Assessing Simple Coalition Games in Many-valued Logics

P. Cintula¹ T. Kroupa²

¹Institute of Computer Science Academy of Sciences of the Czech Republic

²Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Motivation

- Simple games model yes/no voting in collective bodies
- Provided that partial membership degrees of players are allowed, players may form fuzzy coalitions
- Which class of games is obtained by replacing Boolean logic with Łukasiewicz logic in many-valued scheme of cooperation?

Coalition Game

Definition

- $N = \{1, \ldots, n\}$ is the set of players
- 2^N is the set of all coalitions
- ▶ $v: 2^N \to \mathbb{R}$ with $v(\emptyset) = 0$ is a coalition game

A coalition game is simple if v is a non-decreasing {0, 1}-valued function with v(N) = 1.

Examples of Simple Games

UNSC voting, U.S. presidential election etc.

Example (Majority voting)

Assume that $N = \{1, 2, 3\}$ is the set of players. The majority voting is captured by a simple game *w* such that

$$w(A) = \begin{cases} 1 & \text{if } |A| \ge 2, \\ 0 & \text{otherwise.} \end{cases}$$

Simple Games and Boolean Formulas

Each simple game v can be associated with a unique non-decreasing non-constant Boolean function

$$f_{v}(1_{A}) = v(A), \qquad A \subseteq N$$

Theorem

Let v: $2^N \rightarrow \{0, 1\}$ be a non-constant function. TFAE:

- v is a simple game
- there is a negation-free formula φ such that f_v is the Boolean function corresponding to φ

Cores of Simple Games

The core of v is the set of all efficient payoff vectors $x \in \mathbb{R}^n$ upon which no coalition A can improve:

 $\mathcal{C}(v) = \{ x \in \mathbb{R}^n \mid \langle 1_N, x \rangle = v(N) \text{ and } \langle 1_A, x \rangle \geqslant v(A) \text{ for each } A \subseteq N \}$

Theorem

A simple game has a non-empty core iff there is at least one veto player $i \in N$ (that is, $v(N \setminus \{i\}) = 0$) in the game.

- $\mathcal{C}(\text{UNSC voting game}) \neq \emptyset$
- $C(majority voting game) = \emptyset$

From Boolean to Fuzzy Coalitions

In a coalition $A \subseteq N$, a player $i \in N$ participates in a degree 0 or 1.

Towards partial participation:

Definition

A fuzzy coalition is a vector $a = (a_1, ..., a_n) \in I^n$, where each a_i is a degree of membership of player *i* in *a*.

- *a_i* measures player's **degree of involvement** in some activity (Aubin)
- large economy argument: a fuzzy coalition in the finite economy becomes a coalition in the non-atomic economy made of a large number of homogeneous agents (Aumann; Azrieli and Lehrer; Husseinov)

Game with Fuzzy Coalitions

Definition (Aubin; 1974)

- $N = \{1, \ldots, n\}$ is the set of players
- Iⁿ is set of all fuzzy coalitions
- ▶ $v: I^n \to \mathbb{R}$ s.t. $v(1_{\emptyset}) = 0$ is a game with fuzzy coalitions

The core of v is the set of all efficient payoff vectors $x \in \mathbb{R}^n$ upon which no fuzzy coalition a can improve:

 $\mathcal{C}(\mathbf{v}) = \{ x \in \mathbb{R}^n \mid \langle 1_N, x \rangle = \mathbf{v}(1_N) \text{ and } \langle a, x \rangle \geqslant \mathbf{v}(a) \text{ for each } a \in I^n \}$

Changing the Logic

- Replace the negation-free Boolean formulas with negation-free Łukasiewicz formulas
- 2 Observe: each negation-free formula

 $\phi \in \mathsf{Form}_{\textit{n}}$

in Łuk. logic induces a non-decreasing McNaughton function

$$[\phi]: I^n \to I$$

3 Which class of games with fuzzy coalitions is obtained?

Simple Łukasiewicz Games

Definition

A simple Łukasiewicz game is a McNaughton function v: $I^n \rightarrow I$ that is

- non-decreasing
- $v(1_{\emptyset}) = 0$ and $v(1_N) = 1$

By SLG_n we denote the set of all simple Łukasiewicz games over I^n .

Theorem

Let v: $I^n \rightarrow I$ be a non-constant function. TFAE:

- ▶ $v \in SLG_n$
- there is a negation-free formula in Łuk. logic φ s.t. $v = [\varphi]$

Cores of Simple Łukasiewicz Games

For each fuzzy coalition $a \in I^n$, put

$$\mathcal{C}_{a}(\mathbf{v}) = \begin{cases} \{ x \in \mathbb{R}^{n} \mid \langle 1_{N}, x \rangle = \mathbf{v}(1_{N}) \} & \text{if } a = 1_{N}, \\ \{ x \in \mathbb{R}^{n} \mid \langle a, x \rangle \ge \mathbf{v}(a) \} & \text{otherwise,} \end{cases}$$

The core of $v \in SLG_n$ is

$$\mathfrak{C}(\mathbf{v}) = \bigcap_{\mathbf{a} \in I^n} \mathfrak{C}_{\mathbf{a}}(\mathbf{v})$$

1 Are there redundant sets $\mathcal{C}_a(v)$ in $\bigcap_{a \in I^n} \mathcal{C}_a(v)$?

2 Characterize non-emptiness of the core on SEG_n .

Shape of the Core

 $\mathcal{N}(\mathbf{v})$ denotes the set of all nodes of \mathbf{v}

Theorem

If $v \in SLG_n$, then $C(v) = \bigcap_{a \in N(v)} C_a(v).$

Moreover, C(v) is a (possibly empty) polytope included in the standard (n-1)-dimensional simplex

$$\Delta_n = \{ x \in \mathbb{R}^n \mid \langle 1_N, x \rangle = 1 \text{ and } x_i \ge 0 \text{ for every } i \in N \}.$$

Examples

Example $(v_{\wedge}(a) = a_1 \wedge \cdots \wedge a_n)$

Since $\mathcal{N}(\mathbf{v}_{\wedge}) = \{0,1\}^n$ we have the maximal core $\mathfrak{C}(\mathbf{v}_{\wedge}) = \Delta_n$

Example (Dictatorial game $v_i(a) = a_i$) $\mathcal{C}(v_i) = \{1_i\}$

Example $(v_{\oplus}(a) = a_1 \oplus \cdots \oplus a_n)$ $\mathcal{C}(v_{\oplus}) = \emptyset$

Non-emptiness of Cores (1)

Let \mathcal{B} be a finite set of fuzzy coalitions in I^n and $(\lambda_a)_{a\in\mathcal{B}}$ be a real vector with $\lambda_a \in I$. We say that a pair $(\mathcal{B}, (\lambda_a)_{a\in\mathcal{B}})$ is a balanced system if

$$\sum_{a\in\mathcal{B}}\lambda_aa=1_N.$$

Theorem

Let $v \in SLG_n$. Then core $\mathcal{C}(v) \neq \emptyset$ iff the inequality

$$\sum_{\in \mathcal{N}(v)} \lambda_a v(a) \leqslant 1$$

is true for every balanced system $(\mathcal{N}(v), (\lambda_a)_{a \in \mathcal{N}(v)})$.

a

Veto Players

Let $v \in SLG_n$ and $i \in N$. The function $v^i(a): I \to I$ defined by

$$v^{i}(a) = v(\underbrace{1,...,1}_{i-1}, a, 1, ..., 1), \quad a \in I.$$

measures a marginal influence of player i.

Definition

Let $v \in S \& G_n$. We say that player $i \in N$ is a

- null player if $v^i(0) = 1$,
- veto player if $v^i(0) = 0$.

Furthermore, we say that veto player $i \in N$ is a

- weak veto player if $v^i(c) = 1$ for some c < 1,
- **•** strong veto player if $v^i(c) = 1$ implies c = 1.

Non-emptiness of Cores (2)

Lemma

Let $v \in SEG_n$. Then *i* is a strong veto player iff $v^i(a) \leq a$ for every $a \in I$.

Theorem

Any game $v \in SLG_n$ is a game with strong veto players iff it has a non-empty core.