O-Minimal and Weakly O-Minimal MV-Chains

GIACOMO LENZI Università degli Studi di Salerno

ENRICO MARCHIONI IIIA - CSIC

> ManyVal 2012 July 2012

O-MINIMALITY

Definition (van Den Dries; Pillay, Steinhorn)

A linearly ordered structure **A** is said to be *o-minimal* if any parametrically definable subset of *A* is a finite union of open intervals and points in *A*.

- Examples: ordered divisible Abelian groups, real closed fields, and their expansions.
- ► An ordered Abelian group (OAG) G is: o-minimal IFF it is divisible IFF Th(G) has quantifier elimination in (+, -, 0, <)</p>

(Pillay, Steinhorn; Lenski).

MV-CHAINS AND O-MINIMALITY

- Each MV-chain is isomorphic to a structure over the unit interval of a unique (up to isomorphism) OAG with strong unit (Chang; Mundici).
- ► Is there an algebraic and model-theoretic characterization of o-minimal MV-chains (similar to the one for OAG)?
- ► We give a purely algebraic characterization. However, not all MV-chains with QE in L_{MV} = (⊕,*,0,<) are o-minimal.</p>
- ► A model-theoretic characterization of QE is achieved through the concept of weak o-minimality.

WEAK O-MINIMALITY

Definition (Dickmann; Macpherson, Marker, Steinhorn) A linearly ordered structure **A** is said to be *weakly o-minimal* if any parametrically definable subset of *A* is a finite union of convex sets in *A*.

- If a structure A is o-minimal then it is weakly o-minimal, the converse is not generally true:
- Let α be a real transcendental number and let the unary predicate symbol *P* be interpreted by the convex set *S* := (−α, α) ∩ ℝ_{alg}. Then, the ordered field ⟨ℝ_{alg}, *S*⟩ is weakly o-minimal.
- An OAG is o-minimal IFF it is weakly o-minimal.

MV-CHAINS AND WEAK O-MINIMALITY

- ► We show that there exist natural examples of weakly o-minimal MV-chains that are not o-minimal.
- ► We show that an MV-chain A is weakly o-minimal IFF Th(A) has QE in L_{MV} = ⟨⊕,*, 0, <⟩.</p>
- We also give a full algebraic characterization of the class of weakly o-minimal MV-chains.

MV-CHAINS: A REMINDER (I)

- ► We assume basic knowledge of the theory of MV-algebras and simply point out some facts we will make use of.
- An MV-chain A is called *divisible* when A ≃ Γ(G, u) and G is a divisible OAG.
- ► The *radical Rad*(**A**) of an MV-algebra **A** is the intersection of the maximal ideals of **A**.
- ► Rad(A) is called *divisible* when ⟨Rad(A), ⊕, 0⟩ is divisible as a monoid.

MV-CHAINS: A REMINDER (II)

- The *order* of an MV-chain A is defined by *ord*(A) = *n* IFF A ≅ S_n.
 Whenever A ≇ S_n, *ord*(A) = ∞.
- The *rank* of **A** is defined by $rank(\mathbf{A}) = ord(\mathbf{A}/Rad(\mathbf{A}))$.
- Let **A** be a simple MV-chain of rank *n*. Then $\mathbf{A} \cong \mathbf{S}_n$.
- ► **A** is a non-simple MV-chain of rank *n* iff $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G}, (n, g))$, for some OAG **G**.

CLASSES WITH QE (I)

Lemma *Let* **A** *be an* MV*-chain.*

- (1) If $Rad(\mathbf{A})$ is divisible and $\mathbf{A}/Rad(\mathbf{A})$ is finite, then \mathbf{A} has finite rank.
- (2) If Rad(A) is divisible and A/Rad(A) is divisible, then A is divisible.

Proof.

- (1) Obvious.
- (2) $\mathbf{A}/Rad(\mathbf{A})$ is divisible, and so is $\Gamma^{-1}(\mathbf{A}/Rad(\mathbf{A}))$. $\Gamma^{-1}(\mathbf{A})$ is divisible and so is \mathbf{A} .

CLASSES WITH QE (II)

Consequently, any MV-chain satisfying the hypotheses of the lemma is either:

- (*a*) a finite MV-chain;
- (*b*) a non-simple MV-chain of finite rank $\Gamma(\mathbb{Z} \times \mathbf{G}, (n, g))$, where **G** is a divisible OAG;
- (c) a divisible MV-chain.

QE: FINITE MV-CHAINS

Lemma

Let A be any finite MV-chain , then $\mathsf{Th}(A)$ has quantifier elimination in $\mathcal{L}_{MV}.$

Proof.

Every singleton is definable without quantifiers since x = a amounts to $x \le a \le x$, so every subset is definable without quantifiers.

QE: $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G}, (n, g))$

Lemma

Let **A** be an MV-chain of finite rank such that $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G}, (n, g))$ where **G** is a ordered divisible Abelian group. Th(**A**) has quantifier elimination in \mathcal{L}_{MV} .

Proof.

 $\mathsf{Th}(\mathbf{A})_{\forall}$ has the Amalgamation Property.

 $\mathsf{Th}(\mathbf{A})$ is model-complete. This is obtained by showing that there is an interpretation of $\mathsf{Th}(\mathbf{A})$ into the theory of $\mathbb{Z} \times \mathbf{G}$, where **G** is a divisible OAG, which is model-complete in the language

 $\langle +,-,<,0,1,\{m|\}_{m\in\mathbb{N}}\rangle,$

where each m is a unary predicate denoting the elements divisible by m, and 1 is interpreted as the element (1,0) (Komori).

QE: DIVISIBLE MV-CHAINS

Lemma

Let **A** *be any divisible* MV-*chain. Then* $\mathsf{Th}(\mathbf{A})$ *has quantifier elimination in* \mathcal{L}_{MV} .

Proof. Well-known result (M.; Baaz, Veith).

CLASSES WITH QE

Theorem

Let **A** *be an* MV*-chain, and suppose that one of the following conditions holds:*

- (1) $Rad(\mathbf{A})$ is divisible and $\mathbf{A}/Rad(\mathbf{A})$ is finite.
- (2) $Rad(\mathbf{A})$ is divisible and $\mathbf{A}/Rad(\mathbf{A})$ is divisible.

Then $\mathsf{Th}(\mathbf{A})$ *has quantifier elimination in* \mathcal{L}_{MV} *.*

FROM QE TO WEAK O-MINIMALITY

Theorem Let **A** be an MV-chain. If $\mathsf{Th}(\mathbf{A})$ has quantifier elimination in \mathcal{L}_{MV} , then **A** is weakly o-minimal.

Proof.

- ► If A is not weakly o-minimal, there is a formula φ(x) such that {a | A ⊨ φ(a)} is not a finite union of convex sets.
- ► If Th(A) had QE in \mathcal{L}_{MV} , $\phi(x)$ would be equivalent to a quantifier-free formula $\psi(x)$.
- ► The set defined over A by a quantifier-free formula in one variable in L_{MV} is always a finite union of convex sets.

WEAK O-MINIMALITY (I)

Lemma

Let A be an MV-chain. If A is weakly o-minimal, then Rad(A) is divisible.

Proof

- ► Suppose that Rad(A) is not *n*-divisible for some *n*, and let *x* be an element not divisible by *n*.
- ► Then, 0 < x < nx < (n + 1)x < 2nx < (2n + 1)x < ... < knx < (kn + 1)x < ... is an infinite alternating sequence of *n*-divisible and non-*n*-divisible elements.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

WEAK O-MINIMALITY (II)

...continued.

- \$\phi_n(y) := ∃x y = nz\$ defines over A the set of n-divisible elements.
- ► If A were weakly o-minimal, φ_n(y) would define a finite union of convex sets ⋃_i X_i. So there would be a set X_j, containing infinitely many *n*-divisible and non-*n*-divisible elements.
- ► Therefore, **A** cannot be weakly o-minimal.

WEAK O-MINIMALITY (III)

Lemma

Let **A** be an MV-chain. If **A** is weakly o-minimal, then A/Rad(A) is finite or divisible.

Proof.

- ► If **A** is weakly o-minimal, then, for all $x \in A$, x is n-divisible if and only if $p(x) \in A/Rad(A)$ is n-divisible as well.
- ► Suppose that A/Rad(A) is infinite and not *n*-divisible for some *n*.
- ► Up to isomorphism, A/Rad(A) is a dense subalgebra of [0, 1]_{MV}.
- ► Both *n*-divisible elements and non-*n*-divisible elements are dense in A/Rad(A).

WEAK O-MINIMALITY (IV)

...continued.

- *φ_n*(*y*) := ∃*x y* = *nz* defines over *A* the set of *n*-divisible elements.
- ► If A were weakly o-minimal, both φ_n(y) and ¬φ_n(y) would define finite unions of convex sets.
- ► But if A were weakly o-minimal, there would be a one-to-one correspondence between *n*-divisible elements of A and A/Rad(A).
- ► Then there would be a definable subset of *A*/*Rad*(*A*) containing only elements that are either all *n*-divisible or all non-*n*-divisible: i.e. a contradiction.

イロト 不得 とうほ とうせい

= 900

WEAK O-MINIMALITY: FULL CHARACTERIZATION

Theorem

Let **A** be any MV-chain, and let $\mathsf{Th}(\mathbf{A})$ be the first-order theory of **A** in the language $\mathcal{L}_{MV} = \langle \oplus, ^*, 0, < \rangle$. Then the following are equivalent:

- (1) \mathbf{A} is weakly o-minimal.
- (2) $\mathsf{Th}(\mathbf{A})$ has elimination of quantifiers in \mathcal{L}_{MV} .
- (3) $Rad(\mathbf{A})$ is divisible, and $\mathbf{A}/Rad(\mathbf{A})$ is finite or divisible.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

WEAKLY O-MINIMAL MV-CHAINS THAT ARE NOT O-MINIMAL

- Let $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G}, (n, g))$, where \mathbf{G} is a divisible OAG.
- ► The formula (n + 1)x < 1 defines a set that exactly coincides with Rad(A).</p>
- ► *Rad*(**A**) is a convex set but does not have an endpoint in *A*.
- ► Therefore, every non-simple MV-chain of finite rank $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G}, (n, g))$ cannot be o-minimal.

WEAKLY O-MINIMAL MV-CHAINS THAT ARE NOT O-MINIMAL

Theorem

Let **A** be any MV-chain in the language $\mathcal{L}_{MV} = \langle \oplus, ^*, 0, < \rangle$. Then the following are equivalent:

- (1) **A** is o-minimal.
- (2) \mathbf{A} is finite or divisible.

Proof.

- ► If **A** is o-minimal, then **A** is weakly o-minimal.
- So, A is either divisible, or finite, or is a non-simple MV-chain of finite rank (which is not possible).
- The converse is obvious.

THANKS!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □