Models and Submodels in Higher-Order Fuzzy Logic

Models and Submodels in Higher-Order Fuzzy Logic

Vilém Novák

Centre of Excellence IT4Innovations division of the University of Ostrava Institute for Research and Applications of Fuzzy Modeling Ostrava 1, Czech Republic Vilem, Novak@osu.cz

In honour of Antonio Di Nola's 65th birthday Salerno, July 4-7, 2012

イロト 不良 とくほう 不良 とうほ

- Founder: B. Russel (1903,1908), R. Carnap, K. Gödel, A. Tarski, A. Turing
- Type theory as a (higher-order) logic
 - A. Church (1940), L. Henkin (1950, 1963), P. Andrews, W. Farmer
- Type theory as an effective theoretical tool in **computer science**

P. Martin-Löf

- Founder: B. Russel (1903,1908), R. Carnap, K. Gödel, A. Tarski, A. Turing
- Type theory as a (higher-order) logic

A. Church (1940), L. Henkin (1950, 1963), P. Andrews, W. Farmer

• Type theory as an effective theoretical tool in **computer science**

P. Martin-Löf

- Founder: B. Russel (1903,1908), R. Carnap, K. Gödel, A. Tarski, A. Turing
- Type theory as a (higher-order) logic

A. Church (1940), L. Henkin (1950, 1963), P. Andrews, W. Farmer

 Type theory as an effective theoretical tool in computer science

P. Martin-Löf

Seven virtues of simple type theory

W. Farmer

STT has a simple and highly uniform syntax

- 2 The semantics of STT is based on a small collection of well-established ideas
- STT is a highly expressive logic
- STT admits categorical theories of infinite structures
- There is a simple, elegant, and powerful proof system for STT
- Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated

э

Seven virtues of simple type theory

- W. Farmer
 - STT has a simple and highly uniform syntax
 - The semantics of STT is based on a small collection of well-established ideas
 - STT is a highly expressive logic
 - STT admits categorical theories of infinite structures
 - There is a simple, elegant, and powerful proof system for STT
 - Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated

э

Seven virtues of simple type theory

- W. Farmer
 - STT has a simple and highly uniform syntax
 - The semantics of STT is based on a small collection of well-established ideas
 - STT is a highly expressive logic
 - STT admits categorical theories of infinite structures
 - There is a simple, elegant, and powerful proof system for STT
 - Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated

э

Seven virtues of simple type theory

- W. Farmer
 - STT has a simple and highly uniform syntax
 - The semantics of STT is based on a small collection of well-established ideas
 - STT is a highly expressive logic
 - STT admits categorical theories of infinite structures
 - There is a simple, elegant, and powerful proof system for STT
 - Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated

э

Seven virtues of simple type theory

W. Farmer

- STT has a simple and highly uniform syntax
- The semantics of STT is based on a small collection of well-established ideas
- STT is a highly expressive logic
- STT admits categorical theories of infinite structures
- There is a simple, elegant, and powerful proof system for STT
- Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated
- There are practical extensions of STT that can be effectively implemented

Seven virtues of simple type theory

- W. Farmer
 - STT has a simple and highly uniform syntax
 - The semantics of STT is based on a small collection of well-established ideas
 - STT is a highly expressive logic
 - STT admits categorical theories of infinite structures
 - There is a simple, elegant, and powerful proof system for STT
 - Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated
 - There are practical extensions of STT that can be effectively implemented

Seven virtues of simple type theory

- W. Farmer
 - STT has a simple and highly uniform syntax
 - The semantics of STT is based on a small collection of well-established ideas
 - STT is a highly expressive logic
 - STT admits categorical theories of infinite structures
 - There is a simple, elegant, and powerful proof system for STT
 - Techniques of first-order model theory can be applied to STT; distinction between standard and nonstandard models is illuminated
 - There are practical extensions of STT that can be effectively implemented

Why **FUZZY** type theory

(i) Using FTT, a model of some deep manifestations of the vagueness phenomenon is formed

- (ii) Using FTT, the type-theoretical model of concepts and linguistic semantics can be extended to include vagueness
- (iii) Using FTT, the FLb-logic (*Fuzzy Logic in Broader Sense*) can be further developed; *formal theory of commonsense reasoning can be brought closer to the human way of thinking*.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Expressive power of FTT makes the task easier

Why **FUZZY** type theory

- (i) Using FTT, a model of some deep manifestations of the vagueness phenomenon is formed
- (ii) Using FTT, the type-theoretical model of concepts and linguistic semantics can be extended to include vagueness
- (iii) Using FTT, the FLb-logic (*Fuzzy Logic in Broader Sense*) can be further developed; *formal theory of commonsense reasoning can be brought closer to the human way of thinking.*

Expressive power of FTT makes the task easier

Why **FUZZY** type theory

- (i) Using FTT, a model of some deep manifestations of the vagueness phenomenon is formed
- (ii) Using FTT, the type-theoretical model of concepts and linguistic semantics can be extended to include vagueness
- (iii) Using FTT, the FLb-logic (*Fuzzy Logic in Broader Sense*) can be further developed; *formal theory of commonsense reasoning can be brought closer to the human way of thinking*.

Expressive power of FTT makes the task easier

Why **FUZZY** type theory

- (i) Using FTT, a model of some deep manifestations of the vagueness phenomenon is formed
- (ii) Using FTT, the type-theoretical model of concepts and linguistic semantics can be extended to include vagueness
- (iii) Using FTT, the FLb-logic (*Fuzzy Logic in Broader Sense*) can be further developed; *formal theory of commonsense reasoning can be brought closer to the human way of thinking*.

Expressive power of FTT makes the task easier

Why **FUZZY** type theory

- (i) Using FTT, a model of some deep manifestations of the vagueness phenomenon is formed
- (ii) Using FTT, the type-theoretical model of concepts and linguistic semantics can be extended to include vagueness
- (iii) Using FTT, the FLb-logic (*Fuzzy Logic in Broader Sense*) can be further developed; *formal theory of commonsense reasoning can be brought closer to the human way of thinking*.

Expressive power of FTT makes the task easier

Structure of truth values

EQ-algebra

$$\mathcal{E} = \langle \boldsymbol{E}, \wedge, \otimes, \sim, \mathbf{1} \rangle$$

(E1) $\langle E, \wedge \rangle$ is a \wedge -semilattice with the top element **1**

(E2) $\langle L, \otimes, \mathbf{1} \rangle$ is a monoid \otimes is isotone w.r.t. \leq $(a \leq b \text{ iff } a \land b = a)$

(reflexivity)

- (E4) $((a \land b) \sim c) \otimes (d \sim a) \leq c \sim (d \land b)$ (substitution) (*Leibnitz rule of indiscernibility of identicals*)
- (E5) $(a \sim b) \otimes (c \sim d) \leq (a \sim c) \sim (b \sim d)$ (congruence)
- (E6) $(a \wedge b \wedge c) \sim a \leq (a \wedge b) \sim a$
- (E7) $a \otimes b \leq a \sim b$

ヘロト ヘ戸ト ヘヨト ヘヨト

Special definitions in EQ-algebras

• good if $a \sim \mathbf{1} = a$ • $a \rightarrow b = (a \wedge b) \sim a$ (implication) • \mathcal{E} is separated if $a \sim b = \mathbf{1}$ iff a = b• If \mathcal{E} contains **0** then $\neg a = a \sim \mathbf{0}$ (negation)

In linearly ordered structure of truth values:

$$\Delta(a) = \begin{cases} \mathbf{1} & \text{if } a = \mathbf{1}, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Special definitions in EQ-algebras

• good if
$$a \sim 1 = a$$

• $a \rightarrow b = (a \wedge b) \sim a$ (implication)
• \mathcal{E} is separated if
 $a \sim b = 1$ iff $a = b$
• If \mathcal{E} contains 0 then $\neg a = a \sim 0$ (negation)

In linearly ordered structure of truth values:

$$\Delta(a) = \begin{cases} \mathbf{1} & \text{if } a = \mathbf{1}, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Types and formulas

Elementary types: o (truth values), ϵ (objects)

Types

(i) $\epsilon, o \in Types$,

(ii) If
$$lpha,eta\in$$
 Types then $(lphaeta)\in$ *Types*.

Formulas

- (i) Variables and constants of type α are formulas.
- (ii) If $B_{\beta\alpha}$ and A_{α} are formulas then $(B_{\beta\alpha}A_{\alpha})$ is a formula of type β .
- (iii) If A_{β} is a formula and $x_{\alpha} \in J$ a variable then $\lambda x_{\alpha} A_{\beta}$ is a formula of type $\beta \alpha$.

Formulas A_o are propositions

Types and formulas

Elementary types: o (truth values), ϵ (objects)

Types

(i) $\epsilon, o \in Types$,

(ii) If
$$lpha,eta\in$$
 Types then $(lphaeta)\in$ *Types*.

Formulas

- (i) Variables and constants of type α are formulas.
- (ii) If $B_{\beta\alpha}$ and A_{α} are formulas then $(B_{\beta\alpha}A_{\alpha})$ is a formula of type β .
- (iii) If A_{β} is a formula and $x_{\alpha} \in J$ a variable then $\lambda x_{\alpha} A_{\beta}$ is a formula of type $\beta \alpha$.

Formulas A_o are propositions

(日)

Fuzzy equality

Special formula

$$(A_{lpha} \equiv B_{lpha})$$
 — formula of type o

 $\begin{array}{ll} m,m' \in M_{\alpha} \\ \text{(i)} \ \stackrel{\circ}{=} (m,m) = \mathbf{1} \\ \text{(ii)} \ \stackrel{\circ}{=} (m,m') = \stackrel{\circ}{=} (m',m) \\ \text{(iii)} \ \stackrel{\circ}{=} (m,m') \otimes \ \stackrel{\circ}{=} (m',m'') \\ \text{(symmetric} \ (\text{symmetric}) \\ h,h' \in M_{\beta}^{M_{\alpha}} \end{array}$

$$[h \stackrel{\circ}{=} h'] = \bigwedge_{m \in M_{\alpha}} [h(m) \stackrel{\circ}{=}_{\beta} h'(m)]$$

(日)

Fuzzy equality

Special formula

$$(A_{\alpha} \equiv B_{\alpha})$$
 — formula of type o

$$\begin{array}{ll} m, m' \in M_{\alpha} \\ \text{(i)} \ \stackrel{\circ}{=} (m, m) = \mathbf{1} \\ \text{(ii)} \ \stackrel{\circ}{=} (m, m') = \stackrel{\circ}{=} (m', m) \\ \text{(iii)} \ \stackrel{\circ}{=} (m, m') \otimes \ \stackrel{\circ}{=} (m', m'') \le \stackrel{\circ}{=} (m, m'') \\ \text{(iii)} \ h, h' \in M_{\beta}^{M_{\alpha}} \end{array}$$

$$(\text{reflexivity})$$

$$[h \stackrel{\circ}{=} h'] = \bigwedge_{m \in M_{\alpha}} [h(m) \stackrel{\circ}{=}_{\beta} h'(m)]$$

(日)

Fuzzy equality

Special formula

$$(A_{\alpha} \equiv B_{\alpha})$$
 — formula of type o

$$\begin{array}{ll} m,m' \in M_{\alpha} \\ \text{(i)} \ \stackrel{\circ}{=} (m,m) = \mathbf{1} \\ \text{(ii)} \ \stackrel{\circ}{=} (m,m') = \stackrel{\circ}{=} (m',m) \\ \text{(iii)} \ \stackrel{\circ}{=} (m,m') \otimes \ \stackrel{\circ}{=} (m',m'') \\ \text{(iii)} \ \stackrel{\circ}{=} (m,m') \otimes \ \stackrel{\circ}{=} (m',m'') \\ \text{(\otimes-transitivity)} \\ h,h' \in M_{\beta}^{M_{\alpha}} \end{array}$$

$$[h \stackrel{\circ}{=} h'] = \bigwedge_{m \in M_{\alpha}} [h(m) \stackrel{\circ}{=}_{\beta} h'(m)]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─

General frame

$\mathcal{M} = \langle \{ \mathbf{M}_{\alpha}, \mathring{=}_{\alpha} | \ \alpha \in \mathbf{Types} \}, \mathcal{E}_{\Delta} \rangle$

Each set M_{α} is associated with the corresponding type

- (i) M_o set of truth values
- (ii) M_{ϵ} some (non-empty) set
- (iii) \doteq_{α} is a fuzzy equality on M_{α}
- (iv) (a) Standard model: $M_{\beta\alpha} = M_{\beta}^{M_{\alpha}}$
 - (b) General model: $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$

(v) $M_{oo} \cup M_{(oo)o}$ is closed w.r.t. operations on truth values

 igsir Virtues of fuzzy type theory

General frame

$$\mathcal{M} = \langle \{ \mathbf{M}_{\alpha}, \mathring{=}_{\alpha} | \alpha \in \mathbf{Types} \}, \mathcal{E}_{\Delta} \rangle$$

Each set M_{α} is associated with the corresponding type

- (i) M_o set of truth values
- (ii) M_{ϵ} some (non-empty) set
- (iii) $\stackrel{\circ}{=}_{\alpha}$ is a fuzzy equality on M_{α}
- (iv) (a) Standard model: $M_{\beta\alpha} = M_{\beta}^{M_{\alpha}}$
 - (b) General model: $M_{\beta\alpha} \subseteq M_{\beta}^{M_{\alpha}}$
- (v) $M_{oo} \cup M_{(oo)o}$ is closed w.r.t. operations on truth values

Scheme of general frame

 $(M_{\rho} = \{a \mid a \in L\}, \leftrightarrow)$ $(M_{\epsilon} = \{u \mid \varphi(u)\}, =_{\epsilon})$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Scheme of general frame

$$(M_{o} = \{a \mid a \in L\}, \leftrightarrow) \qquad (M_{\epsilon} = \{u \mid \varphi(u)\}, =_{\epsilon})$$

$$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_{o} \longrightarrow M_{o}\}, =_{oo})$$

$$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_{\epsilon} \longrightarrow M_{o}\}, =_{o\epsilon}), \dots$$

$$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_{\epsilon} \longrightarrow M_{\epsilon}\}, =_{\epsilon\epsilon}), \dots$$

$$(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_{\alpha} \longrightarrow M_{\beta}\}, =_{\beta\alpha})$$

$$\vdots$$

Scheme of general frame

$$(M_{o} = \{a \mid a \in L\}, \leftrightarrow) \qquad (M_{\epsilon} = \{u \mid \varphi(u)\}, =_{\epsilon})$$

$$(M_{oo} \subseteq \{g_{oo} \mid g_{oo} : M_{o} \longrightarrow M_{o}\}, =_{oo})$$

$$(M_{o\epsilon} \subseteq \{f_{o\epsilon} \mid f_{o\epsilon} : M_{\epsilon} \longrightarrow M_{o}\}, =_{o\epsilon})$$

$$(M_{\epsilon\epsilon} \subseteq \{f_{\epsilon\epsilon} \mid f_{\epsilon\epsilon} : M_{\epsilon} \longrightarrow M_{\epsilon}\}, =_{\epsilon\epsilon}), \dots$$

$$\vdots$$

$$(M_{\beta\alpha} \subseteq \{f_{\beta\alpha} \mid f_{\beta\alpha} : M_{\alpha} \longrightarrow M_{\beta}\}, =_{\beta\alpha})$$

$$\vdots$$

< □ > < @ > < ≥ > < ≥ > < ≥ < ≥</p>

Interpretation of formulas

Example (interpretation)

 $\mathcal{M}(A_o) \in L$ is a truth value $\mathcal{M}(A_{o\epsilon})$ is a fuzzy set in M_{ϵ} $\mathcal{M}(A_{(o\epsilon)\epsilon})$ is a fuzzy relation on M_{ϵ} $\mathcal{M}(A_{\epsilon\epsilon})$ is a function on objects

In a general model \mathcal{M} , each formula A_{α} must have an interpretation

 $\mathcal{M}_{p}(A_{\alpha}) \in M_{\alpha}$

Interpretation of formulas

Example (interpretation)

 $\mathcal{M}(A_o) \in L$ is a truth value $\mathcal{M}(A_{o\epsilon})$ is a fuzzy set in M_{ϵ} $\mathcal{M}(A_{(o\epsilon)\epsilon})$ is a fuzzy relation on M_{ϵ} $\mathcal{M}(A_{\epsilon\epsilon})$ is a function on objects

In a general model \mathcal{M} , each formula A_{α} must have an interpretation

 $\mathcal{M}_{\rho}(\mathcal{A}_{\alpha}) \in \mathcal{M}_{\alpha}$

Many useful properties

Theorem (Completeness)

(a) A theory T of FTT is consistent iff it has a general model \mathcal{M} .

(b) For every theory T of FTT and a formula A_o

$$T \vdash A_o$$
 iff $T \models A_o$.

Many useful properties

Theorem (Completeness)

(a) A theory T of FTT is consistent iff it has a general model \mathcal{M} .

(b) For every theory T of FTT and a formula A_o

 $T \vdash A_o$ iff $T \models A_o$.

A model \mathcal{M} is finite if all sets M_{α} are finite

Theorem

If a model \mathcal{M} is finite then it is standard.

A (general) model \mathcal{M} is frugal if $Card(M_{\alpha}) \leq Card(J) + \aleph_0$, $\alpha \in Types$

Theorem

If T a consistent theory and \mathcal{E}_{Δ} is finite and then the model $\mathcal{M} = \langle \{M_{\alpha}, \stackrel{\circ}{=}_{\alpha} | \alpha \in Types \}, \mathcal{E}_{\Delta} \rangle$ frugal.

Relations between models

$$\begin{split} \mathcal{M}^{1} &= \langle \left(\textit{\textit{M}}_{\alpha}^{1}, \mathring{=}_{\alpha}^{1}\right)_{\alpha \in \textit{Types}}, \mathcal{E}^{1} \rangle \\ \mathcal{M}^{2} &= \langle \left(\textit{\textit{M}}_{\alpha}^{2}, \mathring{=}_{\alpha}^{2}\right)_{\alpha \in \textit{Types}}, \mathcal{E}^{2} \rangle \end{split}$$

be two models. Let us consider a set of functions

$$\mathfrak{f} = \{ f^{\alpha} : M^{1}_{\alpha} \longrightarrow M^{2}_{\alpha} \mid \alpha \in Types \}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─

Relations between models

(i) For all $\alpha, \beta \in Types$, $(f^{\alpha}, f^{\beta}, f^{\beta \alpha})$ forms a commuting triple.

(ii) $f^o: E^1 \longrightarrow E^2$ preserves all existing infima. (iii) For each constant c_{α}

$$f^{lpha}(\mathcal{M}^{1}(\mathcal{C}_{lpha}))=\mathcal{M}^{2}(\mathcal{C}_{lpha}).$$

Homomorphism of \mathcal{M}_1 and \mathcal{M}_2

Relations between models

(i) For all $\alpha, \beta \in Types$, $(f^{\alpha}, f^{\beta}, f^{\beta\alpha})$ forms a commuting triple.

(ii) $f^o: E^1 \longrightarrow E^2$ preserves all existing infima. (iii) For each constant c_{α}

$$f^{\alpha}(\mathcal{M}^{1}(\mathcal{C}_{\alpha})) = \mathcal{M}^{2}(\mathcal{C}_{\alpha}).$$

Homomorphism of \mathcal{M}_1 and \mathcal{M}_2

$$\mathfrak{f}:\mathcal{M}^1\longrightarrow\mathcal{M}^2.$$

Relations between models

Embedding

$$\mathfrak{f}:\mathcal{M}^1\longrightarrow \mathcal{M}^2$$

all functions f^{α} are injections

_emma

Each homomorphism ${\mathfrak f}$ is necessarily an embedding of the model ${\mathcal M}^1$ in the model ${\mathcal M}^2$

Relations between models

Embedding

$$\mathfrak{f}:\mathcal{M}^1\longrightarrow \mathcal{M}^2$$

all functions f^{α} are injections

Lemma

Each homomorphism \mathfrak{f} is necessarily an embedding of the model \mathcal{M}^1 in the model \mathcal{M}^2

Definition

Let $\mathfrak{f}:\mathcal{M}^1\longrightarrow \mathcal{M}^2$ be an embedding.

(i) \mathcal{M}^1 is a submodel of \mathcal{M}^2 , $\mathcal{M}^1 \subset \mathcal{M}^2$, if f^o and f^ϵ are identities and \mathcal{E}^1 is a subalgebra of \mathcal{E}^2 .

(ii) Isomorphism between \mathcal{M}^1 and \mathcal{M}^2

$$\mathcal{M}^1 \cong \mathcal{M}^2.$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

ъ

All functions in f are bijections

Definition

(i) Elementary equivalent models \mathcal{M}^1 and \mathcal{M}^2 , $\mathcal{M}^1 \equiv \mathcal{M}^2$:

$$\mathcal{M}^1(A_o) = \mathbf{1}^1$$
 iff $\mathcal{M}^2(A_o) = \mathbf{1}^2$

for arbitrary sentence $A_o \in Form_o$.

(ii) Strongly elementary equivalent models \mathcal{M}^1 and \mathcal{M}^2 , $\mathcal{M}^1 \cong \mathcal{M}^2$, if $\mathcal{E}^1 = \mathcal{E}^2$ and

$$\mathcal{M}^1(A_o) = \mathcal{M}^2(A_o)$$

(日)

for arbitrary sentence $A_o \in Form_o$

Special definitions

Definition

(i) Elementary embedding $\mathfrak{f}:\mathcal{M}^1\longrightarrow \mathcal{M}^2$

$$f^o(\mathcal{M}^1_p(A_o)) = \mathcal{M}^2_{p\circ \mathfrak{f}}(A_o)$$

for arbitrary formula $A_o \in Form_o$ and assignment p(ii) A model \mathcal{M}^1 is an elementary submodel of \mathcal{M}^2 , $\mathcal{M}^1 \prec \mathcal{M}^2$, if $\mathcal{M}^1 \subset \mathcal{M}^2$ and

$$\mathcal{M}^1_p(A_o) = \mathcal{M}^2_{p \circ \mathfrak{f}}(A_o)$$

・ロット (雪) (日) (日)

for arbitrary formula $A_o \in Form_o$ and assignment p.

Theorem

(a) If $\mathcal{M}^1 \triangleq \mathcal{M}^2$ then $\mathcal{M}^1 \equiv \mathcal{M}^2$. If $\mathcal{M}^1 \cong \mathcal{M}^2$ then $\mathcal{M}^1 \triangleq \mathcal{M}^2$.

(b) If
$$\mathcal{M}^1 \prec \mathcal{M}^2$$
 then $\mathcal{M}^1 \equiv \mathcal{M}^2$.

(c) If $\mathfrak{f} : \mathcal{M}^1 \longrightarrow \mathcal{M}^2$ and $\mathfrak{g} : \mathcal{M}^2 \longrightarrow \mathcal{M}^3$ are elementary embeddings then $\mathfrak{f} \circ \mathfrak{g} : \mathcal{M}^1 \longrightarrow \mathcal{M}^3$ is an elementary embedding.

- (d) If $\mathcal{M}^1 \prec \mathcal{M}^2$ and $\mathcal{M}^2 \prec \mathcal{M}^3$ then $\mathcal{M}^1 \prec \mathcal{M}^3$.
- (e) The relations $\cong, \equiv, \triangleq$ are equivalences.

Standard model ${\cal M}$

(i) If M_o, M_ϵ are finite then all M_α for $\alpha \in Types$ are finite.

(ii) Let $\operatorname{Card}(M_{\epsilon}) < \aleph_0$ and $\operatorname{Card}(M_o) \in \{\aleph_0, \aleph_1\}$. If α does not contain the type *o* then $\operatorname{Card}(M_{\alpha}) < \aleph_0$.

- (iii) Thus, if $\operatorname{Card}(M_{\alpha}) = \aleph_{\eta}$ and $\operatorname{Card}(M_{\beta}) < \aleph_{0}$ then $\operatorname{Card}(M_{\beta\alpha}) = \aleph_{\eta+1}$ and $\operatorname{Card}(M_{\alpha\beta}) = \aleph_{\eta}$.
- (iv) Analogously for $\operatorname{Card}(M_o) < \aleph_0$ and $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$.
- (v) If $\operatorname{Card}(M_o)$, $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$, or one (or both) of the former are finite then $\operatorname{Card}(M_{\alpha}) < \aleph_{\omega}$ for all $\alpha \in Types$.

Standard model ${\cal M}$

- (i) If M_o, M_ϵ are finite then all M_α for $\alpha \in Types$ are finite.
- (ii) Let $\operatorname{Card}(M_{\epsilon}) < \aleph_0$ and $\operatorname{Card}(M_o) \in \{\aleph_0, \aleph_1\}$. If α does not contain the type *o* then $\operatorname{Card}(M_{\alpha}) < \aleph_0$.
- (iii) Thus, if $\operatorname{Card}(M_{\alpha}) = \aleph_{\eta}$ and $\operatorname{Card}(M_{\beta}) < \aleph_{0}$ then $\operatorname{Card}(M_{\beta\alpha}) = \aleph_{\eta+1}$ and $\operatorname{Card}(M_{\alpha\beta}) = \aleph_{\eta}$.
- (iv) Analogously for $\operatorname{Card}(M_o) < \aleph_0$ and $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$.
- (v) If $\operatorname{Card}(M_o)$, $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$, or one (or both) of the former are finite then $\operatorname{Card}(M_{\alpha}) < \aleph_{\omega}$ for all $\alpha \in Types$.

Standard model \mathcal{M}

- (i) If M_o, M_ϵ are finite then all M_α for $\alpha \in Types$ are finite.
- (ii) Let $\operatorname{Card}(M_{\epsilon}) < \aleph_0$ and $\operatorname{Card}(M_o) \in \{\aleph_0, \aleph_1\}$. If α does not contain the type *o* then $\operatorname{Card}(M_{\alpha}) < \aleph_0$.
- (iii) Thus, if $\operatorname{Card}(M_{\alpha}) = \aleph_{\eta}$ and $\operatorname{Card}(M_{\beta}) < \aleph_{0}$ then $\operatorname{Card}(M_{\beta\alpha}) = \aleph_{\eta+1}$ and $\operatorname{Card}(M_{\alpha\beta}) = \aleph_{\eta}$.
- (iv) Analogously for $\operatorname{Card}(M_o) < \aleph_0$ and $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$.
- (v) If $\operatorname{Card}(M_o)$, $\operatorname{Card}(M_e) \in \{\aleph_0, \aleph_1\}$, or one (or both) of the former are finite then $\operatorname{Card}(M_\alpha) < \aleph_\omega$ for all $\alpha \in Types$.

Standard model \mathcal{M}

- (i) If M_o, M_ϵ are finite then all M_α for $\alpha \in Types$ are finite.
- (ii) Let $\operatorname{Card}(M_{\epsilon}) < \aleph_0$ and $\operatorname{Card}(M_o) \in \{\aleph_0, \aleph_1\}$. If α does not contain the type *o* then $\operatorname{Card}(M_{\alpha}) < \aleph_0$.
- (iii) Thus, if $\operatorname{Card}(M_{\alpha}) = \aleph_{\eta}$ and $\operatorname{Card}(M_{\beta}) < \aleph_{0}$ then $\operatorname{Card}(M_{\beta\alpha}) = \aleph_{\eta+1}$ and $\operatorname{Card}(M_{\alpha\beta}) = \aleph_{\eta}$.
- (iv) Analogously for $\operatorname{Card}(M_o) < \aleph_0$ and $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$.
- (v) If $\operatorname{Card}(M_o)$, $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$, or one (or both) of the former are finite then $\operatorname{Card}(M_{\alpha}) < \aleph_{\omega}$ for all $\alpha \in Types$.

Standard model \mathcal{M}

- (i) If M_o, M_ϵ are finite then all M_α for $\alpha \in Types$ are finite.
- (ii) Let $\operatorname{Card}(M_{\epsilon}) < \aleph_0$ and $\operatorname{Card}(M_o) \in \{\aleph_0, \aleph_1\}$. If α does not contain the type *o* then $\operatorname{Card}(M_{\alpha}) < \aleph_0$.
- (iii) Thus, if $\operatorname{Card}(M_{\alpha}) = \aleph_{\eta}$ and $\operatorname{Card}(M_{\beta}) < \aleph_{0}$ then $\operatorname{Card}(M_{\beta\alpha}) = \aleph_{\eta+1}$ and $\operatorname{Card}(M_{\alpha\beta}) = \aleph_{\eta}$.
- (iv) Analogously for $\operatorname{Card}(M_o) < \aleph_0$ and $\operatorname{Card}(M_{\epsilon}) \in \{\aleph_0, \aleph_1\}$.
- (v) If $Card(M_o)$, $Card(M_e) \in \{\aleph_0, \aleph_1\}$, or one (or both) of the former are finite then $Card(M_\alpha) < \aleph_\omega$ for all $\alpha \in Types$.

Analogue of the downward Löwenheim-Skolem theorem

Theorem

let M be a model with infinite M_o, M_ϵ . Let κ be a cardinal such that for $\gamma \in \{o, \epsilon\}$

 $\max(p(M_o), \operatorname{Card}(Form), \aleph_0) \le \kappa \le \operatorname{Card}(M_{\gamma})$

Then there is an elementary submodel $\mathcal{Y} \prec \mathcal{M}$ such that $Card(Y_{\alpha}) \leq \kappa, \alpha \in Types.$

Conclusions

Model theory of higher-order fuzzy logic — generalization of that of first-order fuzzy logic

- More complicated structure of models
- Subtle interrelations between models

Conclusions

- Model theory of higher-order fuzzy logic generalization of that of first-order fuzzy logic
- More complicated structure of models
- Subtle interrelations between models

Conclusions

 Model theory of higher-order fuzzy logic — generalization of that of first-order fuzzy logic

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图

- More complicated structure of models
- Subtle interrelations between models

lodels and	Submodels	in Higher-	Order Fuzzv	Loaic

References

- P. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, Kluwer, Dordrecht, 2002.
- A. Church, *A formulation of the simple theory of types*, J. Symb. Logic 5 (1940) 56–68.
- W. M. Farmer, *The seven virtues of simple type theory*, Journal of Applied Logic 6 (2008) 267–286.
- L. Henkin, Completeness in the theory of types, J. Symb. Logic 15 (1950) 81–91.
- L. Henkin, A theory of propositional types, Fundamenta Math. 52 (1963) 323–344.
- V. Novák, *On fuzzy type theory*, Fuzzy Sets and Systems 149 (2005) 235–273.
- V. Novák, EQ-algebra-based fuzzy type theory and its extensions, Logic Journal of the IGPL 19(2011), 512-542

・ コット (雪) (小田) (コット 日)

 V. Novák, *Elements of Model Theory in Higher Order Fuzzy Logic*, Fuzzy Sets and Systems (to appear).