Layers of zero probability for conditional states of many-valued events

Tommaso Flaminio Lluís Godo

IIIA - CSIC Universitat Autonoma de Barcelona (Spain) {tommaso, godo}@iiia.csic.es

ManyVal 2012

Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

ManyVal 2012 1 / 26

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Betting on conditional events
- Lexicographic and non-standard probability
- The case of Łukasiewicz Events
- 3 Conditional probability (states) on MV-algebras
 - Defining layers of zero-probability for Łukasiewicz events

4 Future work

4 A 1 1 4

Conditional probability on Boolean algebras

Let $B = \langle B, \land, \lor, \neg, \top, \bot \rangle$ be a Boolean algebra, and consider $C = B \times B \setminus \{\bot\}.$

A conditional probability on B is a map $P(\cdot | \cdot) : C \to [0, 1]$ satisfying the following axioms:

•
$$P(H \mid H) = 1$$
 for every $H \in B \setminus \{\bot\}$;

P(· | H) is, for every H ∈ B \ {⊥}, a (finitely additive) probability measure on B;

③ $P((E \land A) | H) = P(E | H) \cdot P(A | E \land H)$, for every $A \in B$, and each $E, H \in B \setminus \{\bot\}$ such that $E \land H \neq \bot$.

Outline

Introduction

- Betting on conditional events
- Lexicographic and non-standard probability
- 2 The case of Łukasiewicz Events
- Conditional probability (states) on MV-algebras
 Defining layers of zero-probability for Łukasiewicz events
- 4) Future work

→ Ξ →

4 A N

Conditional probability can also be characterized in terms of coherence (not-sure loss principle).

Betting $\lambda \in \mathbb{R}$ on $E \mid H = \alpha$ means that we accept to pay $\alpha \lambda$ to the bookmaker in order to receive, in the possible world *V*:

•
$$\lambda$$
 if both $V(E) = 1$ and $V(H) = 1$,

• 0 if
$$V(E) = 0$$
 and $V(H) = 1$,

• $\alpha\lambda$, if V(H) = 0.

Then an assignment

$$\chi: E_i \mid H_i \to \alpha_i.$$

is coherent (it does not ensure a sure loss), iff there is no way of betting on χ ensuring a sure loss for the bookmaker, i.e. a sure win for the gambler.

Conditional probability can also be characterized in terms of coherence (not-sure loss principle).

Betting $\lambda \in \mathbb{R}$ on $E \mid H = \alpha$ means that we accept to pay $\alpha \lambda$ to the bookmaker in order to receive, in the possible world *V*:

- λ if both V(E) = 1 and V(H) = 1,
- 0 if V(E) = 0 and V(H) = 1,
- $\alpha\lambda$, if V(H) = 0.

Then an assignment

$$\chi: E_i \mid H_i \to \alpha_i.$$

is coherent (it does not ensure a sure loss), iff there is no way of betting on χ ensuring a sure loss for the bookmaker, i.e. a sure win for the gambler.

イロト 不得 トイヨト イヨト 二日

Conditional probability can also be characterized in terms of coherence (not-sure loss principle).

Betting $\lambda \in \mathbb{R}$ on $E \mid H = \alpha$ means that we accept to pay $\alpha \lambda$ to the bookmaker in order to receive, in the possible world *V*:

- λ if both V(E) = 1 and V(H) = 1,
- 0 if V(E) = 0 and V(H) = 1,
- $\alpha\lambda$, if V(H) = 0.

Then an assignment

$$\chi: E_i \mid H_i \to \alpha_i.$$

is coherent (it does not ensure a sure loss), iff there is no way of betting on χ ensuring a sure loss for the bookmaker, i.e. a sure win for the gambler.

Coherence criterion for conditional assignments, actually characterizes conditional probability by the following:

Theorem ([1])

Let $E_1 | H_1, \ldots, E_n | H_n$ be conditional events, let $\chi : E_i | H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i, H_i .

Then the following are equivalent:

 $\bigcirc \chi$ is coherent;

There exists a conditional probability P(· | ·) on B such that for each 1 ≤ i ≤ n,

 $P(E_i \mid H_i) = \chi(E_i \mid H_i) = \alpha_i.$

Coherence criterion for conditional assignments, actually characterizes conditional probability by the following:

Theorem ([1])

Let $E_1 | H_1, ..., E_n | H_n$ be conditional events, let $\chi : E_i | H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i, H_i . Then the following are equivalent:

• χ is coherent;

There exists a conditional probability $P(\cdot \mid \cdot)$ on B such that for each $1 \le i \le n$,

 $P(E_i \mid H_i) = \chi(E_i \mid H_i) = \alpha_i.$

Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

ManyVal 2012 6 / 26

Coherence criterion for conditional assignments, actually characterizes conditional probability by the following:

Theorem ([1])

Let $E_1 \mid H_1, \ldots, E_n \mid H_n$ be conditional events, let $\chi : E_i \mid H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i , H_i . Then the following are equivalent:

• χ is coherent:

2 There exists a conditional probability $P(\cdot \mid \cdot)$ on B such that for each 1 < i < n.

$$P(E_i \mid H_i) = \chi(E_i \mid H_i) = \alpha_i.$$

Outline

Introduction

- Betting on conditional events
- Lexicographic and non-standard probability
- 2 The case of Łukasiewicz Events
- Conditional probability (states) on MV-algebras
 Defining layers of zero-probability for Łukasiewicz events
- 4 Future work

→ Ξ →

4 A N

Coherent conditional probability assignments can be characterized in terms of *non-standard probability*, and *lexicographic probability*

Theorem

Let $E_1 | H_1, ..., E_n | H_n$ be conditional events, let $\chi : E_i | H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i, H_i . Then the following are equivalent:

 χ is coherent (i.e. it does not allow surely winning strategies);

② There exists a non-standard probability $P^*: B \rightarrow *[0,1]$ such that

• For every i,
$$\alpha_i = St\left(rac{P^*(E_i \wedge H_i)}{P^*(H_i)}
ight)$$
.

3 There exists a r ∈ N, and a lexicographic probability space (P₀,..., P_r) such that

For every *i* there exists a 1 ≤ ℓ(*i*) ≤ *r* such that P_{ℓ(i)}(H_i) > 0, and
 For every *i*, α_i = P_{ℓ(i)}(E_i∧H_i)/P_{ℓ(i)}(H_i).

Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

Coherent conditional probability assignments can be characterized in terms of *non-standard probability*, and *lexicographic probability*

Theorem

Let $E_1 | H_1, ..., E_n | H_n$ be conditional events, let $\chi : E_i | H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i, H_i . Then the following are equivalent:

• χ is coherent (i.e. it does not allow surely winning strategies);

2) There exists a non-standard probability $P^*:B
ightarrow *[0,1]$ such that

- *For every i*, *P*^{*}(*H_i*) > 0;
- For every i, $\alpha_i = St\left(\frac{P^*(E_i \wedge H_i)}{P^*(H_i)}\right)$.

3 There exists a r ∈ N, and a lexicographic probability space (P₀,..., P_r) such that

For every *i* there exists a 1 ≤ ℓ(*i*) ≤ *r* such that P_{ℓ(i)}(H_i) > 0, and
 For every *i*, α_i = P_{ℓ(i)}(E_i∧H_i)/P_{ℓ(i)}(H_i).

Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

Coherent conditional probability assignments can be characterized in terms of *non-standard probability*, and *lexicographic probability*

Theorem

Let $E_1 | H_1, ..., E_n | H_n$ be conditional events, let $\chi : E_i | H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i, H_i . Then the following are equivalent:

① χ is coherent (i.e. it does not allow surely winning strategies);

2 There exists a non-standard probability $P^* : B \to *[0, 1]$ such that

• For every i,
$$\alpha_i = St\left(\frac{P^*(E_i \wedge H_i)}{P^*(H_i)}\right)$$
.

3 There exists a r ∈ N, and a lexicographic probability space (P₀,..., P_r) such that

For every *i* there exists a 1 ≤ ℓ(*i*) ≤ *r* such that P_{ℓ(i)}(H_i) > 0, and
 For every *i*, α_i = P_{ℓ(i)}(E_i∧H_i)/P_{ℓ(i)}(H_i).

Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

Coherent conditional probability assignments can be characterized in terms of *non-standard probability*, and *lexicographic probability*

Theorem

Let $E_1 | H_1, ..., E_n | H_n$ be conditional events, let $\chi : E_i | H_i \mapsto \alpha_i$ an assignment, and let B be the Boolean algebra generated by the unconditional events E_i, H_i . Then the following are equivalent:

• χ is coherent (i.e. it does not allow surely winning strategies);

2 There exists a non-standard probability $P^* : B \to *[0, 1]$ such that

• For every i,
$$\alpha_i = St\left(\frac{P^*(E_i \wedge H_i)}{P^*(H_i)}\right)$$
.

3 There exists a r ∈ N, and a lexicographic probability space (P₀,..., P_r) such that

• For every *i* there exists a $1 \le \ell(i) \le r$ such that $P_{\ell(i)}(H_i) > 0$, and

• For every *i*,
$$\alpha_i = \frac{P_{\ell(i)}(E_i \wedge H_i)}{P_{\ell(i)}(H_i)}$$
.

Flaminio, Godo (IIIA - CSIC)

The class $A = \{a_1, ..., a_m\}$ of atoms generated by the events E_i, H_i can be stratified in a hierarchy defined by r + 1 probability distributions $p_0, ..., p_r$, as follows:

- for each j, $p_j : \mathcal{A} \to [0, 1]$,
- if $A_j = \{a_t \in A : p_j(a_t) = 0\}$, then p_{j+1} is 0 on $A \setminus A_j$.
- for each H_i , there exists a minimum *j* such that $P_j(H_i) = \sum_{a \in H_i} p_j(a) > 0$. This minimum level is $\ell(i)$: the zero-layer of H_i .
- The nonstandard probability *P*^{*} respects zero-layers. In fact *P*^{*} is defined such that, for each *H_i*, *H_z*,

if $\ell(i) < \ell(z)$, then $P^*(H_z) << P^*(H_i)$,

i.e. $P^*(H_z)/P^*(H_i)$ is a positive infinitesimal.

The class $A = \{a_1, ..., a_m\}$ of atoms generated by the events E_i, H_i can be stratified in a hierarchy defined by r + 1 probability distributions $p_0, ..., p_r$, as follows:

- for each j, $p_j : \mathcal{A} \to [0, 1]$,
- if $A_j = \{a_t \in A : p_j(a_t) = 0\}$, then p_{j+1} is 0 on $A \setminus A_j$.
- for each H_i , there exists a minimum *j* such that $P_j(H_i) = \sum_{a \in H_i} p_j(a) > 0$. This minimum level is $\ell(i)$: the zero-layer of H_i .
- The nonstandard probability *P*^{*} respects zero-layers. In fact *P*^{*} is defined such that, for each *H_i*, *H_z*,

if $\ell(i) < \ell(z)$, then $P^*(H_z) << P^*(H_i)$,

i.e. $P^*(H_z)/P^*(H_i)$ is a positive infinitesimal.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

The class $A = \{a_1, ..., a_m\}$ of atoms generated by the events E_i, H_i can be stratified in a hierarchy defined by r + 1 probability distributions $p_0, ..., p_r$, as follows:

- for each j, $p_j : A \rightarrow [0, 1]$,
- if $A_j = \{a_t \in A : p_j(a_t) = 0\}$, then p_{j+1} is 0 on $A \setminus A_j$.
- for each H_i , there exists a minimum *j* such that $P_j(H_i) = \sum_{a \in H_i} p_j(a) > 0$. This minimum level is $\ell(i)$: the zero-layer of H_i .
- The nonstandard probability *P*^{*} respects zero-layers. In fact *P*^{*} is defined such that, for each *H_i*, *H_z*,

if $\ell(i) < \ell(z)$, then $P^*(H_z) << P^*(H_i)$,

i.e. $P^*(H_z)/P^*(H_i)$ is a positive infinitesimal.

イロト 不得 トイヨト イヨト 二日

The class $A = \{a_1, ..., a_m\}$ of atoms generated by the events E_i, H_i can be stratified in a hierarchy defined by r + 1 probability distributions $p_0, ..., p_r$, as follows:

- for each j, $p_j : A \rightarrow [0, 1]$,
- if $A_j = \{a_t \in A : p_j(a_t) = 0\}$, then p_{j+1} is 0 on $A \setminus A_j$.
- for each H_i , there exists a minimum *j* such that $P_j(H_i) = \sum_{a \in H_i} p_j(a) > 0$. This minimum level is $\ell(i)$: the zero-layer of H_i .

 The nonstandard probability P* respects zero-layers. In fact P* is defined such that, for each H_i, H_z,

if $\ell(i) < \ell(z)$, then $P^*(H_z) << P^*(H_i)$,

i.e. $P^*(H_z)/P^*(H_i)$ is a positive infinitesimal.

イロト 不得 トイヨト イヨト 二日

The class $A = \{a_1, ..., a_m\}$ of atoms generated by the events E_i, H_i can be stratified in a hierarchy defined by r + 1 probability distributions $p_0, ..., p_r$, as follows:

- for each j, $p_j : A \rightarrow [0, 1]$,
- if $A_j = \{a_t \in A : p_j(a_t) = 0\}$, then p_{j+1} is 0 on $A \setminus A_j$.
- for each H_i , there exists a minimum *j* such that $P_j(H_i) = \sum_{a \in H_i} p_j(a) > 0$. This minimum level is $\ell(i)$: the zero-layer of H_i .
- The nonstandard probability P* respects zero-layers. In fact P* is defined such that, for each H_i, H_z,

if $\ell(i) < \ell(z)$, then $P^*(H_z) << P^*(H_i)$,

i.e. $P^*(H_z)/P^*(H_i)$ is a positive infinitesimal.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

- G. Coletti and R. Scozzafava, Probabilistic Logic in a Coherent Setting. *Trends in Logic*, vol. 15, Kluwer, 2002.
- J. H. Halpern, *Lexicographic probability, conditional probability, and nonstandard probability*. In Proceedings of the Eighth Conference on Theoretical Aspects of Rationality and Knowledge, 2001, pp. 17–30. [arXiv:cs/0306106v2]

< ロト < 同ト < ヨト < ヨト

Łukasiewicz events and states

An MV-algebra is a structure $A = (A, \oplus, \neg, \bot)$ of type (2, 1, 0) such that (A, \oplus, \bot) is a commutative monoid with neutral element \bot , and the following equations hold:

• $\neg(\neg x) = x$

•
$$x \oplus \top = \top$$
, where $\top = \neg \bot$

•
$$x \oplus \neg (x \oplus \neg y) = y \oplus \neg (y \oplus \neg x)$$

(*) The real unit interval [0, 1] with operations \oplus and \neg defined by

$$x \oplus y = \min\{1, x + y\}, and \neg x = 1 - x$$

is an MV-algebra denoted by $[0, 1]_{MV}$ and called the standard MV-algebra.

(*) Fix a $k \in \mathbb{N}$. Then the set of all functions from $[0, 1]^k$ into [0, 1] that are continuous, piecewise linear, and such that each piece has integer coefficient, with the operations \oplus and \neg defined as a pointwise application of those of $[0, 1]_{MV}$ is an MV-algebra (actually the free MV-algebra over *k* generators).

Flaminio, Godo (IIIA - CSIC)

Sac

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Łukasiewicz events and states

An MV-algebra is a structure $A = (A, \oplus, \neg, \bot)$ of type (2, 1, 0) such that (A, \oplus, \bot) is a commutative monoid with neutral element \bot , and the following equations hold:

• $\neg(\neg x) = x$

•
$$x \oplus \top = \top$$
, where $\top = \neg \bot$

•
$$x \oplus \neg (x \oplus \neg y) = y \oplus \neg (y \oplus \neg x)$$

(*) The real unit interval [0, 1] with operations \oplus and \neg defined by

$$x \oplus y = \min\{1, x + y\}$$
, and $\neg x = 1 - x$

is an MV-algebra denoted by $[0, 1]_{MV}$ and called the standard MV-algebra.

(*) Fix a $k \in \mathbb{N}$. Then the set of all functions from $[0, 1]^k$ into [0, 1] that are continuous, piecewise linear, and such that each piece has integer coefficient, with the operations \oplus and \neg defined as a pointwise application of those of $[0, 1]_{MV}$ is an MV-algebra (actually the free MV-algebra over *k* generators).

Flaminio, Godo (IIIA - CSIC)

Łukasiewicz events and states

An MV-algebra is a structure $A = (A, \oplus, \neg, \bot)$ of type (2, 1, 0) such that (A, \oplus, \bot) is a commutative monoid with neutral element \bot , and the following equations hold:

• $\neg(\neg x) = x$

•
$$x \oplus \top = \top$$
, where $\top = \neg \bot$

•
$$x \oplus \neg (x \oplus \neg y) = y \oplus \neg (y \oplus \neg x)$$

(*) The real unit interval [0,1] with operations \oplus and \neg defined by

$$x \oplus y = \min\{1, x + y\}$$
, and $\neg x = 1 - x$

is an MV-algebra denoted by $[0, 1]_{MV}$ and called the standard MV-algebra.

(*) Fix a $k \in \mathbb{N}$. Then the set of all functions from $[0, 1]^k$ into [0, 1] that are continuous, piecewise linear, and such that each piece has integer coefficient, with the operations \oplus and \neg defined as a pointwise application of those of $[0, 1]_{MV}$ is an MV-algebra (actually the free MV-algebra over *k* generators).

Flaminio, Godo (IIIA - CSIC)

A *Łukasiewicz event* will be, for us, any equivalence class of formulas $[\theta]$, that is, any McNaughton function $f \in Free(k)$.

A *state* [6] on an MV-algebra A is any map $s : A \rightarrow [0, 1]$ such that

•
$$s(\top) = 1$$
,

• whenever
$$x \odot y = \bot$$
, then $s(x \oplus y) = s(x) + s(y)$.

A state $s : A \rightarrow [0, 1]$ is said to be *faithful* if s(x) = 0, implies $x = \bot$.

A state $s : A \rightarrow *[0, 1]$ is said to be a *hyperstate*.

< ロト < 同ト < ヨト < ヨト

A *Łukasiewicz event* will be, for us, any equivalence class of formulas $[\theta]$, that is, any McNaughton function $f \in Free(k)$.

A *state* [6] on an MV-algebra A is any map $s : A \rightarrow [0, 1]$ such that

• $s(\top) = 1$,

• whenever $x \odot y = \bot$, then $s(x \oplus y) = s(x) + s(y)$.

A state $s : A \rightarrow [0, 1]$ is said to be *faithful* if s(x) = 0, implies $x = \bot$.

A state $s : A \rightarrow *[0, 1]$ is said to be a *hyperstate*.

A *Łukasiewicz event* will be, for us, any equivalence class of formulas $[\theta]$, that is, any McNaughton function $f \in Free(k)$.

A state [6] on an MV-algebra A is any map $s : A \rightarrow [0, 1]$ such that

• whenever $x \odot y = \bot$, then $s(x \oplus y) = s(x) + s(y)$.

A state $s : A \rightarrow [0, 1]$ is said to be *faithful* if s(x) = 0, implies $x = \bot$.

A state $s : A \rightarrow *[0, 1]$ is said to be a *hyperstate*.

A *Łukasiewicz event* will be, for us, any equivalence class of formulas $[\theta]$, that is, any McNaughton function $f \in Free(k)$.

A state [6] on an MV-algebra A is any map $s : A \rightarrow [0, 1]$ such that

• whenever $x \odot y = \bot$, then $s(x \oplus y) = s(x) + s(y)$.

A state $s : A \rightarrow [0, 1]$ is said to be *faithful* if s(x) = 0, implies $x = \bot$.

A state $s : A \rightarrow *[0, 1]$ is said to be a *hyperstate*.

A *Łukasiewicz event* will be, for us, any equivalence class of formulas $[\theta]$, that is, any McNaughton function $f \in Free(k)$.

A state [6] on an MV-algebra A is any map $s : A \rightarrow [0, 1]$ such that

• whenever $x \odot y = \bot$, then $s(x \oplus y) = s(x) + s(y)$.

A state $s : A \rightarrow [0, 1]$ is said to be *faithful* if s(x) = 0, implies $x = \bot$.

A state $s : A \rightarrow *[0, 1]$ is said to be a *hyperstate*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Gerla [1]: Axiomatic approach to conditional probability on MV-algebras. A conditional probability $s(\cdot | \cdot)$ is a primitive notion.
- Kroupa [2]: Conditional probability is definable from a simple probability:

$$s(f \mid g) = rac{s(f \cdot g)}{s(g)},$$

whenever s(g) > 0. (Montagna [3] provided a characterization of Kroupa's approach in terms of a not-sure loss principle)

- Mundici [7, 8]: Conditional probability as a state on a quotient algebra (the quotient is obtained by forcing an antecedent), and Rényi conditional probability on MV-algebras.
- Montagna et al. [5]: *Stable coherence*, and characterization of stable coherent (complete) assignments through *unconditional hyperstates* (i.e. nonstandard-valued states).

3

- Gerla [1]: Axiomatic approach to conditional probability on MV-algebras.
 A conditional probability s(· | ·) is a primitive notion.
- Kroupa [2]: Conditional probability is definable from a simple probability:

$$s(f \mid g) = rac{s(f \cdot g)}{s(g)},$$

whenever s(g) > 0. (Montagna [3] provided a characterization of Kroupa's approach in terms of a not-sure loss principle)

- Mundici [7, 8]: Conditional probability as a state on a quotient algebra (the quotient is obtained by forcing an antecedent), and Rényi conditional probability on MV-algebras.
- Montagna et al. [5]: *Stable coherence*, and characterization of stable coherent (complete) assignments through *unconditional hyperstates* (i.e. nonstandard-valued states).

э

- Gerla [1]: Axiomatic approach to conditional probability on MV-algebras. A conditional probability s(· | ·) is a primitive notion.
- Kroupa [2]: Conditional probability is definable from a simple probability:

$$m{s}(f \mid g) = rac{m{s}(f \cdot g)}{m{s}(g)},$$

whenever s(g) > 0. (Montagna [3] provided a characterization of Kroupa's approach in terms of a not-sure loss principle)

- Mundici [7, 8]: Conditional probability as a state on a quotient algebra (the quotient is obtained by forcing an antecedent), and Rényi conditional probability on MV-algebras.
- Montagna et al. [5]: *Stable coherence*, and characterization of stable coherent (complete) assignments through *unconditional hyperstates* (i.e. nonstandard-valued states).

イロト 不得 トイヨト イヨト 二日

- Gerla [1]: Axiomatic approach to conditional probability on MV-algebras.
 A conditional probability s(· | ·) is a primitive notion.
- Kroupa [2]: Conditional probability is definable from a simple probability:

$$m{s}(f \mid g) = rac{m{s}(f \cdot g)}{m{s}(g)},$$

whenever s(g) > 0. (Montagna [3] provided a characterization of Kroupa's approach in terms of a not-sure loss principle)

- Mundici [7, 8]: Conditional probability as a state on a quotient algebra (the quotient is obtained by forcing an antecedent), and Rényi conditional probability on MV-algebras.
- Montagna et al. [5]: *Stable coherence*, and characterization of stable coherent (complete) assignments through *unconditional hyperstates* (i.e. nonstandard-valued states).

イロト 不得 トイヨト イヨト 二日

- Gerla [1]: Axiomatic approach to conditional probability on MV-algebras.
 A conditional probability s(· | ·) is a primitive notion.
- Kroupa [2]: Conditional probability is definable from a simple probability:

$$m{s}(f \mid g) = rac{m{s}(f \cdot g)}{m{s}(g)},$$

whenever s(g) > 0. (Montagna [3] provided a characterization of Kroupa's approach in terms of a not-sure loss principle)

- Mundici [7, 8]: Conditional probability as a state on a quotient algebra (the quotient is obtained by forcing an antecedent), and Rényi conditional probability on MV-algebras.
- Montagna et al. [5]: *Stable coherence*, and characterization of stable coherent (complete) assignments through *unconditional hyperstates* (i.e. nonstandard-valued states).

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Montagna's result

A complete real-valued assignment

$$\Lambda: f_1 \mid g_1 \mapsto \alpha_1, \ldots, f_n \mid g_n \mapsto \alpha_n, g_1 \mapsto \beta_1, \ldots, g_n \mapsto \beta_n$$

is stably coherent if there is another assessment

$$\Lambda': f_1 \mid g_1 \mapsto \alpha'_1, \ldots, f_n \mid g_n \mapsto \alpha'_n, g_1 \mapsto \beta'_1, \ldots, g_n \mapsto \beta'_n$$

such that $\alpha'_1, \ldots, \alpha'_n, \beta'_1, \ldots, \beta'_n$ belong to a nonstandard extension *[0, 1] of [0, 1], and in addition:

- (i) A and A' differ by an infinitesimal, that is, for i = 1, ..., n, $|\alpha'_i \alpha_i|$ and $|\beta'_i \beta_i|$ are infinitesimal;
- (ii) for $i = 1, ..., \beta_i' > 0$
- (iii) A' avoids sure loss.

イロト 不得 トイヨト イヨト 二日

Montagna's result

Theorem

Let $f_1 \ldots f_n, g_1, \ldots g_n$ be Łukasiewicz events, and let

 $\Lambda: f_i \mid g_i \mapsto \alpha_i, \ g_i \mapsto \beta_i \ (i = 1, \ldots, n)$

be a complete assignment. Then the following are equivalent:

- Λ is stably coherent;
- There exists a faithful hyperstate s* such that

• For every *i*, $St(s^*(g_i)) = \beta_i$;

• For every *i*, $St(s^*(f_i \cdot g_i)) = \alpha_i \cdot \beta_i$.

Flaminio, Godo (IIIA - CSIC)

3

Montagna's result

Theorem

Let $f_1 \dots f_n, g_1, \dots g_n$ be Łukasiewicz events, and let

 $\Lambda: f_i \mid g_i \mapsto \alpha_i, \ g_i \mapsto \beta_i \ (i = 1, \ldots, n)$

be a complete assignment. Then the following are equivalent:

- Λ is stably coherent;
- There exists a faithful hyperstate s* such that

• For every *i*, $St(s^*(g_i)) = \beta_i$;

• For every *i*, $St(s^*(f_i \cdot g_i)) = \alpha_i \cdot \beta_i$.

Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

ManyVal 2012 15 / 26

3

Montagna's result

Theorem

Let $f_1 \ldots f_n, g_1, \ldots g_n$ be Łukasiewicz events, and let

 $\Lambda: f_i \mid g_i \mapsto \alpha_i, \ g_i \mapsto \beta_i \ (i = 1, \ldots, n)$

be a complete assignment. Then the following are equivalent:

- Λ is stably coherent;
- There exists a faithful hyperstate s* such that
 - For every *i*, $St(s^*(g_i)) = \beta_i$;
 - For every *i*, $St(s^*(f_i \cdot g_i)) = \alpha_i \cdot \beta_i$.

Outline

Introduction

- Betting on conditional events
- Lexicographic and non-standard probability
- The case of Łukasiewicz Events
- Conditional probability (states) on MV-algebras
 Defining layers of zero-probability for Łukasiewicz events

4 Future work

≣ ▶ ∢

• Let $f_1, g_1, \ldots, f_n, g_n$ be *Łukasiewicz events* in *Free*(*k*).

Let △ be a minimal unimodular triangulation of the hypercube [0, 1]^k that linearizes each f_i and g_i. Also let

 $Ver(\Delta) = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$

be the set of vertices of Δ .

- Let h₁,..., h_m be the normalized Shauder hats corresponding to the vertices in Ver(∆). Each h_i is a McNaughton function, and hence h_i ∈ Free(k).
 - For distinct $\mathbf{h}_i, \mathbf{h}_j \in \mathcal{H}$, $\mathbf{h}_i \odot \mathbf{h}_j = \mathbf{0}$, and $\bigoplus_{t=1}^m \mathbf{h}_t = \mathbf{1}$;
 - For each i = 1, ..., n,

 $f_i = \bigoplus_{t=1}^m \mathbf{h}_t \cdot f_i(\mathbf{x}_t)$, and $g_i = \bigoplus_{t=1}^m \mathbf{h}_t \cdot g_i(\mathbf{x}_t)$.

- Let $f_1, g_1, \ldots, f_n, g_n$ be *Łukasiewicz events* in *Free*(*k*).
- Let △ be a minimal unimodular triangulation of the hypercube [0, 1]^k that linearizes each f_i and g_i. Also let

 $Ver(\Delta) = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$

be the set of vertices of Δ .

- Let h₁,..., h_m be the normalized Shauder hats corresponding to the vertices in Ver(∆). Each h_i is a McNaughton function, and hence h_i ∈ Free(k).
 - For distinct $\mathbf{h}_i, \mathbf{h}_j \in \mathcal{H}$, $\mathbf{h}_i \odot \mathbf{h}_j = \mathbf{0}$, and $\bigoplus_{t=1}^m \mathbf{h}_t = \mathbf{1}$;
 - For each i = 1, ..., n,

 $f_i = \bigoplus_{t=1}^m \mathbf{h}_t \cdot f_i(\mathbf{x}_t)$, and $g_i = \bigoplus_{t=1}^m \mathbf{h}_t \cdot g_i(\mathbf{x}_t)$.

Flaminio, Godo (IIIA - CSIC)

イロト 不得 トイヨト イヨト 二日

- Let $f_1, g_1, \ldots, f_n, g_n$ be *Łukasiewicz events* in *Free*(*k*).
- Let △ be a minimal unimodular triangulation of the hypercube [0, 1]^k that linearizes each f_i and g_i. Also let

 $Ver(\Delta) = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$

be the set of vertices of Δ .

- Let h₁,..., h_m be the normalized Shauder hats corresponding to the vertices in Ver(Δ). Each h_i is a McNaughton function, and hence h_i ∈ Free(k).
 - For distinct $\mathbf{h}_i, \mathbf{h}_j \in \mathcal{H}, \mathbf{h}_i \odot \mathbf{h}_j = 0$, and $\bigoplus_{t=1}^m \mathbf{h}_t = 1$;
 - For each i = 1, ..., n,

$$f_i = \bigoplus_{t=1}^m \mathbf{h}_t \cdot f_i(\mathbf{x}_t), \text{ and } g_i = \bigoplus_{t=1}^m \mathbf{h}_t \cdot g_i(\mathbf{x}_t).$$

• Let $Free(k)^+$ be the MV-algebra generated by

Free(*k*) \cup {*f*_{*i*} · *g*_{*i*} : *i* = 1,...,*n*}.

Every state s on Free(k) can be extended to a state (s)⁺ on Free(k)⁺ by stipulating: for every p ∈ Free(k)⁺

$$(s)^+(p) = \sum_{t=1}^m s(\mathbf{h}_t) \cdot p(\mathbf{x}_t).$$

In a similar way, every hyperstate s^* on Free(k) extends to a hyperstate $(s^*)^+$ on $Free(k)^+$.

• Given a class $\{d_0, \ldots, d_r\}$ of mappings from $\{\mathbf{h}_1, \ldots, \mathbf{h}_m\}$ into [0, 1] satisfying, for each j, $\sum_{t=1}^m d_j(\mathbf{h}_t) = 1$ (we will henceforth call them *distributions*), we define the *zero-layer* of a function p in *Free* $(k)^+$ as

 $\ell(p) = \min\{j : \exists t \le m, d_j(\mathbf{h}_t) > 0, \ p(\mathbf{x}_t) > 0\}$

if such a *j* exists, and $\ell(p) = \infty$ otherwise.

Flaminio, Godo (IIIA - CSIC)

• Let $Free(k)^+$ be the MV-algebra generated by

Free(*k*)
$$\cup$$
 {*f*_{*i*} · *g*_{*i*} : *i* = 1,...,*n*}.

Every state s on Free(k) can be extended to a state (s)⁺ on Free(k)⁺ by stipulating: for every p ∈ Free(k)⁺

$$(s)^+(p) = \sum_{t=1}^m s(\mathbf{h}_t) \cdot p(\mathbf{x}_t).$$

In a similar way, every hyperstate s^* on Free(k) extends to a hyperstate $(s^*)^+$ on $Free(k)^+$.

• Given a class $\{d_0, \ldots, d_r\}$ of mappings from $\{\mathbf{h}_1, \ldots, \mathbf{h}_m\}$ into [0, 1] satisfying, for each j, $\sum_{t=1}^m d_j(\mathbf{h}_t) = 1$ (we will henceforth call them *distributions*), we define the *zero-layer* of a function p in *Free* $(k)^+$ as

 $\ell(p) = \min\{j : \exists t \le m, d_j(\mathbf{h}_t) > 0, \ p(\mathbf{x}_t) > 0\}$

if such a *j* exists, and $\ell(p) = \infty$ otherwise.

Flaminio, Godo (IIIA - CSIC)

イロト 不得 トイヨト イヨト 二日

• Let $Free(k)^+$ be the MV-algebra generated by

Free(*k*)
$$\cup$$
 {*f*_{*i*} · *g*_{*i*} : *i* = 1,...,*n*}.

Every state s on Free(k) can be extended to a state (s)⁺ on Free(k)⁺ by stipulating: for every p ∈ Free(k)⁺

$$(s)^+(p) = \sum_{t=1}^m s(\mathbf{h}_t) \cdot p(\mathbf{x}_t).$$

In a similar way, every hyperstate s^* on Free(k) extends to a hyperstate $(s^*)^+$ on $Free(k)^+$.

• Given a class $\{d_0, \ldots, d_r\}$ of mappings from $\{\mathbf{h}_1, \ldots, \mathbf{h}_m\}$ into [0, 1] satisfying, for each j, $\sum_{t=1}^m d_j(\mathbf{h}_t) = 1$ (we will henceforth call them *distributions*), we define the *zero-layer* of a function p in *Free*(k)⁺ as

 $\ell(p) = \min\{j : \exists t \le m, d_j(\mathbf{h}_t) > 0, \ p(\mathbf{x}_t) > 0\}$

if such a *j* exists, and $\ell(p) = \infty$ otherwise.

Flaminio, Godo (IIIA - CSIC)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Theorem

Let $f_1 | g_1, ..., f_n | g_n$ be as above, and let $\chi : f_i | g_i \mapsto \alpha_i, g_i \mapsto \beta_i$ (for i = 1, ..., n) be a real-valued complete assignment. Then the following are equivalent:

(i) There exists a faithful hyperstate s^{*} : Free(k) → *[0,1] such that for every g_i, St(s^{*}(g_i)) = β_i, and for every i = 1,..., n,

$$\alpha_i = St\left(\frac{(s^*)^+(f_i \cdot g_i)}{s^*(g_i)}\right).$$

(ii) There exist states s_0, \ldots, s_r over Free(k) such that, for every $i = 1, \ldots, n$, there exists $\ell(i) \in \{0, \ldots, r\}$ such that $s_{\ell(i)}(g_i) > 0$. Moreover, if $\beta_x > 0$, $\ell(g_x) = 0$, $s_0(g_x) = \beta_x$; and for every i,

$$\alpha_i = \frac{(\boldsymbol{s}_{\ell(i)})^+ (f_i \cdot \boldsymbol{g}_i)}{\boldsymbol{s}_{\ell(i)}(\boldsymbol{g}_i)}$$

Flaminio, Godo (IIIA - CSIC)

- $\mathcal{H}_0 = \mathcal{H}$, and $d_0 : \mathcal{H} \rightarrow [0, 1]$ as $d_0(\mathbf{h}) = St(s^*(\mathbf{h}))$;
- $\mathcal{H}_{i+1} = \{\mathbf{h} \in \mathcal{H}_i : d_i(\mathbf{h}) = 0\}.$

If $\mathcal{H}_{i+1} = \emptyset$, then we stop;

If $\mathcal{H}_{i+1} \neq \emptyset$, define $\Phi_{i+1} = \bigoplus \{ \mathbf{h} \in \mathcal{H}_{i+1} \}$, and

$$d_{i+1}(\mathbf{h}) = St\left(\frac{s^*(\mathbf{h})}{s^*(\Phi_{i+1})}\right).$$

(2) The process stops in finitely many steps, giving a class of distributions d_0, \ldots, d_r such that, for each $g_i, \ell(g_i) < \infty$.

(3) It holds

$$\alpha_i \cdot \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot g_i(\mathbf{x}_t) = \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot (f_i \cdot g_i)(\mathbf{x}_t).$$

Flaminio, Godo (IIIA - CSIC)

• $\mathcal{H}_0 = \mathcal{H}$, and $d_0 : \mathcal{H} \to [0, 1]$ as $d_0(\mathbf{h}) = St(s^*(\mathbf{h}))$;

•
$$\mathcal{H}_{i+1} = \{\mathbf{h} \in \mathcal{H}_i : d_i(\mathbf{h}) = 0\}.$$

$$d_{i+1}(\mathbf{h}) = St\left(rac{s^*(\mathbf{h})}{s^*(\Phi_{i+1})}
ight).$$

$$\alpha_i \cdot \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot g_i(\mathbf{x}_t) = \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot (f_i \cdot g_i)(\mathbf{x}_t).$$

Flaminio, Godo (IIIA - CSIC)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

• $\mathcal{H}_0 = \mathcal{H}$, and $d_0 : \mathcal{H} \to [0, 1]$ as $d_0(\mathbf{h}) = St(s^*(\mathbf{h}))$;

•
$$\mathcal{H}_{i+1} = \{\mathbf{h} \in \mathcal{H}_i : d_i(\mathbf{h}) = 0\}.$$

If $\mathcal{H}_{i+1} = \emptyset$, then we stop;

$$d_{i+1}(\mathbf{h}) = St\left(\frac{s^*(\mathbf{h})}{s^*(\Phi_{i+1})}\right).$$

$$\alpha_i \cdot \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot g_i(\mathbf{x}_t) = \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot (f_i \cdot g_i)(\mathbf{x}_t).$$

Flaminio, Godo (IIIA - CSIC)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

•
$$\mathcal{H}_0 = \mathcal{H}$$
, and $d_0 : \mathcal{H} \rightarrow [0, 1]$ as $d_0(\mathbf{h}) = St(s^*(\mathbf{h}))$;

•
$$\mathcal{H}_{i+1} = \{\mathbf{h} \in \mathcal{H}_i : d_i(\mathbf{h}) = 0\}.$$

If $\mathcal{H}_{i+1} = \emptyset$, then we stop;
If $\mathcal{H}_{i+1} \neq \emptyset$, define $\Phi_{i+1} = \bigoplus\{\mathbf{h} \in \mathcal{H}_{i+1}\}$, and
 $d_{i+1}(\mathbf{h}) = St\left(\frac{s^*(\mathbf{h})}{s^*(\Phi_{i+1})}\right).$

$$\alpha_i \cdot \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot g_i(\mathbf{x}_t) = \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot (f_i \cdot g_i)(\mathbf{x}_t).$$

Flaminio, Godo (IIIA - CSIC)

•
$$\mathcal{H}_0 = \mathcal{H}$$
, and $d_0 : \mathcal{H} \rightarrow [0, 1]$ as $d_0(\mathbf{h}) = St(s^*(\mathbf{h}))$;

•
$$\mathcal{H}_{i+1} = \{\mathbf{h} \in \mathcal{H}_i : d_i(\mathbf{h}) = 0\}.$$

If $\mathcal{H}_{i+1} = \emptyset$, then we stop;
If $\mathcal{H}_{i+1} \neq \emptyset$, define $\Phi_{i+1} = \bigoplus\{\mathbf{h} \in \mathcal{H}_{i+1}\}$, and
 $d_{i+1}(\mathbf{h}) = St\left(\frac{s^*(\mathbf{h})}{s^*(\Phi_{i+1})}\right).$

(2) The process stops in finitely many steps, giving a class of distributions d_0, \ldots, d_r such that, for each $g_i, \ell(g_i) < \infty$.

$$\alpha_i \cdot \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot g_i(\mathbf{x}_t) = \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot (f_i \cdot g_i)(\mathbf{x}_t).$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

•
$$\mathcal{H}_0 = \mathcal{H}$$
, and $d_0 : \mathcal{H} \rightarrow [0, 1]$ as $d_0(\mathbf{h}) = St(s^*(\mathbf{h}))$;

•
$$\mathcal{H}_{i+1} = \{\mathbf{h} \in \mathcal{H}_i : d_i(\mathbf{h}) = 0\}.$$

If $\mathcal{H}_{i+1} = \emptyset$, then we stop;
If $\mathcal{H}_{i+1} \neq \emptyset$, define $\Phi_{i+1} = \bigoplus\{\mathbf{h} \in \mathcal{H}_{i+1}\}$, and
 $d_{i+1}(\mathbf{h}) = St\left(\frac{s^*(\mathbf{h})}{s^*(\Phi_{i+1})}\right).$

(2) The process stops in finitely many steps, giving a class of distributions d_0, \ldots, d_r such that, for each $g_i, \ell(g_i) < \infty$.

(3) It holds

$$\alpha_i \cdot \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot g_i(\mathbf{x}_t) = \sum_{t=1}^m d_{\ell(g_i)}(\mathbf{h}_t) \cdot (f_i \cdot g_i)(\mathbf{x}_t).$$

Flaminio, Godo (IIIA - CSIC)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

(\Leftarrow). Let d_0, \ldots, d_r distributions on \mathcal{H} whose associated states s_0, \ldots, s_r are as in (*ii*).

Let $\varepsilon > 0$ be a positive infinitesimal, and define s^* : $Free(k) \rightarrow *[0, 1]$ as:

$$s^*(f) = K \cdot \sum_{t=1}^m \varepsilon^{\ell(t)} \cdot d_{\ell(t)}(\mathbf{h}_t) \cdot f(\mathbf{x}_t)$$

where

$$K = \left(\sum_{t=1}^{m} \varepsilon^{\ell(t)} \cdot d_{\ell(t)}(\mathbf{h}_t)\right)^{-1}$$

3

(\Leftarrow). Let d_0, \ldots, d_r distributions on \mathcal{H} whose associated states s_0, \ldots, s_r are as in (*ii*).

Let $\varepsilon > 0$ be a positive infinitesimal, and define $s^* : Free(k) \rightarrow *[0, 1]$ as:

$$s^*(f) = K \cdot \sum_{t=1}^m \varepsilon^{\ell(t)} \cdot d_{\ell(t)}(\mathbf{h}_t) \cdot f(\mathbf{x}_t)$$

where

$$\mathcal{K} = \left(\sum_{t=1}^{m} \varepsilon^{\ell(t)} \cdot \boldsymbol{d}_{\ell(t)}(\mathbf{h}_t)\right)^{-1}$$

3

Future work

- Complexity for the problem of establishing the coherence of a stable coherent complete assignment using zero-layers

- Find an axiomatization of conditional states on MV-algebras characterizing stable coherent complete assignments;

Sac

Future work

- Complexity for the problem of establishing the coherence of a stable coherent complete assignment using zero-layers

- Find an axiomatization of conditional states on MV-algebras characterizing stable coherent complete assignments;

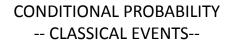
Future work

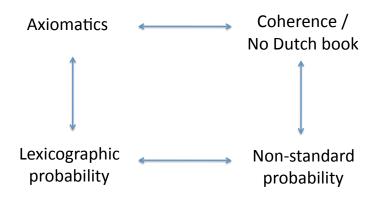
- Complexity for the problem of establishing the coherence of a stable coherent complete assignment using zero-layers

- Find an axiomatization of conditional states on MV-algebras characterizing stable coherent complete assignments;

э

・ロト ・ 同ト ・ ヨト ・ ヨト





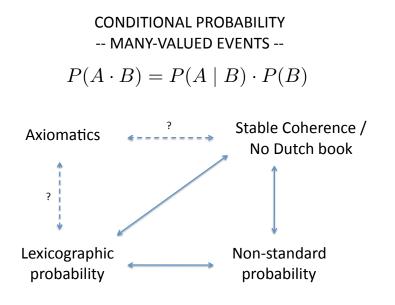
Flaminio, Godo (IIIA - CSIC)

ManyVal - Salerno, July 2012

ManyVal 2012 23 / 26

< 🗇 🕨

프 🖌 🖌 프



-

∃ ⊳

4 A N

References:

- B. Gerla, Conditioning a State by a Łukasiewicz Event: A Probabilistic Approach to Ulam Games. Theor. Comput. Sci. 230(1-2): 149-166 (2000)
- T. Kroupa, Conditional probability on MV-algebras. Fuzzy Sets and Systems 149(2): 369-381 (2005).
- F. Montagna, A Notion of Coherence for Books on Conditional Events in Many-valued Logic. J. Log. Comput. 21(5): 829-850 (2011).
- F. Montagna, Partially Undetermined Many-Valued Events and Their Conditional Probability. J. Philosophical Logic 41(3): 563-593 (2012).

- F. Montagna, M. Fedel, G. Scianna, Non-standard probability, coherence and conditional probability on many-valued events. Manuscript, 2012.
- D. Mundici, Averaging the truth-value in Lukasiewicz logic. Studia Logica 55(1): 113-127 (1995).
- D. Mundici, Bookmaking over infinite-valued events. Int. J. Approx. Reasoning 43(3): 223-240 (2006)
- D. Mundici, Advanced Łukasiewicz calculus and MV-algebras, Trends in Logic, Vol. 35, Springer 2011.

< ロト < 同ト < ヨト < ヨト