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Motivation

▶ Simple games model yes/no voting in collective bodies
▶ Provided that partial membership degrees of players are

allowed, players may form fuzzy coalitions
▶ Which class of games is obtained by replacing Boolean logic

with Łukasiewicz logic in many-valued scheme of cooperation?



Coalition Game

Definition

▶ N = {1, . . . , n} is the set of players
▶ 2N is the set of all coalitions
▶ v : 2N → R with v(∅) = 0 is a coalition game

A coalition game is simple if v is a non-decreasing {0, 1}-valued
function with v(N) = 1.



Examples of Simple Games

UNSC voting, U.S. presidential election etc.

Example (Majority voting)
Assume that N = {1, 2, 3} is the set of players. The majority voting
is captured by a simple game w such that

w(A) =
{

1 if |A| ⩾ 2,
0 otherwise.



Simple Games and Boolean Formulas

Each simple game v can be associated with a unique
non-decreasing non-constant Boolean function

fv(1A) = v(A), A ⊆ N

Theorem
Let v : 2N → {0, 1} be a non-constant function. TFAE:

▶ v is a simple game
▶ there is a negation-free formula φ such that fv is the Boolean

function corresponding to φ



Cores of Simple Games

The core of v is the set of all efficient payoff vectors x ∈ Rn upon
which no coalition A can improve:

C(v) = { x ∈ Rn | ⟨1N, x⟩ = v(N) and ⟨1A, x⟩ ⩾ v(A) for each A ⊆ N }

Theorem
A simple game has a non-empty core iff there is at least one veto
player i ∈ N (that is, v(N \ {i}) = 0) in the game.

▶ C(UNSC voting game) ̸= ∅
▶ C(majority voting game) = ∅



From Boolean to Fuzzy Coalitions
In a coalition A ⊆ N, a player i ∈ N participates in a degree 0 or 1.

Towards partial participation:

Definition
A fuzzy coalition is a vector a = (a1, . . . , an) ∈ In, where each ai is
a degree of membership of player i in a.

▶ ai measures player’s degree of involvement in some activity
(Aubin)

▶ large economy argument: a fuzzy coalition in the finite
economy becomes a coalition in the non-atomic economy
made of a large number of homogeneous agents (Aumann;
Azrieli and Lehrer; Husseinov)



Game with Fuzzy Coalitions

Definition (Aubin; 1974)

▶ N = {1, . . . , n} is the set of players
▶ In is set of all fuzzy coalitions
▶ v : In → R s.t. v(1∅) = 0 is a game with fuzzy coalitions

The core of v is the set of all efficient payoff vectors x ∈ Rn upon
which no fuzzy coalition a can improve:

C(v) = { x ∈ Rn | ⟨1N, x⟩ = v(1N) and ⟨a, x⟩ ⩾ v(a) for each a ∈ In }



Changing the Logic

..1 Replace the negation-free Boolean formulas with negation-free
Łukasiewicz formulas

..2 Observe: each negation-free formula

φ ∈ Formn

in Łuk. logic induces a non-decreasing McNaughton function

[φ] : In → I

..3 Which class of games with fuzzy coalitions is obtained?



Simple Łukasiewicz Games

Definition
A simple Łukasiewicz game is a McNaughton function v : In → I
that is

▶ non-decreasing
▶ v(1∅) = 0 and v(1N) = 1

By SŁGn we denote the set of all simple Łukasiewicz games over In.

Theorem
Let v : In → I be a non-constant function. TFAE:

▶ v ∈ SŁGn
▶ there is a negation-free formula in Łuk. logic φ s.t. v = [φ]



Cores of Simple Łukasiewicz Games

For each fuzzy coalition a ∈ In, put

Ca(v) =

{ x ∈ Rn | ⟨1N, x⟩ = v(1N) } if a = 1N,

{ x ∈ Rn | ⟨a, x⟩ ⩾ v(a) } otherwise,

The core of v ∈ SŁGn is

C(v) =
∩
a∈In

Ca(v)

..1 Are there redundant sets Ca(v) in
∩

a∈In Ca(v)?
..2 Characterize non-emptiness of the core on SŁGn.



Shape of the Core
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N(v) denotes the set of all nodes of v

Theorem
If v ∈ SŁGn, then

C(v) =
∩

a∈N(v)
Ca(v).

Moreover, C(v) is a (possibly empty) polytope included in the
standard (n − 1)-dimensional simplex

∆n = { x ∈ Rn | ⟨1N, x⟩ = 1 and xi ⩾ 0 for every i ∈ N } .



Examples

Example (v∧(a) = a1 ∧ · · ·∧ an)
Since N(v∧) = {0, 1}n we have the maximal core C(v∧) = ∆n

Example (Dictatorial game vi(a) = ai)
C(vi) = {1i}

Example (v⊕(a) = a1 ⊕ · · · ⊕ an)
C(v⊕) = ∅



Non-emptiness of Cores (1)

Let B be a finite set of fuzzy coalitions in In and (λa)a∈B be a real
vector with λa ∈ I. We say that a pair (B, (λa)a∈B) is a balanced
system if ∑

a∈B

λaa = 1N.

Theorem
Let v ∈ SŁGn. Then core C(v) ̸= ∅ iff the inequality∑

a∈N(v)
λav(a) ⩽ 1

is true for every balanced system (N(v), (λa)a∈N(v)).



Veto Players
Let v ∈ SŁGn and i ∈ N. The function vi(a) : I → I defined by

vi(a) = v(1, . . . , 1︸ ︷︷ ︸
i−1

, a, 1, ..., 1), a ∈ I.

measures a marginal influence of player i.

Definition
Let v ∈ SŁGn. We say that player i ∈ N is a

▶ null player if vi(0) = 1,
▶ veto player if vi(0) = 0.

Furthermore, we say that veto player i ∈ N is a
▶ weak veto player if vi(c) = 1 for some c < 1,
▶ strong veto player if vi(c) = 1 implies c = 1.



Non-emptiness of Cores (2)

Lemma
Let v ∈ SŁGn. Then i is a strong veto player iff vi(a) ⩽ a for every
a ∈ I.

Theorem
Any game v ∈ SŁGn is a game with strong veto players iff it has
a non-empty core.


