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Part I: MV-modules



MV-algebras

» MV-algebras are the algebraic structures of the oo-valued
tukasiewicz logic.
» (C.C.Chang, 1958) MV-algebra (A, ®,*,0)
1. (A,&,0) abelian monoid,
2. (x*)* =x,
3. (x*ey)yey=y"ox)ox,
4. 0* @ x = 0*.
1:=0" x0Oy:=(X*®y" ) xVy:=(y ®x)*®x,
xANy:=(x*Vy)*
» Standard model: ([0, 1],,",0)

x®y=min(x+y,1), x ®y = max(x+y —1,0),
x*=1-x,1=0% xVy=max(x,y), x \y = min(x,y)

v

A Boolean algebra iff ® =V and ® = A.



MV-algebras and lattice-ordered groups

(G,+,0,<) is a lattice-ordered group if
(G,+,0) group, (G, <) lattice,
x <y implies x4+ 2z <y -+ zforanyx, y, z€ G.

» u strong unit: u > 0, for any x € G thereis n > 1s.t. x < nu.

Mundici, 1986

For any MV-algebra A there exists an abelian lattice-ordered group
with strong unit (G, u) such that A ~ [0, u]¢.

The category of MV-algebras is equivalent with the category of
lattice-ordered groups with strong unit.

» [(G,u) =([0,u],®,",0): xBy=(x+y)Al x*=1—x.



Adding a product

to a lattice-ordered group, one gets

> |attice-ordered rings
or

» lattice-ordered modules



PMV-algebras

are unit intervals in lattice-ordered rings with strong unit.

Di Nola, Dvureenskij, 2001
PMV-algebra (P, -), where P is an MV-algebra and - : P x P — P

» For any PMV-algebra (P,-) there exists a lattice-ordered ring
with strong unit (R, -, v) such that P ~ [0, v]g.
The category of PMV-algebras is equivalent with the category
of lattice-ordered rings with strong unit.

» The class of PMV-algebras is equational.

Montagna, 2005
As a PMV-algebra, [0, 1] generates the quasi-variety defined by
x-x=0=x=0.



Lattice-ordered modules

Let (R, -, v) be a unital lattice-ordered ring. A pair (Q,0) is a
lattice-ordered module over R if @ is an abelian lattice-ordered
group and ¢ : R x Q@ — @ such that:

(UM1) ro(x+y)=rox+roy,
(IM2) (r+t)ox=rox+tox,
(IM3) (r-t)ox =ro(tox),
(/M4) r>0,x>0=rox>0.
(IM5) v o x = x,

whenever r, t € R and x, y € Q.

Steinberg, Lattice-ordered rings and modules, Springer, 2010,
632 pages

Lattice-ordered modules over R are called Riesz spaces.



MV-module
Di Nola, Flondor, I.L., 2003

Main example: [0, u]q/[0, v]r
(R, -, v) unital lattice-ordered ring, v is strong unit
(Q, u) lattice-ordered module over (R, v), u is strong unit

Let (P,-) be a PMV-algebra. An MV-module over P is a pair
(M, o), where M is an MV-algebra and
o:PxM—M

such that, whenever x, y € M and t, r € P:

(MvM1) if x < y* then (rox) < (roy)* and
ro(x@®y)=(rox)®(roy),

(MvM2) if r < t* then (rox) < (tox)* and
(réot)ox=(rox)®(tox),

(MvM3) (r-t)ox =ro(tox),

(MvM4) 1p o x = x.



MV-modules

Extension of Mundici's equivalence
(R, -, v) lattice-ordered ring, v strong unit, P = [0, v]r

If (M, 0) is an MV-module over P then there exists a
lattice-ordered module with strong unit (Q, u) such that
M ~ [0, u] .

The category of MV-modules over P is equivalent with the
category of lattice-ordered modules with strong unit over R.

(R7 g V) - (Rv E 1)
Riesz MV-algebras are MV-modules over [0, 1].



MV-modules

Equational characterization

(M, o) is an MV-module over P iff the following identities are
satisfied for any r, t € P and x,y € M:

M1) (rox)®((rvt)ox)* =0,
(rot)ox=(rox)®((rAt)ox)*,
r-tyox=ro(tox),
(x©y*)=(rox)®(roy)",



Examples

» The lexicographic product

» The tensor product



Examples

> The lexicographic product
(R, -, v) lattice-ordered ring, P = [0, v]g, G lattice-ordered group
M =1(0,0), (v, 0)]rx .6 = TR(R Xiex G, (v, 0))
o:[0,v]g x M = M, ro(q,x):=(r-q,x)
forr, g€ [0,v]g, xeM
(M, o) MV-module over P

Problems
» Characterize the class K of MV-modules obtained in this way.
» Investigate the functor Ap : ALG — K.

Remark

If R =27, then we get Di Nola's functor A : ALG — Perf.
If R =R, then we get "Riesz MV-algebras”, as defined by
Di Nola and Lettieri in 1996.



Bilinear functions and bimorphisms

A, B, C MV-algebras

» w:A— Bis linear if
w(x ® y) = w(x) + w(y) whenever x < y*.

» 3:Ax B — C is bilinear if it is linear in each argument.

» 3:Ax B — Cis a bimorphism if it is bilinear and

B(a, b]_\/bz) (a bl)\/ﬂ(a b2)
B(a1 V a2, b) = B(a1, b) V (a2, b),
ﬁ(a, bl/\bg) (a bl)/\ﬂ(a, )
B(a1 A az, b) = (a1, b) A B(az, b),

whenever a, aj, a2 € A and b, by, by € B.



The tensor product ®,,, of MV-algebras

A, B are MV-algebras

Mundici, 1999

The tensor product of A and B is an MV-algebra A ®,, B
together with a bimorphism 3 : A x B — A ® B satisfying the
following universal property:

for any MV-algebra C and bimorphism ~ : A x B — C there
exists a unique morphism h: A® B — C such that ho § — A

AxB—L+A®,. B
“/l 7
~ " h

Flondor, I.L., 2003

If Pis a PMV-algebra then P ®,, A is an MV-module over P for
any MV-algebra A.



The tensor product ®, of MV-algebras

A, B are MV-algebras

Flondor, I.L, 2003 (following Martinez, 1972)

The ®, tensor product of A and B is an MV-algebra A ®, B
together with a bilinear function 5 : A x B — A® B satisfying the
following universal property:

for any MV-algebra C and bilinear v : A x B — C there exists a
unique morphism h: A® B — C such that ho § — ~.

AxB-—L+ A, B

e
b
Y e
l ~"h

4

C

Scalar extension property: P PMV-algebra
P ®, A is MV-module over P for any MV-algebra A.



P (unital) PMV-chain

(T, U) adjoint functors

T: MV — MVModp, T(M) :=P Qpmny, M
U : MVModp — MYV the forgetful functor

FreeMVModP(X) ~ P ®mv FI’GE‘MV(X)
P ®my M is the MV-module over P generated by M.

Logic approach

The propositional calculus of MV-modules over P has
completeness w.r.t. chains.

If P =[0,1] then we also have standard completeness, i.e. an
identity holds in any Riesz MV-algebra iff it holds in [0, 1].



Conclusions

For MV-modules one has:
» extension of Mundici's equivalence,

> ideal theory and representation w.r.t. linearly ordered
structure,

» equational characterization,
» general methods for obtaining modules from algebras,
» characterization of free structures,

» logical approach.



Part |I: a problem

Work in progress!



Stochastic independence

Rie¢an and Mundici, 2002
Given two o-complete MV-algebras M and N, let us agree to define
their o-tensor product by the following procedure:

Assuming M and N to be probability MV-algebras, generalize the
classical theory of "stochastically independent” o-subalgebras as
defined in Fremlin's treatise [Measure Theory, 325L].



States. Probability MV-algebras.

A MV-algebra

A state is a linear function s : A — [0, 1] such that s(14) = 1.
» s is faithful if s(x) = 0 implies x = 0.

» If Ais o-complete then s is a o-state if
s(xn) " s(x) whenever {x,}, C A and x,  x.

> If (A,sa), (B, sg) MV-algebras with states then
saxsg:Ax B —[0,1], sa x sg(a, b) := sa(a) - sg(b)
forany a€ A, b e B.

» A probability MV-algebra is a pair (A,s), where A is a
o-complete MV-algebra and s is a faithful o-state.



Independence for MV-algebras

l.L., ManyVal 2008, JLC 2011

Assume K is a class of MV-algebras with states.

Given (A, sa), (B, sg) in K there exists (T,s7) in K and
B : Ax B — T bilinear such that:

> sT o3 =sp X sg,

> universal property

for any MV-algebra C and bilinear v : A x B — C there
exists a unique morphism h: A® B — C such that ho 5 — 7.

AxBLoT AxBLoT

SAXSB s Y
A

[0,1] ¢



Solutions

> If A and B are Boolean algebras then T = A® B.

>» T=AQ®nm Bor T =A®, B, depending on K

> st is extremal state, i.e. st : T — [0,1] MV-algebra
homomorphism

We obtained solutions for:
» K = MV-algebras with states,
» I = MV-algebras with extremal states,
» K = semisimple MV-algebras.

No solution for probability MV-algebras!



The problem

(A,sa), (B, sg) probability MV-algebras

Define a probability MV-algebra (T, s7) and a bilinear function
B :Ax B — T such that:

> STOIB:SAXSB,

> universal property

Main ingredients

» 2-divisible MV-algebras
» state-completion of an MV-algebra
> concrete representation of state-complete Riesz MV-algebras

» measure theoretical construction



Step 1: the 2-divisible hull

Fedel, Keimel, Montagna, Roth, 2012

» An MV-algebra A is 2-divisible if
for any x € A there exists y € A such that y @ y = x.

» Any MV-algebra A has a 2-divisible hull A9

» For any (faithful) state s : A — [0, 1] there exists a unique
(faithful) state s¢ : A7 — [0, 1] such that s7|4 = s.



Step 2: the state-completion

(A, s) probability MV-algebra

» A9 the 2-divisble hull of A, s9: A? — [0,1]
pd A x A4 = [0,1]
p?(x,y) := s?(d(x,y)) metric on A9

A% the Cauchy completion of A9 w.r.t. p?
A% = {[{an}n] | {an}n Cauchy sequence in A%}
Sdc([{an}n]) = Iim,,sd(a,,)
» |.L., ManyVal 2008, JLC 2011
(A9, 59) is a probability MV-algebra

» A A% a[(a)]
embedding of o-continuous MV-algebras.



AC Ad( Adc

d
\ ls sdc

[0,1]

Remark
A9 2-divisible o-complete MV-algebra, hence

there exists a Riesz space with strong unit (V/, u)
such that A% ~ [0, u]y, i.e.

A% is a Riesz MV-algebra.



Concrete representation state-complete Riesz MV-algebras

(X, 2, ) measure space

» L1(p) the Riesz space of Lebesgue integrable functions on X,
provided we identify any two that are equal almost everywhere.

> Li(p)u =[0,1]1, ()

I.L., ManyVal 2010, IPMU 2012

For any state-complete Riesz MV-algebra (M, s) there exists a
measure space (X, Q, u) such that M ~ L1(u),.

This result is an MV-algebraic version of Kakutani's concrete
representation of abstract L-spaces.

A— Adc ~ Ll(MA)u B — Bdc ~ Ll(MB)u
Adar fhe Li(ua)u B>bw—fpe Li(ps)y



The product measure

(Xa,Qa,114), (X5, B, ) measure spaces
Fremlin, MT [253F,253G]
There is a measure space (Xa x Xg, A, \) such that
» @ : Li(pa) x L1(pg) — L1(A) bimorphism
(f.g) — fog

> [(fog)d\ = [ fdua [ gdus
whenever f € Li(ua), g € Li1(uB)

» f®g > 0in L1(\) whenever f >0 and g > 0.



The product measure

> Universal property
For any Banach lattice W (norm complete Riesz space) and
bilinear function ¢ there exists a unique linear function w such
that wo ® = ¢.

L1(pa) x Li(ne) ——= L))

~

w

(Xa x Xg,\,\) the product space



(A, sn), (B, sg) probability MV-algebras

> (Xa,Qa, 1) L-measure space, A% ~ Li(pua)u, a f
» (X, 0B, 1B) L-measure space, B ~ Li(ug),, b+ f,

» (Xa x Xg, A\, \) the product space
Tag = Li(N\)y

v

> s7: T —[0,1], sr(f) = [ fdA
» B:Ax B— T, (a, b) = f,&f, bimorphism
» s7(B(a, b)) = [ L,@fd\ = [fdpa [ gdus = sa(a)ss(b)

foranyac€ A, beB

» (T,st) is a probability MV-algebra



Universal property for (T, s7)
(C,sc) probability MV-algebra, v : A x B — C bilinear function

» Any bilinear function v : A x B — C admits a unique bilinear
extension 79 : A x B9 — (9.

» Any bilinear function v¢ : A9 x B9 — C9 admits a unique
bilinear extension 9 : A9 x Bde 5 C9c py

'ch([{an}n]v [{bn}n]) = [{Wd(a”’ b")}”]

Ax B—~Ad x B pdc  pdc

Y

N
Q




Universal property for (T, s7)

B(a, b) =1L
AxB—" 0 T =100

» For any probability MV-algebra (C, s¢) and
any bilinear function y: Ax B — C
there exists a unique linear function w : T — C? such that
w(pB(a, b)) = v(a, b) whenever ac A, b€ B, i.e.
w(fa®fp) = f,(a,b) Wwhenever a € A, b € B.



Extension result

If (X, €, u) is a measure space, then 1 is a weak unit of Lj(u).

Weak unit
If V is a Riesz space, an element e > 0 in V is a weak unit if

(x A ne) / x forany x > 0in V.

Proposition.

Assume V7 and V5 are o-complete Riesz spaces,
e1 € V7 and e € V5 are weak units.

Then any linear function w : [0, e1]y, — [0, e2]v, can be extended
to a linear function w: Vi — Vs, .



Thank you for your attention!



