ



Models and Submodels in Higher-Order Fuzzy Logic
LVirtues of fuzzy type theory

Fuzzy equality

Special formula
(Ao = B,) — formula of type o

m,m e M,

(i) =(m,ym)=1 (reflexivity)
(i) =(m,m') ==(m', m) (symmetry)
(iii) =(m,mM) @ =(m',m") <=(m,m") (®-transitivity)

\RQ



Models and Submodels in Higher-Order Fuzzy Logic
LVirtues of fuzzy type theory

Fuzzy equality

Special formula

(Ao = B,) — formula of type o

m,m e M,

(i) =(m,ym)=1 (reflexivity)
(il) =(m, m') = =(m’, m) (symmetry)
(iii) =(m,mM) @ =(m',m") <=(m,m") (®-transitivity)

Ma
h,h" € Mj

[h=H]= )\ [h(m)=5 H(m)]

meM,,
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LVirtues of fuzzy type theory

General frame

M = ({Ma, 24| o € Types}, En) |

Each set M,, is associated with the corresponding type

(i) M, — set of truth values
(i) M. — some (non-empty) set
(iii) =, is a fuzzy equality on M,,
(iv) (a) Standard model: Mg, = M}
(b) General model: My, € Mj*
(V) Moo U M40)0 is closed w.r.t. operations on truth values
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Interpretation of formulas

Example (interpretation)

M(Ap) € Lis atruth value
M(Aop) is a fuzzy set in M.
(A(o€)€) is a fuzzy relation on M,
M(Ae) is a function on objects

In a general model M, each formula A, must have an
interpretation
Mp(An) € M,
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Many useful properties

Theorem (Completeness)

(a) Atheory T of FTT is consistent iff it has a general model
M.

(b) Forevery theory T of FTT and a formula A,

THA, iff Tk Ao..
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Finite models

A model M is finite if all sets M,, are finite

If a model M is finite then it is standard. \

\RQ



Models and Submodels in Higher-Order Fuzzy Logic
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Frugal model

A (general) model M is frugal if Card(M,,) < Card(J) + Ro,
a € Types

If T a consistent theory and Ea is finite and then the model
M = {M,,=.| a € Types},En) frugal.
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Relations between models

51
)ae Types ’

M2 = (M2, 22 £2)

) a€Types ’

be two models. Let us consider a set of functions

f={f: M — M2 |aec Types} (1)
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Relations between models

(i) Forall a, 8 € Types, (f~, 5, f5«) forms a commuting triple.
[V AR V-
ml,, l lm%a—f@a( )
M1 M2

(i) f°: E' — E? preserves all existing infima.
(iii) For each constant c,

f(M(ca)) = M3(Ca).
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Relations between models

(i) Forall a, 8 € Types, (f~, 5, f5«) forms a commuting triple.
[ i— Y
| LIRS

M1 M2

(i) fo: E' — E? preserves all existing infima.

(iii) For each constant c,

f(M(ca)) = M3(Ca).
Homomorphism of M and My

frM!— M2 N
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Relations between models

Embedding

fr M — M2

all functions f¢ are injections

Lemma

Each homomorphism § is necessarily an embedding of the
model M" in the model M?

| A

N,
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Special definitions

Letf: M' — M? be an embedding.

(i) M is a submodel of M2, M' c M2, if f° and f are
identities and £ is a subalgebra of £2.

(ii) Isomorphism between M and M?

M = M2

All functions in f are bijections
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Special definitions

(i) Elementary equivalent models M and M2, M' = M?2:
MU(A) =11 iff MP(Ay) =12

for arbitrary sentence A, € Formy.

(ii) Strongly elementary equivalent models M' and M2,
M'EM2if £1 = £2 and

M1 (Ao) = MZ(AO)

for arbitrary sentence A, € Form,
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Special definitions

(i) Elementary embedding § : M! — M?
fO(Mp(Ao)) = Masi(Ao)

for arbitrary formula A, € Form, and assignment p

(ii) A model M is an elementary submodel of M2,
M < M2 if M' € M? and

M;(AO) = M;zaof(AO)

for arbitrary formula A, € Form, and assignment p.
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Theorem

(@) If M'EM? then M = M2. If M =2 M? then MTEM?2.

(b) If M < M? then M = M?.

(c) If§: M' — M? and g : M? — M3 are elementary
embeddings thenfog: M' —s M3 is an elementary

embedding.
(d) If M < M? and M? < M3 then M < M3,
(e) The relations =, =, = are equivalences.
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Standard model M
(i) If My, M, are finite then all M,, for « € Types are finite.

(ii) Let Card(M.) < Rg and Card(M,) € {Xo, R1}.
If « does not contain the type o then Card(M,,) < No.
(iii) Thus, if Card(M,) = XN,, and Card(M3) < Xg then
Card(Ms,) = N, 11 and Card(M,g) = ;.
(iv) Analogously for Card(M,) < Xo and Card(M,) € {No, Ry }.
(v) If Card(M,), Card(M,) € {Rg, Xy}, or one (or both) of the
former are finite then Card(M,,) < R,, for all a € Types.
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Analogue of the downward Léwenheim-Skolem theorem

let M be a model with infinite My, M.. Let x be a cardinal such
that forv € {0, ¢}

max(p(M,), Card(Form),Xg) < x < Card(M,)

Then there is an elementary submodel Y < M such that
Card(Y,) < &, a € Types.
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LConclusions

@ Model theory of higher-order fuzzy logic — generalization
of that of first-order fuzzy logic

@ More complicated structure of models
@ Subtle interrelations between models
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