MV-modules

Ioana Leuștean

Faculty of Mathematics and Computer Science University of Bucharest

> ManyVal'2012 4-7 July, Salerno, Italy

In honor of Antonio Di Nola's 65th birthday

Happy Birthday!

Part I: MV-modules

MV-algebras

- ► MV-algebras are the algebraic structures of the ∞-valued Łukasiewicz logic.
- (C.C.Chang, 1958) *MV-algebra* (A, ⊕,*,0)
 1. (A, ⊕,0) abelian monoid,
 2. (x*)* = x,
 3. (x* ⊕ y)* ⊕ y = (y* ⊕ x)* ⊕ x,
 4. 0* ⊕ x = 0*.

▶
$$1 := 0^*, x \odot y := (x^* \oplus y^*)^*, x \lor y := (y^* \oplus x)^* \oplus x, x \land y := (x^* \lor y)^*$$

► Standard model: $([0, 1], \oplus, *, 0)$ $x \oplus y = min(x + y, 1), x \odot y = max(x + y - 1, 0),$ $x^* = 1 - x, 1 = 0^*, x \lor y = max(x, y), x \land y = min(x, y)$

• A Boolean algebra iff $\oplus = \lor$ and $\odot = \land$.

MV-algebras and lattice-ordered groups

$$(G, +, 0, \leq)$$
 is a lattice-ordered group if
 $(G, +, 0)$ group, (G, \leq) lattice,
 $x \leq y$ implies $x + z \leq y + z$ for any $x, y, z \in G$.

• *u* strong unit: $u \ge 0$, for any $x \in G$ there is $n \ge 1$ s.t. $x \le nu$.

Mundici, 1986

For any MV-algebra A there exists an abelian lattice-ordered group with strong unit (G, u) such that $A \simeq [0, u]_G$. The category of MV-algebras is equivalent with the category of lattice-ordered groups with strong unit.

►
$$\Gamma(G, u) = ([0, u]_G, \oplus, ^*, 0): x \oplus y = (x + y) \land 1, x^* = 1 - x.$$

Adding a product

to a lattice-ordered group, one gets

lattice-ordered rings

or

lattice-ordered modules

PMV-algebras

are unit intervals in lattice-ordered rings with strong unit.

Di Nola, Dvurečenskij, 2001

PMV-algebra (P, \cdot) , where P is an MV-algebra and $\cdot : P \times P \rightarrow P$

- For any PMV-algebra (P, ·) there exists a lattice-ordered ring with strong unit (R, ·, v) such that P ≃ [0, v]_R. The category of PMV-algebras is equivalent with the category of lattice-ordered rings with strong unit.
- The class of PMV-algebras is equational.

Montagna, 2005

As a PMV-algebra, [0,1] generates the quasi-variety defined by $x \cdot x = 0 \Rightarrow x = 0$.

Lattice-ordered modules

Let (R, \cdot, v) be a unital lattice-ordered ring. A pair (Q, \circ) is a **lattice-ordered module** over R if Q is an abelian lattice-ordered group and $\varphi : R \times Q \rightarrow Q$ such that:

Steinberg, Lattice-ordered rings and modules, Springer, 2010, 632 pages

Lattice-ordered modules over \mathbb{R} are called **Riesz spaces**.

MV-module

Di Nola, Flondor, I.L., 2003

Main example: $[0, u]_Q / [0, v]_R$

 (R, \cdot, v) unital lattice-ordered ring, v is strong unit (Q, u) lattice-ordered module over (R, v), u is strong unit

Let (P, \cdot) be a PMV-algebra. An **MV-module over** P is a pair (M, \circ) , where M is an MV-algebra and

 $\circ \colon P \times M \to M$

such that, whenever x, $y \in M$ and t, $r \in P$: (MvM1) if $x \leq y^*$ then $(r \circ x) \leq (r \circ y)^*$ and $r \circ (x \oplus y) = (r \circ x) \oplus (r \circ y)$, (MvM2) if $r \leq t^*$ then $(r \circ x) \leq (t \circ x)^*$ and $(r \oplus t) \circ x = (r \circ x) \oplus (t \circ x)$, (MvM3) $(r \cdot t) \circ x = r \circ (t \circ x)$, (MvM4) $1_P \circ x = x$.

MV-modules

Extension of Mundici's equivalence

 (R, \cdot, v) lattice-ordered ring, v strong unit, $P = [0, v]_R$

If (M, \circ) is an MV-module over P then there exists a lattice-ordered module with strong unit (Q, u) such that $M \simeq [0, u]_Q$.

The category of MV-modules over P is equivalent with the category of lattice-ordered modules with strong unit over R.

 $(R,\cdot,v)=(\mathbb{R},\cdot,1)$

Riesz MV-algebras are MV-modules over [0, 1].

MV-modules

Equational characterization

 (M, \circ) is an MV-module over P iff the following identities are satisfied for any r, $t \in P$ and $x, y \in M$:

$$\begin{array}{l} (M1) \ (r \circ x) \odot ((r \lor t) \circ x)^* = 0, \\ (M2) \ (r \odot t^*) \circ x = (r \circ x) \odot ((r \land t) \circ x)^*, \\ (M3) \ (r \cdot t) \circ x = r \circ (t \circ x), \\ (M4) \ r \circ (x \odot y^*) = (r \circ x) \odot (r \circ y)^*, \\ (M5) \ 1 \circ x = x. \end{array}$$

Examples

- The lexicographic product
- ► The tensor product

Examples

The lexicographic product

 (R, \cdot, v) lattice-ordered ring, $P = [0, v]_R$, G lattice-ordered group

 $M = [(0,0),(v,0)]_{R \times_{\mathit{lex}} G} = \Gamma_R(R \times_{\mathit{lex}} G,(v,0))$

$$\circ: [0, v]_R imes M o M$$
, $r \circ (q, x) := (r \cdot q, x)$
for $r, q \in [0, v]_R$, $x \in M$

 (M, \circ) MV-module over P

Problems

- Characterize the class \mathcal{K} of MV-modules obtained in this way.
- Investigate the functor $\Delta_P : \mathcal{ALG} \to \mathcal{K}$.

Remark

If $R = \mathbb{Z}$, then we get Di Nola's functor $\Delta : \mathcal{ALG} \to \mathcal{P}erf$. If $R = \mathbb{R}$, then we get "Riesz MV-algebras", as defined by Di Nola and Lettieri in 1996. Bilinear functions and bimorphisms

A, B, C MV-algebras

•
$$\omega : A \to B$$
 is **linear** if
 $\omega(x \oplus y) = \omega(x) + \omega(y)$ whenever $x \le y^*$.

- $\beta : A \times B \rightarrow C$ is **bilinear** if it is linear in each argument.
- $\beta : A \times B \rightarrow C$ is a **bimorphism** if it is bilinear and

$$\beta(a, b_1 \lor b_2) = \beta(a, b_1) \lor \beta(a, b_2),$$

$$\beta(a_1 \lor a_2, b) = \beta(a_1, b) \lor \beta(a_2, b),$$

$$\beta(a, b_1 \land b_2) = \beta(a, b_1) \land \beta(a, b_2),$$

$$\beta(a_1 \land a_2, b) = \beta(a_1, b) \land \beta(a_2, b),$$

whenever a, a_1 , $a_2 \in A$ and b, b_1 , $b_2 \in B$.

The tensor product \otimes_{mv} of MV-algebras

A, B are MV-algebras

Mundici, 1999

The tensor product of A and B is an MV-algebra $A \otimes_{mv} B$ together with a **bimorphism** $\beta : A \times B \to A \otimes B$ satisfying the following universal property:

for any MV-algebra *C* and **bimorphism** $\gamma : A \times B \to C$ there exists a unique morphism $h : A \otimes B \to C$ such that $h \circ \beta \to \lambda$.

$$\begin{array}{c} A \times B \xrightarrow{\beta} A \otimes_{mv} B \\ \uparrow \\ \downarrow \\ C \not = & f \end{array}$$

Flondor, I.L., 2003

If P is a PMV-algebra then $P \otimes_{mv} A$ is an MV-module over P for any MV-algebra A.

The tensor product \otimes_o of MV-algebras

A, B are MV-algebras

Flondor, I.L, 2003 (following Martinez, 1972)

The \otimes_o tensor product of A and B is an MV-algebra $A \otimes_o B$ together with a **bilinear** function $\beta : A \times B \to A \otimes B$ satisfying the following universal property:

for any MV-algebra *C* and **bilinear** $\gamma : A \times B \to C$ there exists a unique morphism $h : A \otimes B \to C$ such that $h \circ \beta \to \gamma$.

$$\begin{array}{c} A \times B \xrightarrow{\beta} A \otimes_{o} B \\ \uparrow \\ C \not = & f \\ C \end{array}$$

Scalar extension property: P PMV-algebra $P \otimes_o A$ is MV-module over P for any MV-algebra A.

P (unital) PMV-chain

(\mathbf{T}, \mathbf{U}) adjoint functors

 $\mathbf{T} : \mathcal{MV} \to \mathcal{MVMod}_P, \ T(M) := P \otimes_{mv} M$ $\mathbf{U} : \mathcal{MVMod}_P \to \mathcal{MV} \text{ the forgetful functor}$

 $\mathit{Free}_{\mathcal{MV}Mod_P}(X) \simeq P \otimes_{\mathit{mv}} \mathit{Free}_{\mathcal{MV}}(X)$

 $P \otimes_{mv} M$ is the MV-module over P generated by M.

Logic approach

The propositional calculus of MV-modules over P has completeness w.r.t. chains.

If P = [0, 1] then we also have standard completeness, i.e. an identity holds in any Riesz MV-algebra iff it holds in [0, 1].

Conclusions

For MV-modules one has:

- extension of Mundici's equivalence,
- ideal theory and representation w.r.t. linearly ordered structure,
- equational characterization,
- general methods for obtaining modules from algebras,
- characterization of free structures,
- logical approach.

Part II: a problem

Work in progress!

Stochastic independence

Riečan and Mundici, 2002

Given two $\sigma\text{-complete}$ MV-algebras M and N, let us agree to define their $\sigma\text{-tensor}$ product by the following procedure:

• • •

Assuming M and N to be probability MV-algebras, generalize the classical theory of "stochastically independent" σ -subalgebras as defined in Fremlin's treatise [Measure Theory, 325L].

States. Probability MV-algebras.

A MV-algebra

A state is a linear function $s : A \to [0, 1]$ such that $s(1_A) = 1$.

- s is faithful if s(x) = 0 implies x = 0.
- ▶ If A is σ -complete then s is a σ -state if $s(x_n) \nearrow s(x)$ whenever $\{x_n\}_n \subseteq A$ and $x_n \nearrow x$.
- ▶ If (A, s_A) , (B, s_B) MV-algebras with states then $s_A \times s_B : A \times B \rightarrow [0, 1]$, $s_A \times s_B(a, b) := s_A(a) \cdot s_B(b)$ for any $a \in A$, $b \in B$.
- A probability MV-algebra is a pair (A, s), where A is a σ-complete MV-algebra and s is a faithful σ-state.

Independence for MV-algebras

I.L., ManyVal 2008, JLC 2011

Assume \mathcal{K} is a class of MV-algebras with states.

Given (A, s_A) , (B, s_B) in \mathcal{K} there exists (T, s_T) in \mathcal{K} and $\beta : A \times B \to T$ bilinear such that:

$$\blacktriangleright s_T \circ \beta = s_A \times s_B,$$

universal property
 (and b)

for any MV-algebra *C* and **bilinear** $\gamma : A \times B \to C$ there exists a unique morphism $h : A \otimes B \to C$ such that $h \circ \beta \to \gamma$.

$$\begin{array}{c|c} A \times B \xrightarrow{\beta} T & A \times B \xrightarrow{\beta} T \\ s_A \times s_B \\ s_T & \gamma \\ [0,1] & C \end{array} \xrightarrow{h}$$

Solutions

• If A and B are Boolean algebras then $T = A \otimes B$.

•
$$T = A \otimes_{mv} B$$
 or $T = A \otimes_o B$, depending on \mathcal{K}

▶ s_T is extremal state, i.e. $s_T : T \rightarrow [0, 1]$ MV-algebra homomorphism

We obtained solutions for:

- $\mathcal{K} = MV$ -algebras with states,
- $\mathcal{K} = MV$ -algebras with extremal states,
- $\mathcal{K} = \text{semisimple MV-algebras.}$

No solution for probability MV-algebras!

The problem

 $(A, s_A), (B, s_B)$ probability MV-algebras Define a probability MV-algebra (T, s_T) and a bilinear function $\beta : A \times B \to T$ such that:

- $s_T \circ \beta = s_A \times s_B$,
- universal property

Main ingredients

- 2-divisible MV-algebras
- state-completion of an MV-algebra
- concrete representation of state-complete Riesz MV-algebras
- measure theoretical construction

Fedel, Keimel, Montagna, Roth, 2012

- An MV-algebra A is 2-divisible if for any x ∈ A there exists y ∈ A such that y ⊕ y = x.
- Any MV-algebra A has a 2-divisible hull A^d .
- For any (faithful) state s : A → [0, 1] there exists a unique (faithful) state s^d : A^d → [0, 1] such that s^d|_A = s.

Step 2: the state-completion

(A, s) probability MV-algebra

Remark

 A^{dc} 2-divisible σ -complete MV-algebra, hence

there exists a Riesz space with strong unit (V, u) such that $A^{dc} \simeq [0, u]_V$, i.e.

 A^{dc} is a Riesz MV-algebra.

Concrete representation state-complete Riesz MV-algebras

(X, Ω, μ) measure space

- ► L₁(µ) the Riesz space of Lebesgue integrable functions on X, provided we identify any two that are equal almost everywhere.
- $L_1(\mu)_u = [\mathbf{0}, \mathbf{1}]_{L_1(\mu)}$

I.L., ManyVal 2010, IPMU 2012

For any state-complete Riesz MV-algebra (M, s) there exists a measure space (X, Ω, μ) such that $M \simeq L_1(\mu)_u$. This result is an MV-algebraic version of Kakutani's concrete representation of abstract *L*-spaces.

$$\begin{array}{ll} A \hookrightarrow A^{dc} \simeq L_1(\mu_A)_u & B \hookrightarrow B^{dc} \simeq L_1(\mu_B)_u \\ A \ni \mathbf{a} \mapsto f_{\mathbf{a}} \in L_1(\mu_A)_u & B \ni \mathbf{b} \mapsto f_{\mathbf{b}} \in L_1(\mu_B)_u \end{array}$$

The product measure

 (X_A, Ω_A, μ_A) , (X_B, Ω_B, μ_B) measure spaces

Fremlin, MT [253F,253G]

There is a measure space $(X_A \times X_B, \Lambda, \lambda)$ such that

►
$$\otimes$$
 : $L_1(\mu_A) \times L_1(\mu_B) \rightarrow L_1(\lambda)$ bimorphism
 $(f,g) \mapsto f \otimes g$

►
$$\int (f \otimes g) d\lambda = \int f d\mu_A \int g d\mu_B$$

whenever $f \in L_1(\mu_A)$, $g \in L_1(\mu_B)$

•
$$f \otimes g \ge 0$$
 in $L_1(\lambda)$ whenever $f \ge 0$ and $g \ge 0$.

The product measure

Universal property

For any Banach lattice W (norm complete Riesz space) and bilinear function ϕ there exists a unique linear function ω such that $\omega \circ \otimes = \phi$.

 $(X_A \times X_B, \Lambda, \lambda)$ the product space

(A, s_A) , (B, s_B) probability MV-algebras

- (X_A, Ω_A, μ_A) L-measure space, $A^{dc} \simeq L_1(\mu_A)_u$, $a \mapsto f_a$
- (X_B, Ω_B, μ_B) *L*-measure space, $B^{dc} \simeq L_1(\mu_B)_u$, $b \mapsto f_b$
- $(X_A \times X_B, \Lambda, \lambda)$ the product space

$$T_{A,B} = L_1(\lambda)_u$$

•
$$s_T: T \to [0,1], s_T(f) = \int f d\lambda$$

- ▶ β : $A \times B \rightarrow T$, $\beta(a, b) = f_a \otimes f_b$ bimorphism
- ► $s_T(\beta(a, b)) = \int f_a \otimes f_b d\lambda = \int f d\mu_A \int g d\mu_B = s_A(a) s_B(b)$ for any $a \in A$, $b \in B$
- (T, s_T) is a probability MV-algebra

Universal property for (T, s_T)

 (C, s_C) probability MV-algebra, $\gamma : A \times B \rightarrow C$ bilinear function

- Any bilinear function γ : A × B → C admits a unique bilinear extension γ^d : A^d × B^d → C^d.
- Any bilinear function γ^d : A^d × B^d → C^d admits a unique bilinear extension γ^{dc} : A^{dc} × B^{dc} → C^{dc} by γ^{dc}([{a_n}_n], [{b_n}_n]) = [{γ^d(a_n, b_n)}_n]

Universal property for (T, s_T)

For any probability MV-algebra (C, s_C) and any bilinear function $\gamma : A \times B \rightarrow C$ there exists a unique linear function $\omega : T \to C^{cd}$ such that $\omega(\beta(a, b)) = \gamma(a, b)$ whenever $a \in A, b \in B$, i.e. $\omega(f_a \otimes f_b) = f_{\gamma(a,b)}$ whenever $a \in A$, $b \in B$.

If (X, Ω, μ) is a measure space, then **1** is a **weak unit** of $L_1(\mu)$.

Weak unit

If V is a Riesz space, an element $e \ge 0$ in V is a **weak unit** if $(x \land ne) \nearrow x$ for any $x \ge 0$ in V.

Proposition.

Assume V_1 and V_2 are σ -complete Riesz spaces, $e_1 \in V_1$ and $e_2 \in V_2$ are weak units.

Then any linear function $\omega : [0, e_1]_{V_1} \to [0, e_2]_{V_2}$ can be extended to a linear function $\widetilde{\omega} : V_1 \to V_2$.

Thank you for your attention!