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Part I: MV-modules



MV-algebras

I MV-algebras are the algebraic structures of the ∞-valued
 Lukasiewicz logic.

I (C.C.Chang, 1958) MV-algebra (A,⊕,∗ , 0)
1. (A,⊕, 0) abelian monoid,
2. (x∗)∗ = x ,
3. (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x ,
4. 0∗ ⊕ x = 0∗.

I 1 := 0∗, x � y := (x∗ ⊕ y∗)∗, x ∨ y := (y∗ ⊕ x)∗ ⊕ x ,
x ∧ y := (x∗ ∨ y)∗

I Standard model: ([0, 1],⊕,∗ , 0)
x ⊕ y = min(x + y , 1), x � y = max(x + y − 1, 0),
x∗ = 1− x , 1 = 0∗, x ∨ y = max(x , y), x ∧ y = min(x , y)

I A Boolean algebra iff ⊕ = ∨ and � = ∧.



MV-algebras and lattice-ordered groups

(G ,+, 0,≤) is a lattice-ordered group if
(G ,+, 0) group, (G ,≤) lattice,
x ≤ y implies x + z ≤ y + z for any x , y , z ∈ G .

I u strong unit: u ≥ 0, for any x ∈ G there is n ≥ 1 s.t. x ≤ nu.

Mundici, 1986
For any MV-algebra A there exists an abelian lattice-ordered group
with strong unit (G , u) such that A ' [0, u]G .
The category of MV-algebras is equivalent with the category of
lattice-ordered groups with strong unit.

I Γ(G , u) = ([0, u]G ,⊕,∗ , 0): x ⊕ y = (x + y) ∧ 1, x∗ = 1− x .



Adding a product

to a lattice-ordered group, one gets

I lattice-ordered rings

or

I lattice-ordered modules



PMV-algebras

are unit intervals in lattice-ordered rings with strong unit.

Di Nola, Dvurečenskij, 2001

PMV-algebra (P, ·), where P is an MV-algebra and · : P ×P → P

I For any PMV-algebra (P, ·) there exists a lattice-ordered ring
with strong unit (R, ·, v) such that P ' [0, v ]R .
The category of PMV-algebras is equivalent with the category
of lattice-ordered rings with strong unit.

I The class of PMV-algebras is equational.

Montagna, 2005

As a PMV-algebra, [0, 1] generates the quasi-variety defined by
x · x = 0⇒ x = 0.



Lattice-ordered modules

Let (R, ·, v) be a unital lattice-ordered ring. A pair (Q, ◦) is a
lattice-ordered module over R if Q is an abelian lattice-ordered
group and ϕ : R × Q → Q such that:

(`M1) r ◦ (x + y) = r ◦ x + r ◦ y ,
(`M2) (r + t) ◦ x = r ◦ x + t ◦ x ,
(`M3) (r · t) ◦ x = r ◦ (t ◦ x),
(`M4) r ≥ 0, x ≥ 0⇒ r ◦ x ≥ 0.
(`M5) v ◦ x = x ,
whenever r , t ∈ R and x , y ∈ Q.

Steinberg, Lattice-ordered rings and modules, Springer, 2010,
632 pages

Lattice-ordered modules over R are called Riesz spaces.



MV-module

Di Nola, Flondor, I.L., 2003

Main example: [0, u]Q/[0, v ]R
(R, ·, v) unital lattice-ordered ring, v is strong unit
(Q, u) lattice-ordered module over (R, v), u is strong unit

Let (P, ·) be a PMV-algebra. An MV-module over P is a pair
(M, ◦), where M is an MV-algebra and

◦ : P ×M → M

such that, whenever x , y ∈ M and t, r ∈ P:
(MvM1) if x ≤ y∗ then (r ◦ x) ≤ (r ◦ y)∗ and

r ◦ (x ⊕ y) = (r ◦ x)⊕ (r ◦ y),
(MvM2) if r ≤ t∗ then (r ◦ x) ≤ (t ◦ x)∗ and

(r ⊕ t) ◦ x = (r ◦ x)⊕ (t ◦ x),
(MvM3) (r · t) ◦ x = r ◦ (t ◦ x),
(MvM4) 1P ◦ x = x .



MV-modules

Extension of Mundici’s equivalence

(R, ·, v) lattice-ordered ring, v strong unit, P = [0, v ]R

If (M, ◦) is an MV-module over P then there exists a
lattice-ordered module with strong unit (Q, u) such that
M ' [0, u]Q .

The category of MV-modules over P is equivalent with the
category of lattice-ordered modules with strong unit over R.

(R , ·, v) = (R, ·, 1)

Riesz MV-algebras are MV-modules over [0, 1].



MV-modules

Equational characterization

(M, ◦) is an MV-module over P iff the following identities are
satisfied for any r , t ∈ P and x ,y ∈ M:

(M1) (r ◦ x)� ((r ∨ t) ◦ x)∗ = 0,
(M2) (r � t∗) ◦ x = (r ◦ x)� ((r ∧ t) ◦ x)∗,
(M3) (r · t) ◦ x = r ◦ (t ◦ x),
(M4) r ◦ (x � y∗) = (r ◦ x)� (r ◦ y)∗,
(M5) 1 ◦ x = x .



Examples

I The lexicographic product

I The tensor product



Examples

I The lexicographic product

(R, ·, v) lattice-ordered ring, P = [0, v ]R , G lattice-ordered group

M = [(0, 0), (v , 0)]R×lexG = ΓR(R ×lex G , (v , 0))

◦ : [0, v ]R ×M → M, r ◦ (q, x) := (r · q, x)
for r , q ∈ [0, v ]R , x ∈ M

(M, ◦) MV-module over P

Problems

I Characterize the class K of MV-modules obtained in this way.

I Investigate the functor ∆P : ALG → K.

Remark
If R = Z, then we get Di Nola’s functor ∆ : ALG → Perf .
If R = R, then we get ”Riesz MV-algebras”, as defined by
Di Nola and Lettieri in 1996.



Bilinear functions and bimorphisms

A, B, C MV-algebras

I ω : A→ B is linear if
ω(x ⊕ y) = ω(x) + ω(y) whenever x ≤ y∗.

I β : A× B → C is bilinear if it is linear in each argument.

I β : A× B → C is a bimorphism if it is bilinear and

β(a, b1 ∨ b2) = β(a, b1) ∨ β(a, b2),
β(a1 ∨ a2, b) = β(a1, b) ∨ β(a2, b),
β(a, b1 ∧ b2) = β(a, b1) ∧ β(a, b2),
β(a1 ∧ a2, b) = β(a1, b) ∧ β(a2, b),

whenever a, a1, a2 ∈ A and b, b1, b2 ∈ B.



The tensor product ⊗mv of MV-algebras

A, B are MV-algebras

Mundici, 1999
The tensor product of A and B is an MV-algebra A⊗mv B
together with a bimorphism β : A× B → A⊗ B satisfying the
following universal property:

for any MV-algebra C and bimorphism γ : A× B → C there
exists a unique morphism h : A⊗ B → C such that h ◦ β → λ.

A× B
β //

γ

��

A⊗mv B

hxx
C

Flondor, I.L., 2003
If P is a PMV-algebra then P ⊗mv A is an MV-module over P for
any MV-algebra A.



The tensor product ⊗o of MV-algebras

A, B are MV-algebras

Flondor, I.L, 2003 (following Martinez, 1972)

The ⊗o tensor product of A and B is an MV-algebra A⊗o B
together with a bilinear function β : A× B → A⊗ B satisfying the
following universal property:

for any MV-algebra C and bilinear γ : A× B → C there exists a
unique morphism h : A⊗ B → C such that h ◦ β → γ.

A× B
β //

γ

��

A⊗o B

hyy
C

Scalar extension property: P PMV-algebra

P ⊗o A is MV-module over P for any MV-algebra A.



P (unital) PMV-chain

(T,U) adjoint functors

T :MV →MVModP , T (M) := P ⊗mv M
U :MVModP →MV the forgetful functor

FreeMVModP (X ) ' P ⊗mv FreeMV(X )

P ⊗mv M is the MV-module over P generated by M.

Logic approach

The propositional calculus of MV-modules over P has
completeness w.r.t. chains.

If P = [0, 1] then we also have standard completeness, i.e. an
identity holds in any Riesz MV-algebra iff it holds in [0, 1].



Conclusions

For MV-modules one has:

I extension of Mundici’s equivalence,

I ideal theory and representation w.r.t. linearly ordered
structure,

I equational characterization,

I general methods for obtaining modules from algebras,

I characterization of free structures,

I logical approach.



Part II: a problem
Work in progress!



Stochastic independence

Riečan and Mundici, 2002
Given two σ-complete MV-algebras M and N, let us agree to define
their σ-tensor product by the following procedure:
· · ·
Assuming M and N to be probability MV-algebras, generalize the
classical theory of ”stochastically independent” σ-subalgebras as
defined in Fremlin’s treatise [Measure Theory, 325L].



States. Probability MV-algebras.

A MV-algebra

A state is a linear function s : A→ [0, 1] such that s(1A) = 1.

I s is faithful if s(x) = 0 implies x = 0.

I If A is σ-complete then s is a σ-state if
s(xn)↗ s(x) whenever {xn}n ⊆ A and xn ↗ x .

I If (A, sA), (B, sB) MV-algebras with states then
sA × sB : A× B → [0, 1], sA × sB(a, b) := sA(a) · sB(b)
for any a ∈ A, b ∈ B.

I A probability MV-algebra is a pair (A, s), where A is a
σ-complete MV-algebra and s is a faithful σ-state.



Independence for MV-algebras

I.L., ManyVal 2008, JLC 2011

Assume K is a class of MV-algebras with states.

Given (A, sA), (B, sB) in K there exists (T , sT ) in K and
β : A× B → T bilinear such that:

I sT ◦ β = sA × sB ,

I universal property
for any MV-algebra C and bilinear γ : A× B → C there
exists a unique morphism h : A⊗B → C such that h ◦ β → γ.

A× B
β //

sA×sB
��

T

sT||
[0, 1]

A× B
β //

γ

��

T

h{{
C



Solutions

I If A and B are Boolean algebras then T = A⊗ B.

I T = A⊗mv B or T = A⊗o B, depending on K
I sT is extremal state, i.e. sT : T → [0, 1] MV-algebra

homomorphism

We obtained solutions for:

I K = MV-algebras with states,

I K = MV-algebras with extremal states,

I K = semisimple MV-algebras.

No solution for probability MV-algebras!



The problem

(A, sA), (B , sB) probability MV-algebras

Define a probability MV-algebra (T , sT ) and a bilinear function
β : A× B → T such that:

I sT ◦ β = sA × sB ,

I universal property

Main ingredients

I 2-divisible MV-algebras

I state-completion of an MV-algebra

I concrete representation of state-complete Riesz MV-algebras

I measure theoretical construction



Step 1: the 2-divisible hull

Fedel, Keimel, Montagna, Roth, 2012

I An MV-algebra A is 2-divisible if
for any x ∈ A there exists y ∈ A such that y ⊕ y = x .

I Any MV-algebra A has a 2-divisible hull Ad .

I For any (faithful) state s : A→ [0, 1] there exists a unique
(faithful) state sd : Ad → [0, 1] such that sd |A = s.



Step 2: the state-completion

(A, s) probability MV-algebra

I Ad the 2-divisble hull of A, sd : Ad → [0, 1]

ρd : Ad × Ad → [0, 1]
ρd(x , y) := sd(d(x , y)) metric on Ad

Adc the Cauchy completion of Ad w.r.t. ρd

Adc = {[{an}n] | {an}n Cauchy sequence in Ad}

sdc([{an}n]) = limn s
d(an)

I I.L., ManyVal 2008, JLC 2011
(Adc , sdc) is a probability MV-algebra

I A ↪→ Adc , a 7→ [(a)]
embedding of σ-continuous MV-algebras.



A �
� /

s
!!

Ad � � /

sd

��

Adc

sdc||
[0, 1]

Remark
Adc 2-divisible σ-complete MV-algebra, hence

there exists a Riesz space with strong unit (V , u)
such that Adc ' [0, u]V , i.e.

Adc is a Riesz MV-algebra.



Concrete representation state-complete Riesz MV-algebras

(X ,Ω, µ) measure space

I L1(µ) the Riesz space of Lebesgue integrable functions on X ,
provided we identify any two that are equal almost everywhere.

I L1(µ)u = [0, 1]L1(µ)

I.L., ManyVal 2010, IPMU 2012

For any state-complete Riesz MV-algebra (M, s) there exists a
measure space (X ,Ω, µ) such that M ' L1(µ)u.
This result is an MV-algebraic version of Kakutani’s concrete
representation of abstract L-spaces.

A ↪→ Adc ' L1(µA)u B ↪→ Bdc ' L1(µB)u
A 3 a 7→ fa ∈ L1(µA)u B 3 b 7→ fb ∈ L1(µB)u



The product measure

(XA,ΩA, µA), (XB ,ΩB , µB) measure spaces

Fremlin, MT [253F,253G]

There is a measure space (XA × XB ,Λ, λ) such that

I ⊗ : L1(µA)× L1(µB)→ L1(λ) bimorphism
(f , g) 7→ f⊗g

I
∫

(f⊗g)dλ =
∫
fdµA

∫
gdµB

whenever f ∈ L1(µA), g ∈ L1(µB)

I f⊗g ≥ 0 in L1(λ) whenever f ≥ 0 and g ≥ 0.



The product measure

I Universal property
For any Banach lattice W (norm complete Riesz space) and
bilinear function φ there exists a unique linear function ω such
that ω ◦ ⊗ = φ.

L1(µA)× L1(µB)
⊗ //

φ
��

L1(λ)

ω
ww

W

(XA × XB ,Λ, λ) the product space



(A, sA), (B , sB) probability MV-algebras

I (XA,ΩA, µA) L-measure space, Adc ' L1(µA)u, a 7→ fa
I (XB ,ΩB , µB) L-measure space, Bdc ' L1(µB)u, b 7→ fb

I (XA × XB ,Λ, λ) the product space

I TA,B = L1(λ)u

I sT : T → [0, 1], sT (f ) =
∫
fdλ

I β : A× B → T , β(a, b) = fa⊗fb bimorphism

I sT (β(a, b)) =
∫
fa⊗fbdλ =

∫
fdµA

∫
gdµB = sA(a)sB(b)

for any a ∈ A, b ∈ B

I (T , sT ) is a probability MV-algebra



Universal property for (T , sT )

(C , sC ) probability MV-algebra, γ : A× B → C bilinear function

I Any bilinear function γ : A× B → C admits a unique bilinear
extension γd : Ad × Bd → Cd .

I Any bilinear function γd : Ad × Bd → Cd admits a unique
bilinear extension γdc : Adc × Bdc → Cdc by
γdc([{an}n], [{bn}n]) = [{γd(an, bn)}n]

A× B�
� /

γ

��

Ad × Bd� � /

γd

��

Adc × Bdc

γdc

||||

C� _

�
Cd� _

�
Cdc



Universal property for (T , sT )

β(a, b) = fa ⊗ fb

A× B
β //

γ

��

T = L1(λ)

ω

~~

C

��
C cd ' L1(µD)

I For any probability MV-algebra (C , sC ) and
any bilinear function γ : A× B → C
there exists a unique linear function ω : T → C cd such that
ω(β(a, b)) = γ(a, b) whenever a ∈ A, b ∈ B, i.e.
ω(fa⊗fb) = fγ(a,b) whenever a ∈ A, b ∈ B.



Extension result

If (X ,Ω, µ) is a measure space, then 1 is a weak unit of L1(µ).

Weak unit
If V is a Riesz space, an element e ≥ 0 in V is a weak unit if
(x ∧ ne)↗ x for any x ≥ 0 in V .

Proposition.

Assume V1 and V2 are σ-complete Riesz spaces,
e1 ∈ V1 and e2 ∈ V2 are weak units.

Then any linear function ω : [0, e1]V1 → [0, e2]V2 can be extended
to a linear function ω̃ : V1 → V2 .



Thank you for your attention!


