MV-modules

Ioana Leuștean

Faculty of Mathematics and Computer Science
University of Bucharest

ManyVal'2012
4-7 July, Salerno, Italy

In honor of Antonio Di Nola's 65th birthday

Happy Birthday!

Part I: MV-modules

MV-algebras

- MV-algebras are the algebraic structures of the ∞-valued Łukasiewicz logic.
- (C.C.Chang, 1958) MV-algebra $\left(A, \oplus,{ }^{*}, 0\right)$

1. $(A, \oplus, 0)$ abelian monoid,
2. $\left(x^{*}\right)^{*}=x$,
3. $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$,
4. $0^{*} \oplus x=0^{*}$.

- $1:=0^{*}, x \odot y:=\left(x^{*} \oplus y^{*}\right)^{*}, x \vee y:=\left(y^{*} \oplus x\right)^{*} \oplus x$, $x \wedge y:=\left(x^{*} \vee y\right)^{*}$
- Standard model: $\left([0,1], \oplus,{ }^{*}, 0\right)$

$$
\begin{aligned}
& x \oplus y=\min (x+y, 1), x \odot y=\max (x+y-1,0) \\
& x^{*}=1-x, 1=0^{*}, x \vee y=\max (x, y), x \wedge y=\min (x, y)
\end{aligned}
$$

- A Boolean algebra iff $\oplus=\vee$ and $\odot=\wedge$.

MV-algebras and lattice-ordered groups

$(G,+, 0, \leq)$ is a lattice-ordered group if $(G,+, 0)$ group, (G, \leq) lattice, $x \leq y$ implies $x+z \leq y+z$ for any $x, y, z \in G$.

- u strong unit: $u \geq 0$, for any $x \in G$ there is $n \geq 1$ s.t. $x \leq n u$.

Mundici, 1986

For any MV-algebra A there exists an abelian lattice-ordered group with strong unit (G, u) such that $A \simeq[0, u]_{G}$.
The category of MV-algebras is equivalent with the category of lattice-ordered groups with strong unit.

- $\Gamma(G, u)=\left([0, u]_{G}, \oplus,{ }^{*}, 0\right): x \oplus y=(x+y) \wedge 1, x^{*}=1-x$.

Adding a product

to a lattice-ordered group, one gets

- lattice-ordered rings
or
- lattice-ordered modules

PMV-algebras

are unit intervals in lattice-ordered rings with strong unit.
Di Nola, Dvurečenskij, 2001
PMV-algebra (P, \cdot), where P is an MV-algebra and $\cdot: P \times P \rightarrow P$

- For any PMV-algebra (P, \cdot) there exists a lattice-ordered ring with strong unit (R, \cdot, v) such that $P \simeq[0, v]_{R}$.
The category of PMV-algebras is equivalent with the category of lattice-ordered rings with strong unit.
- The class of PMV-algebras is equational.

Montagna, 2005
As a PMV-algebra, $[0,1]$ generates the quasi-variety defined by $x \cdot x=0 \Rightarrow x=0$.

Lattice-ordered modules

Let (R, \cdot, v) be a unital lattice-ordered ring. A pair (Q, \circ) is a lattice-ordered module over R if Q is an abelian lattice-ordered group and $\varphi: R \times Q \rightarrow Q$ such that:
$(\ell \mathrm{M} 1) r \circ(x+y)=r \circ x+r \circ y$,
$(\ell \mathrm{M} 2)(r+t) \circ x=r \circ x+t \circ x$,
$(\ell M 3)(r \cdot t) \circ x=r \circ(t \circ x)$,
($\ell \mathrm{M} 4) r \geq 0, x \geq 0 \Rightarrow r \circ x \geq 0$.
(ℓ M5) $v \circ x=x$,
whenever $r, t \in R$ and $x, y \in Q$.
Steinberg, Lattice-ordered rings and modules, Springer, 2010, 632 pages

Lattice-ordered modules over \mathbb{R} are called Riesz spaces.

MV-module

Di Nola, Flondor, I.L., 2003
Main example: $[0, u]_{Q} /[0, v]_{R}$
(R, \cdot, v) unital lattice-ordered ring, v is strong unit
(Q, u) lattice-ordered module over $(R, v), u$ is strong unit

Let (P, \cdot) be a PMV-algebra. An MV-module over P is a pair (M, \circ), where M is an MV-algebra and

$$
\circ: P \times M \rightarrow M
$$

such that, whenever $x, y \in M$ and $t, r \in P$:
$(\mathrm{MvM} 1)$ if $x \leq y^{*}$ then $(r \circ x) \leq(r \circ y)^{*}$ and

$$
r \circ(x \oplus y)=(r \circ x) \oplus(r \circ y)
$$

(MvM2) if $r \leq t^{*}$ then $(r \circ x) \leq(t \circ x)^{*}$ and

$$
(r \oplus t) \circ x=(r \circ x) \oplus(t \circ x)
$$

$(\mathrm{MvM} 3)(r \cdot t) \circ x=r \circ(t \circ x)$,
$(\mathrm{MvM} 4) 1_{P} \circ x=x$.

MV-modules

Extension of Mundici's equivalence (R, \cdot, v) lattice-ordered ring, v strong unit, $P=[0, v]_{R}$ If (M, \circ) is an MV-module over P then there exists a lattice-ordered module with strong unit (Q, u) such that $M \simeq[0, u]_{Q}$.

The category of MV-modules over P is equivalent with the category of lattice-ordered modules with strong unit over R.
$(R, \cdot, v)=(\mathbb{R}, \cdot, 1)$
Riesz MV-algebras are MV-modules over $[0,1]$.

MV-modules

Equational characterization
(M, \circ) is an MV-module over P iff the following identities are satisfied for any $r, t \in P$ and $x, y \in M$:
$(\mathrm{M} 1)(r \circ x) \odot((r \vee t) \circ x)^{*}=0$,
$(\mathrm{M} 2)\left(r \odot t^{*}\right) \circ x=(r \circ x) \odot((r \wedge t) \circ x)^{*}$,
(M3) $(r \cdot t) \circ x=r \circ(t \circ x)$,
$(\mathrm{M} 4) r \circ\left(x \odot y^{*}\right)=(r \circ x) \odot(r \circ y)^{*}$,
(M5) $1 \circ x=x$.

Examples

- The lexicographic product
- The tensor product

Examples

- The lexicographic product
(R, \cdot, v) lattice-ordered ring, $P=[0, v]_{R}, G$ lattice-ordered group
$M=[(0,0),(v, 0)]_{R \times_{\text {lex }} G}=\Gamma_{R}\left(R \times_{\text {lex }} G,(v, 0)\right)$
$\circ:[0, v]_{R} \times M \rightarrow M, r \circ(q, x):=(r \cdot q, x)$

$$
\text { for } r, q \in[0, v]_{R}, x \in M
$$

(M, \circ) MV-module over P
Problems

- Characterize the class \mathcal{K} of MV-modules obtained in this way.
- Investigate the functor $\Delta_{P}: \mathcal{A} \mathcal{L G} \rightarrow \mathcal{K}$.

Remark
If $R=\mathbb{Z}$, then we get Di Nola's functor $\Delta: \mathcal{A} \mathcal{L G} \rightarrow \mathcal{P e r f}$.
If $R=\mathbb{R}$, then we get "Riesz MV-algebras", as defined by
Di Nola and Lettieri in 1996.

Bilinear functions and bimorphisms

A, B, C MV-algebras

- $\omega: A \rightarrow B$ is linear if $\omega(x \oplus y)=\omega(x)+\omega(y)$ whenever $x \leq y^{*}$.
$-\beta: A \times B \rightarrow C$ is bilinear if it is linear in each argument.
- $\beta: A \times B \rightarrow C$ is a bimorphism if it is bilinear and

$$
\begin{aligned}
& \beta\left(a, b_{1} \vee b_{2}\right)=\beta\left(a, b_{1}\right) \vee \beta\left(a, b_{2}\right), \\
& \beta\left(a_{1} \vee a_{2}, b\right)=\beta\left(a_{1}, b\right) \vee \beta\left(a_{2}, b\right), \\
& \beta\left(a, b_{1} \wedge b_{2}\right)=\beta\left(a, b_{1}\right) \wedge \beta\left(a, b_{2}\right), \\
& \beta\left(a_{1} \wedge a_{2}, b\right)=\beta\left(a_{1}, b\right) \wedge \beta\left(a_{2}, b\right),
\end{aligned}
$$

whenever $a, a_{1}, a 2 \in A$ and $b, b_{1}, b_{2} \in B$.

The tensor product $\otimes_{m v}$ of MV-algebras

A, B are MV-algebras

Mundici, 1999

The tensor product of A and B is an MV-algebra $A \otimes_{m v} B$ together with a bimorphism $\beta: A \times B \rightarrow A \otimes B$ satisfying the following universal property:
for any MV-algebra C and bimorphism $\gamma: A \times B \rightarrow C$ there exists a unique morphism $h: A \otimes B \rightarrow C$ such that $h \circ \beta \rightarrow \lambda$.

Flondor, I.L., 2003
If P is a PMV-algebra then $P \otimes_{m v} A$ is an MV-module over P for any MV-algebra A.

The tensor product \otimes_{0} of MV-algebras

A, B are MV-algebras
Flondor, I.L, 2003 (following Martinez, 1972)
The \otimes_{0} tensor product of A and B is an MV-algebra $A \otimes_{\circ} B$ together with a bilinear function $\beta: A \times B \rightarrow A \otimes B$ satisfying the following universal property:
for any MV-algebra C and bilinear $\gamma: A \times B \rightarrow C$ there exists a unique morphism $h: A \otimes B \rightarrow C$ such that $h \circ \beta \rightarrow \gamma$.
$A \times B \xrightarrow{\beta} A \otimes_{0} B$

Scalar extension property: P PMV-algebra
$P \otimes_{0} A$ is MV-module over P for any MV-algebra A.

P (unital) PMV-chain

(\mathbf{T}, \mathbf{U}) adjoint functors
$\mathbf{T}: \mathcal{M V} \rightarrow \mathcal{M V}$ Mod $_{P}, T(M):=P \otimes_{m v} M$
$\mathbf{U}: \mathcal{M V} \operatorname{Mod}_{p} \rightarrow \mathcal{M V}$ the forgetful functor
$\operatorname{Free}_{\mathcal{M V M o d p}}(X) \simeq P \otimes_{m v} \operatorname{Free}_{\mathcal{M V}}(X)$
$P \otimes_{m v} M$ is the MV-module over P generated by M.
Logic approach
The propositional calculus of MV-modules over P has completeness w.r.t. chains.

If $P=[0,1]$ then we also have standard completeness, i.e. an identity holds in any Riesz MV-algebra iff it holds in $[0,1]$.

Conclusions

For MV-modules one has:

- extension of Mundici's equivalence,
- ideal theory and representation w.r.t. linearly ordered structure,
- equational characterization,
- general methods for obtaining modules from algebras,
- characterization of free structures,
- logical approach.

Part II: a problem
 Work in progress!

Stochastic independence

Riečan and Mundici, 2002
Given two σ-complete MV-algebras M and N , let us agree to define their σ-tensor product by the following procedure:

Assuming M and N to be probability MV-algebras, generalize the classical theory of "stochastically independent" σ-subalgebras as defined in Fremlin's treatise [Measure Theory, 325L].

States. Probability MV-algebras.

A MV-algebra
A state is a linear function $s: A \rightarrow[0,1]$ such that $s\left(1_{A}\right)=1$.

- s is faithful if $s(x)=0$ implies $x=0$.
- If A is σ-complete then s is a σ-state if $s\left(x_{n}\right) \nearrow s(x)$ whenever $\left\{x_{n}\right\}_{n} \subseteq A$ and $x_{n} \nearrow x$.
- If $\left(A, s_{A}\right),\left(B, s_{B}\right) M V$-algebras with states then $s_{A} \times s_{B}: A \times B \rightarrow[0,1], s_{A} \times s_{B}(a, b):=s_{A}(a) \cdot s_{B}(b)$ for any $a \in A, b \in B$.
- A probability MV-algebra is a pair (A, s), where A is a σ-complete MV-algebra and s is a faithful σ-state.

Independence for MV-algebras

I.L., ManyVal 2008, JLC 2011

Assume \mathcal{K} is a class of MV-algebras with states.
Given $\left(A, s_{A}\right),\left(B, s_{B}\right)$ in \mathcal{K} there exists $\left(T, s_{T}\right)$ in \mathcal{K} and $\beta: A \times B \rightarrow T$ bilinear such that:

- $s_{T} \circ \beta=s_{A} \times s_{B}$,
- universal property for any MV-algebra C and bilinear $\gamma: A \times B \rightarrow C$ there exists a unique morphism $h: A \otimes B \rightarrow C$ such that $h \circ \beta \rightarrow \gamma$.

Solutions

- If A and B are Boolean algebras then $T=A \otimes B$.
- $T=A \otimes_{m v} B$ or $T=A \otimes_{0} B$, depending on \mathcal{K}
- s_{T} is extremal state, i.e. $s_{T}: T \rightarrow[0,1] \mathrm{MV}$-algebra homomorphism

We obtained solutions for:

- $\mathcal{K}=\mathrm{MV}$-algebras with states,
- $\mathcal{K}=\mathrm{MV}$-algebras with extremal states,
- $\mathcal{K}=$ semisimple MV-algebras.

No solution for probability MV-algebras!

The problem

$\left(A, s_{A}\right),\left(B, s_{B}\right)$ probability MV-algebras
Define a probability MV-algebra (T, s_{T}) and a bilinear function $\beta: A \times B \rightarrow T$ such that:
$-s_{T} \circ \beta=s_{A} \times s_{B}$,

- universal property

Main ingredients

- 2-divisible MV-algebras
- state-completion of an MV-algebra
- concrete representation of state-complete Riesz MV-algebras
- measure theoretical construction

Step 1: the 2-divisible hull

Fedel, Keimel, Montagna, Roth, 2012

- An MV-algebra A is 2-divisible if for any $x \in A$ there exists $y \in A$ such that $y \oplus y=x$.
- Any MV-algebra A has a 2-divisible hull A^{d}.
- For any (faithful) state $s: A \rightarrow[0,1]$ there exists a unique (faithful) state $s^{d}: A^{d} \rightarrow[0,1]$ such that $\left.s^{d}\right|_{A}=s$.

Step 2: the state-completion

(A, s) probability MV-algebra

- A^{d} the 2-divisble hull of $A, s^{d}: A^{d} \rightarrow[0,1]$

$$
\rho^{d}: A^{d} \times A^{d} \rightarrow[0,1]
$$

$$
\rho^{d}(x, y):=s^{d}(d(x, y)) \text { metric on } A^{d}
$$

$A^{d c}$ the Cauchy completion of A^{d} w.r.t. ρ^{d} $A^{d c}=\left\{\left[\left\{a_{n}\right\}_{n}\right] \mid\left\{a_{n}\right\}_{n}\right.$ Cauchy sequence in $\left.A^{d}\right\}$ $s^{d c}\left(\left[\left\{a_{n}\right\}_{n}\right]\right)=\lim _{n} s^{d}\left(a_{n}\right)$

- I.L., ManyVal 2008, JLC 2011
$\left(A^{d c}, s^{d c}\right)$ is a probability MV-algebra
- $A \hookrightarrow A^{d c}, \quad a \mapsto[(a)]$
embedding of σ-continuous MV-algebras.

Remark
$A^{d c}$ 2-divisible σ-complete MV-algebra, hence there exists a Riesz space with strong unit (V, u) such that $A^{d c} \simeq[0, u]_{V}$, i.e.
$A^{d c}$ is a Riesz MV-algebra.

Concrete representation state-complete Riesz MV-algebras

(X, Ω, μ) measure space

- $L_{1}(\mu)$ the Riesz space of Lebesgue integrable functions on X, provided we identify any two that are equal almost everywhere.
- $L_{1}(\mu)_{u}=[\mathbf{0}, \mathbf{1}]_{L_{1}(\mu)}$

I.L., ManyVal 2010, IPMU 2012

For any state-complete Riesz MV-algebra (M, s) there exists a measure space (X, Ω, μ) such that $M \simeq L_{1}(\mu)_{u}$.
This result is an MV-algebraic version of Kakutani's concrete representation of abstract L-spaces.

$$
\begin{gathered}
A \hookrightarrow A^{d c} \simeq L_{1}\left(\mu_{A}\right)_{u} \\
A \ni a \mapsto f_{a} \in L_{1}\left(\mu_{A}\right)_{u}
\end{gathered}
$$

$$
B \hookrightarrow B^{d c} \simeq L_{1}\left(\mu_{B}\right)_{u}
$$

$$
B \ni b \mapsto f_{b} \in L_{1}\left(\mu_{B}\right)_{u}
$$

The product measure

$\left(X_{A}, \Omega_{A}, \mu_{A}\right),\left(X_{B}, \Omega_{B}, \mu_{B}\right)$ measure spaces
Fremlin, MT [253F,253G]
There is a measure space $\left(X_{A} \times X_{B}, \Lambda, \lambda\right)$ such that
$-\otimes: L_{1}\left(\mu_{A}\right) \times L_{1}\left(\mu_{B}\right) \rightarrow L_{1}(\lambda)$ bimorphism $(f, g) \mapsto f \otimes g$

- $\int(f \otimes g) d \lambda=\int f d \mu_{A} \int g d \mu_{B}$ whenever $f \in L_{1}\left(\mu_{A}\right), g \in L_{1}\left(\mu_{B}\right)$
- $f \otimes g \geq 0$ in $L_{1}(\lambda)$ whenever $f \geq 0$ and $g \geq 0$.

The product measure

- Universal property For any Banach lattice W (norm complete Riesz space) and bilinear function ϕ there exists a unique linear function ω such that $\omega \circ \otimes=\phi$.

$$
\begin{gathered}
L_{1}\left(\mu_{A}\right) \times L_{1}\left(\mu_{B}\right) \stackrel{\otimes}{\stackrel{\otimes}{\infty}} L_{1}(\lambda) \\
W
\end{gathered}
$$

$\left(X_{A} \times X_{B}, \Lambda, \lambda\right)$ the product space

$\left(A, s_{A}\right),\left(B, s_{B}\right)$ probability MV-algebras

- $\left(X_{A}, \Omega_{A}, \mu_{A}\right)$ L-measure space, $A^{d c} \simeq L_{1}\left(\mu_{A}\right)_{u}, a \mapsto f_{a}$
- $\left(X_{B}, \Omega_{B}, \mu_{B}\right) L$-measure space, $B^{d c} \simeq L_{1}\left(\mu_{B}\right)_{u}, b \mapsto f_{b}$
- $\left(X_{A} \times X_{B}, \Lambda, \lambda\right)$ the product space
- $T_{A, B}=L_{1}(\lambda)_{u}$
- $s_{T}: T \rightarrow[0,1], s_{T}(f)=\int f d \lambda$
- $\beta: A \times B \rightarrow T, \beta(a, b)=f_{a} \otimes f_{b}$ bimorphism
- $s_{T}(\beta(a, b))=\int f_{a} \otimes f_{b} d \lambda=\int f d \mu_{A} \int g d \mu_{B}=s_{A}(a) s_{B}(b)$ for any $a \in A, b \in B$
- $\left(T, s_{T}\right)$ is a probability MV-algebra

Universal property for $\left(T, s_{T}\right)$

$\left(C, s_{C}\right)$ probability MV-algebra, $\gamma: A \times B \rightarrow C$ bilinear function

- Any bilinear function $\gamma: A \times B \rightarrow C$ admits a unique bilinear extension $\gamma^{d}: A^{d} \times B^{d} \rightarrow C^{d}$.
- Any bilinear function $\gamma^{d}: A^{d} \times B^{d} \rightarrow C^{d}$ admits a unique bilinear extension $\gamma^{d c}: A^{d c} \times B^{d c} \rightarrow C^{d c}$ by $\gamma^{d c}\left(\left[\left\{a_{n}\right\}_{n}\right],\left[\left\{b_{n}\right\}_{n}\right]\right)=\left[\left\{\gamma^{d}\left(a_{n}, b_{n}\right)\right\}_{n}\right]$

Universal property for $\left(T, s_{T}\right)$

- For any probability MV-algebra $\left(C, s_{C}\right)$ and any bilinear function $\gamma: A \times B \rightarrow C$ there exists a unique linear function $\omega: T \rightarrow C^{c d}$ such that $\omega(\beta(a, b))=\gamma(a, b)$ whenever $a \in A, b \in B$, i.e. $\omega\left(f_{a} \otimes f_{b}\right)=f_{\gamma(a, b)}$ whenever $a \in A, b \in B$.

Extension result

If (X, Ω, μ) is a measure space, then $\mathbf{1}$ is a weak unit of $L_{1}(\mu)$.
Weak unit
If V is a Riesz space, an element $e \geq 0$ in V is a weak unit if $(x \wedge n e) \nearrow x$ for any $x \geq 0$ in V.

Proposition.
Assume V_{1} and V_{2} are σ-complete Riesz spaces, $e_{1} \in V_{1}$ and $e_{2} \in V_{2}$ are weak units.

Then any linear function $\omega:\left[0, e_{1}\right]_{V_{1}} \rightarrow\left[0, e_{2}\right]_{V_{2}}$ can be extended to a linear function $\widetilde{\omega}: V_{1} \rightarrow V_{2}$.

Thank you for your attention!

