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Introduction

Conditional probability on Boolean algebras

Let B = 〈B,∧,∨,¬,>,⊥〉 be a Boolean algebra, and consider
C = B × B \ {⊥}.
A conditional probability on B is a map P(· | ·) : C → [0,1] satisfying the
following axioms:

1 P(H | H) = 1 for every H ∈ B \ {⊥};
2 P(· | H) is, for every H ∈ B \ {⊥}, a (finitely additive) probability measure

on B;

3 P((E ∧ A) | H) = P(E | H) · P(A | E ∧ H), for every A ∈ B, and each
E ,H ∈ B \ {⊥} such that E ∧ H 6= ⊥.
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Introduction Betting on conditional events

Conditional probability can also be characterized in terms of coherence
(not-sure loss principle).
Betting λ ∈ R on E | H = α means that we accept to pay αλ to the
bookmaker in order to receive, in the possible world V :

λ if both V (E) = 1 and V (H) = 1,

0 if V (E) = 0 and V (H) = 1,

αλ, if V (H) = 0.

Then an assignment
χ : Ei | Hi → αi .

is coherent (it does not ensure a sure loss), iff there is no way of betting on χ
ensuring a sure loss for the bookmaker, i.e. a sure win for the gambler.
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Introduction Betting on conditional events

Coherence criterion for conditional assignments, actually characterizes
conditional probability by the following:

Theorem ([1])

Let E1 | H1, . . . ,En | Hn be conditional events, let χ : Ei | Hi 7→ αi an
assignment, and let B be the Boolean algebra generated by the unconditional
events Ei ,Hi .
Then the following are equivalent:

1 χ is coherent;

2 There exists a conditional probability P(· | ·) on B such that for each
1 ≤ i ≤ n,

P(Ei | Hi ) = χ(Ei | Hi ) = αi .
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Introduction Lexicographic and non-standard probability

Non-standard and lexicographic probability (cf. [1, 2])
Coherent conditional probability assignments can be characterized in terms
of non-standard probability, and lexicographic probability

Theorem

Let E1 | H1, . . . ,En | Hn be conditional events, let χ : Ei | Hi 7→ αi an
assignment, and let B be the Boolean algebra generated by the unconditional
events Ei ,Hi . Then the following are equivalent:

1 χ is coherent (i.e. it does not allow surely winning strategies);

2 There exists a non-standard probability P∗ : B → ∗[0,1] such that

For every i, P∗(Hi ) > 0;
For every i, αi = St

(
P∗(Ei∧Hi )

P∗(Hi )

)
.

3 There exists a r ∈ N, and a lexicographic probability space 〈P0, . . . ,Pr 〉
such that

For every i there exists a 1 ≤ `(i) ≤ r such that P`(i)(Hi ) > 0, and

For every i, αi =
P`(i)(Ei∧Hi )

P`(i)(Hi )
.
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Introduction Lexicographic and non-standard probability

Idea of the proof

The class A = {a1, . . . ,am} of atoms generated by the events Ei ,Hi can be
stratified in a hierarchy defined by r + 1 probability distributions p0, . . . ,pr , as
follows:

for each j , pj : A → [0,1],

if Aj = {at ∈ A : pj (at ) = 0}, then pj+1 is 0 on A \ Aj .

for each Hi , there exists a minimum j such that Pj (Hi ) =
∑

a∈Hi
pj (a) > 0.

This minimum level is `(i): the zero-layer of Hi .

The nonstandard probability P∗ respects zero-layers. In fact P∗ is
defined such that, for each Hi ,Hz ,

if `(i) < `(z), then P∗(Hz) << P∗(Hi ),

i.e. P∗(Hz)/P∗(Hi ) is a positive infinitesimal.
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Introduction Lexicographic and non-standard probability
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The case of Łukasiewicz Events

Łukasiewicz events and states

An MV-algebra is a structure A = (A,⊕,¬,⊥) of type (2,1,0) such that
(A,⊕,⊥) is a commutative monoid with neutral element ⊥, and the following
equations hold:

¬(¬x) = x

x ⊕> = >, where > = ¬⊥
x ⊕ ¬(x ⊕ ¬y) = y ⊕ ¬(y ⊕ ¬x)

(?) The real unit interval [0,1] with operations ⊕ and ¬ defined by

x ⊕ y = min{1, x + y}, and ¬x = 1− x

is an MV-algebra denoted by [0,1]MV and called the standard MV-algebra.

(?) Fix a k ∈ N. Then the set of all functions from [0,1]k into [0,1] that are
continuous, piecewise linear, and such that each piece has integer coefficient,
with the operations ⊕ and ¬ defined as a pointwise application of those of
[0,1]MV is an MV-algebra (actually the free MV-algebra over k generators).
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The case of Łukasiewicz Events

The free MV-algebra Free(k) over k generators, is the Lindenbaum algebra of
Łukasiewicz propositional logic.

A Łukasiewicz event will be, for us, any equivalence class of formulas [θ], that
is, any McNaughton function f ∈ Free(k).

A state [6] on an MV-algebra A is any map s : A→ [0,1] such that

s(>) = 1,

whenever x � y = ⊥, then s(x ⊕ y) = s(x) + s(y).

A state s : A→ [0,1] is said to be faithful if s(x) = 0, implies x = ⊥.

A state s : A→ ∗[0,1] is said to be a hyperstate.
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Conditional probability (states) on MV-algebras

There are several attempts to generalize conditional probability (conditional
states) on MV-algebras

Gerla [1]: Axiomatic approach to conditional probability on MV-algebras.
A conditional probability s(· | ·) is a primitive notion.

Kroupa [2]: Conditional probability is definable from a simple probability:

s(f | g) =
s(f · g)

s(g)
,

whenever s(g) > 0. (Montagna [3] provided a characterization of
Kroupa’s approach in terms of a not-sure loss principle)

Mundici [7, 8]: Conditional probability as a state on a quotient algebra
(the quotient is obtained by forcing an antecedent), and Rényi
conditional probability on MV-algebras.

Montagna et al. [5]: Stable coherence, and characterization of stable
coherent (complete) assignments through unconditional hyperstates (i.e.
nonstandard-valued states).
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Mundici [7, 8]: Conditional probability as a state on a quotient algebra
(the quotient is obtained by forcing an antecedent), and Rényi
conditional probability on MV-algebras.

Montagna et al. [5]: Stable coherence, and characterization of stable
coherent (complete) assignments through unconditional hyperstates (i.e.
nonstandard-valued states).
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Conditional probability (states) on MV-algebras

Montagna’s result

A complete real-valued assignment

Λ : f1 | g1 7→ α1, . . . , fn | gn 7→ αn,g1 7→ β1, . . . ,gn 7→ βn

is stably coherent if there is another assessment

Λ′ : f1 | g1 7→ α′1, . . . , fn | gn 7→ α′n,g1 7→ β′1, . . . ,gn 7→ β′n

such that α′1, . . . , α
′
n, β
′
1, . . . , β

′
n belong to a nonstandard extension ∗[0,1] of

[0,1], and in addition:

(i) Λ and Λ′ differ by an infinitesimal, that is, for i = 1, . . . ,n, |α′i − αi | and
|β′i − βi | are infinitesimal;

(ii) for i = 1, . . .n, β′i > 0

(iii) Λ′ avoids sure loss.
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Conditional probability (states) on MV-algebras

Montagna’s result

Theorem
Let f1 . . . fn,g1, . . .gn be Łukasiewicz events, and let

Λ : fi | gi 7→ αi , gi 7→ βi (i = 1, . . . ,n)

be a complete assignment. Then the following are equivalent:

Λ is stably coherent;

There exists a faithful hyperstate s∗ such that

For every i, St(s∗(gi )) = βi ;
For every i, St(s∗(fi · gi )) = αi · βi .
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Conditional probability (states) on MV-algebras Defining layers of zero-probability for Łukasiewicz events

Outline

1 Introduction
Betting on conditional events
Lexicographic and non-standard probability

2 The case of Łukasiewicz Events

3 Conditional probability (states) on MV-algebras
Defining layers of zero-probability for Łukasiewicz events

4 Future work
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Conditional probability (states) on MV-algebras Defining layers of zero-probability for Łukasiewicz events

Let f1,g1, . . . , fn,gn be Łukasiewicz events in Free(k).

Let ∆ be a minimal unimodular triangulation of the hypercube [0,1]k that
linearizes each fi and gi . Also let

Ver(∆) = {x1, . . . ,xm}

be the set of vertices of ∆.

Let h1, . . . ,hm be the normalized Shauder hats corresponding to the
vertices in Ver(∆). Each hi is a McNaughton function, and hence
hi ∈ Free(k).

- For distinct hi ,hj ∈ H, hi � hj = 0, and
⊕m

t=1 ht = 1;
- For each i = 1, . . . ,n,

fi =
m⊕

t=1

ht · fi (xt ), and gi =
m⊕

t=1

ht · gi (xt ).
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Conditional probability (states) on MV-algebras Defining layers of zero-probability for Łukasiewicz events

Let Free(k)+ be the MV-algebra generated by

Free(k) ∪ {fi · gi : i = 1, . . . ,n}.

Every state s on Free(k) can be extended to a state (s)+ on Free(k)+ by
stipulating: for every p ∈ Free(k)+

(s)+(p) =
m∑

t=1

s(ht ) · p(xt ).

In a similar way, every hyperstate s∗ on Free(k) extends to a hyperstate
(s∗)+ on Free(k)+.

Given a class {d0, . . . ,dr} of mappings from {h1, . . . ,hm} into [0,1]
satisfying, for each j ,

∑m
t=1 dj (ht ) = 1 (we will henceforth call them

distributions), we define the zero-layer of a function p in Free(k)+ as

`(p) = min{j : ∃t ≤ m,dj (ht ) > 0, p(xt ) > 0}

if such a j exists, and `(p) =∞ otherwise.
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Conditional probability (states) on MV-algebras Defining layers of zero-probability for Łukasiewicz events

Theorem

Let f1 | g1, . . . , fn | gn be as above, and let χ : fi | gi 7→ αi ,gi 7→ βi (for
i = 1, . . . ,n) be a real-valued complete assignment. Then the following are
equivalent:

(i) There exists a faithful hyperstate s∗ : Free(k)→ ∗[0,1] such that for
every gi , St(s∗(gi )) = βi , and for every i = 1, . . . ,n,

αi = St
(

(s∗)+(fi · gi )

s∗(gi )

)
.

(ii) There exist states s0, . . . , sr over Free(k) such that, for every
i = 1, . . . ,n, there exists `(i) ∈ {0, . . . , r} such that s`(i)(gi ) > 0.
Moreover, if βx > 0, `(gx ) = 0, s0(gx ) = βx ; and for every i,

αi =
(s`(i))+(fi · gi )

s`(i)(gi )
.
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Conditional probability (states) on MV-algebras Defining layers of zero-probability for Łukasiewicz events

(⇒). Let s∗ : Free(k)→ ∗[0,1] be a faithful hyperstate, and let H the class of
normalized Schauder hats given by fi ,gi .
(1) Define:

H0 = H, and d0 : H → [0,1] as d0(h) = St(s∗(h));

Hi+1 = {h ∈ Hi : di (h) = 0}.
If Hi+1 = ∅, then we stop;
If Hi+1 6= ∅, define Φi+1 =

⊕{h ∈ Hi+1}, and

di+1(h) = St
(

s∗(h)

s∗(Φi+1)

)
.

(2) The process stops in finitely many steps, giving a class of distributions
d0, . . . ,dr such that, for each gi , `(gi ) <∞.

(3) It holds

αi ·
m∑

t=1

d`(gi )(ht ) · gi (xt ) =
m∑

t=1

d`(gi )(ht ) · (fi · gi )(xt ).
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Conditional probability (states) on MV-algebras Defining layers of zero-probability for Łukasiewicz events

(⇐). Let d0, . . . ,dr distributions on H whose associated states s0, . . . , sr are
as in (ii).
Let ε > 0 be a positive infinitesimal, and define s∗ : Free(k)→ ∗[0,1] as:

s∗(f ) = K ·
m∑

t=1

ε`(t) · d`(t)(ht ) · f (xt )

where

K =

(
m∑

t=1

ε`(t) · d`(t)(ht )

)−1
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Future work

Future work

- Complexity for the problem of establishing the coherence of a stable
coherent complete assignment using zero-layers

- Find an axiomatization of conditional states on MV-algebras characterizing
stable coherent complete assignments;
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