Schematic Extensions of psMTL Logic

Denisa Diaconescu

Department of Computer Science Faculty of Mathematics and Computer Science University of Bucharest

ManyVal'12 In honour of Antonio Di Nola's 65th birthday Salerno 4-7 July 2012

Outline

Motivations

- 2 psMTL logic
 - Propositional calculus
 - Predicate calculus
- 3 psSMTL logic
- 4 psIMTL logic
- 5 Kripke-style semantics
 - For psMTL logic
 - For psSMTL logic
 - For psIMTL logic

< 同 ト < 三 ト < 三 ト

MTL logic and extensions

D. Diaconescu (University of Bucharest)

Schematic Extensions of psMTL Logic

▲ 王 → 王 → Q < C ManyVal'12 3/41

MTL logic and extensions

(Div) $(\varphi \land \psi) \rightarrow ((\varphi \rightarrow \psi)\&\varphi)$ $(\Pi 1) \neg \neg \psi \rightarrow (((\varphi \& \psi) \rightarrow (\chi \& \psi)) \rightarrow (\varphi \rightarrow \chi))$ ($\Pi 2$) $\varphi \land \neg \varphi \rightarrow \overline{0}$ (Inv) $\neg \neg \varphi \rightarrow \varphi$ (G) $\varphi \rightarrow (\varphi \& \varphi)$ イロト イポト イヨト イヨト

D. Diaconescu (University of Bucharest)

Schematic Extensions of psMTL Logic

э ManyVal'12 3/41

psMTL logic and extensions

 $\begin{array}{ll} (\text{psDiv}) (\varphi \wedge \psi) \to ((\varphi \to \psi)\&\varphi) & (\text{psDiv}^{\bullet}) (\varphi \wedge \psi) \to (\varphi\&(\varphi \to \psi)) \\ (\text{psInv}) & \sim \neg \varphi \to \varphi & (\text{psInv}^{\bullet}) \neg \sim \neg \varphi \to \varphi \\ (\text{psIn}) & \sim \neg \psi \to (((\varphi\&\psi) \to (\chi\&\psi)) \to (\varphi \to \chi)) & (\text{psIn})^{\bullet}) \neg \sim \psi \to (((\psi\&\varphi) \to (\psi\&\chi)) \to (\varphi \to \chi)) \\ (\text{psIn}) & \varphi \wedge \neg \varphi \to 0 & (\text{psIn}) & (\varphi \wedge \neg \varphi \to 0) \end{array}$

D. Diaconescu (University of Bucharest)

Schematic Extensions of psMTL Logic

イロト イポト イヨト イヨト

psMTL logic and extensions

$$\begin{array}{ll} (\text{psDiv}) (\varphi \land \psi) \to ((\varphi \to \psi)\&\varphi) & (\text{psDiv}^{\bullet}) (\varphi \land \psi) \rightsquigarrow (\varphi\&(\varphi \rightsquigarrow \psi)) \\ (\text{psInv}) &\sim \neg \varphi \to \varphi & (\text{psInv}^{\bullet}) \neg \sim \varphi \to \varphi \\ (\text{psInv}^{\bullet}) &\neg \sim \psi \to (((\varphi\&\psi) \to (\chi\&\psi)) \to (\varphi \to \chi)) & (\text{psIn}^{\bullet}) \neg \sim \psi \rightsquigarrow ((((\psi\&\varphi) \rightsquigarrow (\psi\&\chi)) \rightsquigarrow (\varphi \rightsquigarrow \chi))) \\ (\text{psI}^{\bullet}) &\varphi \land \neg \varphi \to \overline{0} & (\text{psInv}^{\bullet}) \neg (\varphi \land \varphi \rightsquigarrow 0 & (\psi\&\chi)) \rightarrow (\varphi \land \chi) \end{array}$$

Schematic Extensions of psMTL Logic

Outline

psMTL logic

- Propositional calculus
- Predicate calculus
- 3 psSMTL logic
- 4 psIMTL logic
- Kripke-style semantics
 - For psMTL logic
 - For psSMTL logic
 - For psIMTL logic

< 同 ト < 三 ト < 三 ト

Outline

- 3 psSMTL logic
- 4 psIMTL logic
- 5 Kripke-style semantics
 - For psMTL logic
 - For psSMTL logic
 - For psIMTL logic

< E

< 6 k

• The language:

- the primitive connectives: ∨, ∧, &, →, →
 the constant: 0
- For any formula ω , we define the formula ω^{\bullet} the
 - reverses the arguments of &
 - $\bullet\,$ interchanges the implications \rightarrow and $\rightsquigarrow\,$

•
$$(\varphi^{\bullet})^{\bullet} = \varphi$$

- The language:
 - the primitive connectives: \lor , \land , &, \rightarrow , \rightsquigarrow
 - the constant: 0
- For any formula φ , we define the formula φ^{\bullet} that:
 - reverses the arguments of &
 - $\bullet\,$ interchanges the implications \rightarrow and $\rightsquigarrow\,$

• $(\varphi^{\bullet})^{\bullet} = \varphi$

- The language:
 - the primitive connectives: \lor , \land , &, \rightarrow , \rightsquigarrow
 - the constant: 0
- For any formula φ , we define the formula φ^{\bullet} that:
 - reverses the arguments of &
 - $\bullet\,$ interchanges the implications \rightarrow and \rightsquigarrow

•
$$(\varphi^{\bullet})^{\bullet} = \varphi$$

The axioms of psMTL logic are:

I. any formula which has one of the following forms is an axiom:

$$\begin{array}{ll} (A1) & (\psi \to \chi) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (A2) & (\varphi \& \psi) \to \varphi \\ (A3) & (\varphi \land \psi) \to \varphi \\ (A4) & (\varphi \land \psi) \to (\psi \land \varphi) \\ (A5) & ((\varphi \to \psi) \& \varphi) \to (\varphi \land \psi) \\ (A6a) & (\varphi \to (\psi \to \chi)) \to ((\varphi \& \psi) \to \chi) \\ (A6b) & ((\varphi \& \psi) \to \chi) \to (\varphi \to (\psi \to \chi)) \\ (A7) & ((\varphi \to \psi) \to \chi) \to (((\psi \to \varphi) \to \chi) \to \chi) \\ (A8a) & (\varphi \lor \psi) \to (((\varphi \multimap \psi) \to \psi) \land (((\psi \multimap \varphi) \to \varphi)) \\ (A8b) & (((\varphi \multimap \psi) \to \psi) \land ((\psi \multimap \varphi) \to \varphi)) \to (\varphi \lor \psi) \\ (A9) & \overline{0} \to \varphi \end{array}$$

II. if φ is an axiom of the form (A1), (A2), (A5), (A6a), (A6b), (A7), (A8a) or (A8b), then φ^{\bullet} is an axiom.

< 日 > < 同 > < 回 > < 回 > < □ > <

The axioms of psMTL logic are:

I. any formula which has one of the following forms is an axiom:

$$\begin{array}{ll} (A1) & (\psi \to \chi) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (A2) & (\varphi \& \psi) \to \varphi \\ (A3) & (\varphi \land \psi) \to \varphi \\ (A4) & (\varphi \land \psi) \to (\psi \land \varphi) \\ (A5) & ((\varphi \to \psi) \& \varphi) \to (\varphi \land \psi) \\ (A6a) & (\varphi \to (\psi \to \chi)) \to ((\varphi \& \psi) \to \chi) \\ (A6b) & ((\varphi \& \psi) \to \chi) \to (\varphi \to (\psi \to \chi)) \\ (A7) & ((\varphi \to \psi) \to \chi) \to (((\psi \to \varphi) \to \chi) \to \chi) \\ (A8a) & (\varphi \lor \psi) \to (((\varphi \to \psi) \to \psi) \land (((\psi \to \varphi) \to \varphi)) \\ (A8b) & (((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi)) \to (\varphi \lor \psi) \\ (A9) & \overline{0} \to \varphi \end{array}$$

II. if φ is an axiom of the form (A1), (A2), (A5), (A6a), (A6b), (A7), (A8a) or (A8b), then φ^{\bullet} is an axiom.

The deduction rules of psMTL logic are:

$$(MP1) \ \frac{\varphi, \ \varphi \to \psi}{\psi} \qquad (Impl1) \ \frac{\varphi \to \psi}{\varphi \to \psi}$$
$$(MP2) \ \frac{\varphi, \ \varphi \rightsquigarrow \psi}{\psi} \qquad (Impl2) \ \frac{\varphi \rightsquigarrow \psi}{\varphi \to \psi}$$

イロト イヨト イヨト イヨト

Algebraic semantics

Definition

A psMTL-algebra is a structure of the form

$$\mathcal{A} = (\textit{A}, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$$

satisfying the following conditions:

(RL1) $(A, \lor, \land, 0, 1)$ is a bounded lattice (RL2) $(A, \odot, 1)$ is a monoid (pPR) $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$ (adjoindness property) (pprel) $(x \to y) \lor (y \to x) = (x \rightsquigarrow y) \lor (y \rightsquigarrow x) = 1$ (prelinearity condition)

Equivalent definitions for a psMTL-algebra:

- a residuated lattice $(A, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ satisfying condition (pprel);
- a bounded psBCK(pPR)-lattice (A, ∨, ∧, →, ∞, ⊙, 0, 1) satisfying condition (pprel).

$$x^{-} \stackrel{\text{def}}{=} x \to 0$$
 $x^{\sim} \stackrel{\text{def}}{=} x \to 0$

Schematic Extensions of psMTL Logic

イロト 不得 トイヨト イヨト

Algebraic semantics

Definition

A psMTL-algebra is a structure of the form

$$\mathcal{A} = (\textit{A}, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$$

satisfying the following conditions:

(RL1) $(A, \lor, \land, 0, 1)$ is a bounded lattice (RL2) $(A, \odot, 1)$ is a monoid (pPR) $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$ (adjoindness property) (pprel) $(x \to y) \lor (y \to x) = (x \rightsquigarrow y) \lor (y \rightsquigarrow x) = 1$ (prelinearity condition)

Equivalent definitions for a psMTL-algebra:

- a residuated lattice (A, ∨, ∧, ⊙, →, ~→, 0, 1) satisfying condition (pprel);
- a bounded psBCK(pPR)-lattice (A, ∨, ∧, →, ∞, ⊙, 0, 1) satisfying condition (pprel).

$$x^- \stackrel{\text{def}}{=} x \to 0 \qquad \qquad x^\sim \stackrel{\text{def}}{=} x \rightsquigarrow 0$$

Algebraic semantics

Definition

A psMTL-algebra is a structure of the form

$$\mathcal{A} = (\textit{A}, \lor, \land, \odot, \rightarrow, \leadsto, 0, 1)$$

satisfying the following conditions:

(RL1) $(A, \lor, \land, 0, 1)$ is a bounded lattice (RL2) $(A, \odot, 1)$ is a monoid (pPR) $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$ (adjoindness property) (pprel) $(x \to y) \lor (y \to x) = (x \rightsquigarrow y) \lor (y \rightsquigarrow x) = 1$ (prelinearity condition)

Equivalent definitions for a psMTL-algebra:

- a residuated lattice $(A, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ satisfying condition (pprel);
- a bounded psBCK(pPR)-lattice (A, ∨, ∧, →, ∞, ⊙, 0, 1) satisfying condition (pprel).

$$x^{-} \stackrel{\text{def}}{=} x
ightarrow 0 \qquad \qquad x^{\sim} \stackrel{\text{def}}{=} x
ightarrow 0$$

- A pseudo-t-norm ⊗ is a binary operation on the real unit interval that is associative, non-decreasing in both arguments and x ⊗ 1 = 1 ⊗ x = x.
- If \otimes is a left-continuous pseudo-t-norm, then we define the left residuum and the right residuum by:

 $a \rightarrow b = \sup\{c \mid c \otimes a \le b\}$ $a \rightsquigarrow b = \sup\{c \mid a \otimes c \le b\}$

- Any continuous pseudo-t-norm is commutative.
- There are left-continuous non-commutative pseudo-t-norms.

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

 $T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$

ManvVal'12

11/41

standard psMTL-algebra

- A pseudo-t-norm ⊗ is a binary operation on the real unit interval that is associative, non-decreasing in both arguments and x ⊗ 1 = 1 ⊗ x = x.
- If \otimes is a left-continuous pseudo-t-norm, then we define the left residuum and the right residuum by:

$$a \rightarrow b = \sup\{c \mid c \otimes a \le b\}$$

 $a \rightsquigarrow b = \sup\{c \mid a \otimes c \le b\}$

- Any continuous pseudo-t-norm is commutative.
- There are left-continuous non-commutative pseudo-t-norms.

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

 $T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$

ManvVal'12

11/41

standard psMTL-algebra

- A pseudo-t-norm ⊗ is a binary operation on the real unit interval that is associative, non-decreasing in both arguments and x ⊗ 1 = 1 ⊗ x = x.
- If \otimes is a left-continuous pseudo-t-norm, then we define the left residuum and the right residuum by:

 $a \rightarrow b = \sup\{c \mid c \otimes a \le b\}$ $a \rightsquigarrow b = \sup\{c \mid a \otimes c \le b\}$

- Any continuous pseudo-t-norm is commutative.
- There are left-continuous non-commutative pseudo-t-norms.

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

 $T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$

standard psMTL-algebra

▶ < ≣ ▶ ≣ ∽ ۹.0 ManyVal'12 11/41

イロト 不得 トイヨト イヨト

- A pseudo-t-norm ⊗ is a binary operation on the real unit interval that is associative, non-decreasing in both arguments and x ⊗ 1 = 1 ⊗ x = x.
- If \otimes is a left-continuous pseudo-t-norm, then we define the left residuum and the right residuum by:

 $a \rightarrow b = \sup\{c \mid c \otimes a \le b\}$ $a \rightsquigarrow b = \sup\{c \mid a \otimes c \le b\}$

- Any continuous pseudo-t-norm is commutative.
- There are left-continuous non-commutative pseudo-t-norms.

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

$$T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$$

standard psMTL-algebra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A pseudo-t-norm ⊗ is a binary operation on the real unit interval that is associative, non-decreasing in both arguments and x ⊗ 1 = 1 ⊗ x = x.
- If \otimes is a left-continuous pseudo-t-norm, then we define the left residuum and the right residuum by:

 $a \rightarrow b = \sup\{c \mid c \otimes a \le b\}$ $a \rightsquigarrow b = \sup\{c \mid a \otimes c \le b\}$

- Any continuous pseudo-t-norm is commutative.
- There are left-continuous non-commutative pseudo-t-norms.

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

$$T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$$

standard psMTL-algebra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

psMTL^r logic

The variety of psMTL-algebras does not have subdirect representation property.

 Representable psMTL-algebras (psMTL^r-algebras) are obtained by adding Kühr's axioms:

$$(R1) \quad (y \to x) \lor (z \rightsquigarrow ((x \to y) \odot z)) = 1 \\ (R2) \quad (y \rightsquigarrow x) \lor (z \to (z \odot (x \rightsquigarrow y))) = 1$$

• The logic psMTL^r is the extension of psMTL by the axioms:

$$\begin{array}{ll} (A10) & (\varphi \to \psi) \lor (\chi \rightsquigarrow ((\psi \to \varphi)\&\chi)) \\ (A10^{\bullet}) & (\varphi \rightsquigarrow \psi) \lor (\chi \to (\chi\&(\psi \rightsquigarrow \varphi))) \end{array}$$

psMTL^r logic

- The variety of psMTL-algebras does not have subdirect representation property.
- Representable psMTL-algebras (psMTL^r-algebras) are obtained by adding Kühr's axioms:

$$(R1) \quad (y \to x) \lor (z \rightsquigarrow ((x \to y) \odot z)) = 1 \\ (R2) \quad (y \rightsquigarrow x) \lor (z \to (z \odot (x \rightsquigarrow y))) = 1$$

• The logic psMTL^r is the extension of psMTL by the axioms: (410) ((1 + 1)) ((1 + 1)) ((1 + 1))

$$\begin{array}{ll} (A10) & (\varphi \to \psi) \lor (\chi \rightsquigarrow ((\psi \to \varphi) \& \chi)) \\ (A10^{\bullet}) & (\varphi \rightsquigarrow \psi) \lor (\chi \to (\chi \& (\psi \rightsquigarrow \varphi))) \end{array}$$

(日)

psMTL^r logic

- The variety of psMTL-algebras does not have subdirect representation property.
- Representable psMTL-algebras (psMTL^r-algebras) are obtained by adding Kühr's axioms:

$$(R1) \quad (y \to x) \lor (z \rightsquigarrow ((x \to y) \odot z)) = 1 \\ (R2) \quad (y \rightsquigarrow x) \lor (z \to (z \odot (x \rightsquigarrow y))) = 1$$

• The logic psMTL^r is the extension of psMTL by the axioms:

$$\begin{array}{ll} (A10) & (\varphi \to \psi) \lor (\chi \rightsquigarrow ((\psi \to \varphi) \& \chi)) \\ (A10^{\bullet}) & (\varphi \rightsquigarrow \psi) \lor (\chi \to (\chi \& (\psi \rightsquigarrow \varphi))) \end{array}$$

Completeness results

- strong completeness for psMTL logic P. Hájek
- strong chain completeness for psMTL^r logic P. Hájek
- standard completeness for psMTL^r logic S. Jenei, F. Montagna
- finite strong standard completeness for psMTL^r logic

Outline

psMTL logic

- Propositional calculus
- Predicate calculus

3 psSMTL logic

- 4 psIMTL logic
- 5 Kripke-style semantics
 - For psMTL logic
 - For psSMTL logic
 - For psIMTL logic

A b

(4) (5) (4) (5)

Predicate language: J = (Pred_J, Const_J)

- The axioms of psMTL∀ logic are:
 - I. the axioms of the propositional calculus psMTL;
 - II. a formula which has one of the following forms is an axiom:

 $\begin{array}{ll} \forall 1) & (\forall x)\varphi(x) \to \varphi(t) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ \exists 1) & \varphi(t) \to (\exists x)\varphi(x) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ \forall 2) & (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) & (x \text{ not free in } \varphi) \\ \exists 2) & (\forall x)(\varphi \to \psi) \to ((\exists x)\varphi \to \psi) & (x \text{ not free in } \psi) \end{array}$

III. if φ is an axiom of the form (\forall 2) or (\exists 2), then φ^{\bullet} is an axiom.

• The deduction rules of $psMTL\forall$ are those of psMTL and the rule:

- Predicate language: J = (Pred_J, Const_J)
- The axioms of psMTL∀ logic are:
 - I. the axioms of the propositional calculus psMTL;
 - II. a formula which has one of the following forms is an axiom:
 - $\begin{array}{ll} (\forall 1) & (\forall x)\varphi(x) \to \varphi(t) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ (\exists 1) & \varphi(t) \to (\exists x)\varphi(x) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ (\forall 2) & (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) & (x \text{ not free in } \varphi) \\ (\exists 2) & (\forall x)(\varphi \to \psi) \to ((\exists x)\varphi \to \psi) & (x \text{ not free in } \psi) \end{array}$
 - III. if φ is an axiom of the form (\forall 2) or (\exists 2), then φ^{\bullet} is an axiom.
- The deduction rules of psMTL \forall are those of psMTL and the rule: (G) $\frac{\varphi}{\varphi}$

• The logic psMTL⁺∀ has the axioms of psMTL⁺ logic, the above axioms and:

Predicate language: J = (Pred_J, Const_J)

- The axioms of psMTL∀ logic are:
 - I. the axioms of the propositional calculus psMTL;
 - II. a formula which has one of the following forms is an axiom:

 $\begin{array}{ll} (\forall 1) & (\forall x)\varphi(x) \to \varphi(t) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ (\exists 1) & \varphi(t) \to (\exists x)\varphi(x) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ (\forall 2) & (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) & (x \text{ not free in } \varphi) \\ (\exists 2) & (\forall x)(\varphi \to \psi) \to ((\exists x)\varphi \to \psi) & (x \text{ not free in } \psi) \end{array}$

III. if φ is an axiom of the form (\forall 2) or (\exists 2), then φ^{\bullet} is an axiom.

• The deduction rules of psMTL \forall are those of psMTL and the rule: (G) $\frac{\varphi}{(\forall x) \varphi}$

• The logic $psMTL^r \forall$ has the axioms of $psMTL^r$ logic, the above axioms and:

Predicate language: J = (Pred_J, Const_J)

- The axioms of psMTL∀ logic are:
 - I. the axioms of the propositional calculus psMTL;
 - II. a formula which has one of the following forms is an axiom:

 $\begin{array}{ll} (\forall 1) & (\forall x)\varphi(x) \to \varphi(t) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ (\exists 1) & \varphi(t) \to (\exists x)\varphi(x) & (t \text{ is substitutable for } x \text{ in } \varphi(x)) \\ (\forall 2) & (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) & (x \text{ not free in } \varphi) \\ (\exists 2) & (\forall x)(\varphi \to \psi) \to ((\exists x)\varphi \to \psi) & (x \text{ not free in } \psi) \end{array}$

III. if φ is an axiom of the form (\forall 2) or (\exists 2), then φ^{\bullet} is an axiom.

● The deduction rules of psMTL dare those of psMTL and the rule:

(G)
$$\frac{\varphi}{(\forall x)\varphi}$$

• The logic $psMTL^r \forall$ has the axioms of $psMTL^r$ logic, the above axioms and:

Completeness results

- strong completeness for psMTL∀ P. Hájek, J. Ševčík
- strong chain completeness for psMTL^r∀ P. Hájek, J. Ševčík

Outline

Motivations

2 psMTL logic

- Propositional calculus
- Predicate calculus

3 psSMTL logic

- psIMTL logic
- Kripke-style semantics
 - For psMTL logic
 - For psSMTL logic
 - For psIMTL logic

< 回 > < 三 > < 三 >

• The logic psSMTL is the extension psMTL logic by the non-commutative counterpart of the pseudo-complementation axiom:

$$\begin{array}{ll} (ps\Pi 2) & \varphi \wedge \neg \varphi \to \overline{0} \\ (ps\Pi 2^{\bullet}) & \varphi \wedge \sim \varphi \rightsquigarrow \overline{0} \end{array}$$

• The logic psWMTL is the extension of psMTL logic with the non-commutative counterpart of the weak contraction axiom:

 $\begin{array}{ll} (\text{WCon}) & (\varphi \to \neg \varphi) \to \neg \varphi \\ (\text{WCon}^{\bullet}) & (\varphi \rightsquigarrow \sim \varphi) \rightsquigarrow \sim \varphi. \end{array}$

Theorem

The logics psSMTL and psWMTL are equivalent.

• $psSMTL^r logic$, $psSMTL \forall logic$ and $psSMTL^r \forall logic$

< 日 > < 同 > < 回 > < 回 > < □ > <

• The logic psSMTL is the extension psMTL logic by the non-commutative counterpart of the pseudo-complementation axiom:

$$\begin{array}{ll} (ps\Pi 2) & \varphi \land \neg \varphi \to \overline{0} \\ (ps\Pi 2^{\bullet}) & \varphi \land \sim \varphi \rightsquigarrow \overline{0} \end{array}$$

• The logic psWMTL is the extension of psMTL logic with the non-commutative counterpart of the weak contraction axiom:

 $\begin{array}{ll} (\text{WCon}) & (\varphi \to \neg \varphi) \to \neg \varphi \\ (\text{WCon}^{\bullet}) & (\varphi \rightsquigarrow \sim \varphi) \rightsquigarrow \sim \varphi. \end{array}$

Theorem

The logics psSMTL and psWMTL are equivalent.

• $psSMTL^r logic$, $psSMTL \forall logic$ and $psSMTL^r \forall logic$

イロト 不得 トイヨト イヨト

• The logic psSMTL is the extension psMTL logic by the non-commutative counterpart of the pseudo-complementation axiom:

$$\begin{array}{ll} (ps\Pi 2) & \varphi \land \neg \varphi \to \overline{0} \\ (ps\Pi 2^{\bullet}) & \varphi \land \sim \varphi \rightsquigarrow \overline{0} \end{array}$$

• The logic psWMTL is the extension of psMTL logic with the non-commutative counterpart of the weak contraction axiom:

 $\begin{array}{ll} (\text{WCon}) & (\varphi \to \neg \varphi) \to \neg \varphi \\ (\text{WCon}^{\bullet}) & (\varphi \rightsquigarrow \sim \varphi) \rightsquigarrow \sim \varphi. \end{array}$

Theorem

The logics psSMTL and psWMTL are equivalent.

• $psSMTL^r logic$, $psSMTL \forall logic$ and $psSMTL^r \forall logic$

< 日 > < 同 > < 回 > < 回 > < □ > <
• The logic psSMTL is the extension psMTL logic by the non-commutative counterpart of the pseudo-complementation axiom:

$$\begin{array}{ll} (ps\Pi 2) & \varphi \land \neg \varphi \to \overline{0} \\ (ps\Pi 2^{\bullet}) & \varphi \land \sim \varphi \rightsquigarrow \overline{0} \end{array}$$

• The logic psWMTL is the extension of psMTL logic with the non-commutative counterpart of the weak contraction axiom:

 $\begin{array}{ll} (\text{WCon}) & (\varphi \to \neg \varphi) \to \neg \varphi \\ (\text{WCon}^{\bullet}) & (\varphi \rightsquigarrow \sim \varphi) \rightsquigarrow \sim \varphi. \end{array}$

Theorem

The logics psSMTL and psWMTL are equivalent.

• $psSMTL^r$ logic, $psSMTL \forall$ logic and $psSMTL^r \forall$ logic

イロト 不得 トイヨト イヨト

Definition

A psMTL-algebra A is called strict (or psSMTL-algebra, for short) if it satisfies:

(S)
$$(x \odot y)^- = x^- \lor y^-$$
 and $(x \odot y)^\sim = x^\sim \lor y^\sim$.

Theorem

Let *A* be a psMTL-chain. The following are equivalent:

- (1) A is a psSMTL-algebra.
- (2) A satisfies the condition: $x \odot y = 0$ iff x = 0 or y = 0.
- (3) The negations of A are Gödel negations, i.e.

$$x^{-} = x^{\sim} = \begin{cases} 1, & \text{if } x = 0\\ 0, & \text{otherwise} \end{cases}$$

Definition

A psMTL-algebra A is called strict (or psSMTL-algebra, for short) if it satisfies:

(S)
$$(x \odot y)^- = x^- \lor y^-$$
 and $(x \odot y)^\sim = x^\circ \lor y^\sim$.

Theorem

Let A be a psMTL-chain. The following are equivalent:

- (1) A is a psSMTL-algebra.
- (2) A satisfies the condition: $x \odot y = 0$ iff x = 0 or y = 0.
- (3) The negations of A are Gödel negations, i.e.

$$x^{-} = x^{\sim} = \begin{cases} 1, & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases}$$

< ロ > < 同 > < 回 > < 回 >

psSMTL^r-algebra

strict pseudo-t-norm, i.e. whose corresponding negations are Gödel negations

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

 $T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$

standard psSMTL-algebra

< 日 > < 同 > < 回 > < 回 > < 回 > <

psSMTL^r-algebra

• strict pseudo-t-norm, i.e. whose corresponding negations are Gödel negations

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

 $\mathcal{T}_{1,2}(x,y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x,y), & \text{otherwise} \end{cases}$

standard psSMTL-algebra

- psSMTL^r-algebra
- strict pseudo-t-norm, i.e. whose corresponding negations are Gödel negations

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

$$T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$$

standard psSMTL-algebra

- psSMTL^r-algebra
- strict pseudo-t-norm, i.e. whose corresponding negations are Gödel negations

Let $0 < a_1 < a_2 < b_2 < 1$ and $T_{1,2} : [0,1] \times [0,1] \rightarrow [0,1]$ be

$$T_{1,2}(x, y) = \begin{cases} a_1, & \text{if } a_1 < x \le a_2 \text{ and } a_1 < y \le b_2 \\ \min(x, y), & \text{otherwise} \end{cases}$$

standard psSMTL-algebra

イロト 不得 トイヨト イヨト

Completeness results

- strong completeness for psSMTL
- strong chain completeness for psSMTL^r
- strong completeness for $psSMTL \forall$
- strong chain completeness for psSMTL^r∀

Theorem (Standard completeness for psSMTL^r)

The logic psSMTL^r is complete with respect to standard psSMTL-algebras.

Completeness results

- strong completeness for psSMTL
- strong chain completeness for psSMTL^r
- strong completeness for $psSMTL \forall$
- strong chain completeness for psSMTL^r∀

Theorem (Standard completeness for psSMTL^r)

The logic psSMTL^r is complete with respect to standard psSMTL-algebras.

イロト イポト イラト イラ

Outline

Motivations

2 psMTL logic

- Propositional calculus
- Predicate calculus

3 psSMTL logic

psIMTL logic

- Kripke-style semantics
 - For psMTL logic
 - For psSMTL logic
 - For psIMTL logic

< 回 > < 三 > < 三 >

• The logic psIMTL is the extension of psMTL logic by the non-commutative counterpart of the double negation axiom:

 $\begin{array}{ll} (\text{psInv}) & \sim \neg \varphi \to \varphi \\ (\text{psInv}^{\bullet}) & \neg \sim \varphi \rightsquigarrow \varphi. \end{array}$

Theorem

The non-commutative Łukasiewicz logic is the extension of psIMTL logic by the non-commutative counterpart of the divisibility axiom:

(psDiv) $(\varphi \land \psi) \rightarrow ((\varphi \rightarrow \psi)\&\varphi)$ (psDiv[•]) $(\varphi \land \psi) \rightsquigarrow (\varphi\&(\varphi \rightsquigarrow \psi))$

• $psIMTL^r$ logic, $psIMTL \forall$ logic and $psIMTL^r \forall$ logic

• $\vdash_{\text{psIMTL}\forall} (\exists x) \varphi \leftrightarrow \neg (\forall x) \sim \varphi$

• The axioms ($\exists 1$), ($\exists 2$) and ($\forall 3$) are redundant for $psIMTL^{r}\forall$ logic.

ManyVal'12 23 / 41

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

• The logic psIMTL is the extension of psMTL logic by the non-commutative counterpart of the double negation axiom:

 $\begin{array}{ll} (\text{psInv}) & \sim \neg \varphi \to \varphi \\ (\text{psInv}^{\bullet}) & \neg \sim \varphi \rightsquigarrow \varphi. \end{array}$

Theorem

The non-commutative Łukasiewicz logic is the extension of psIMTL logic by the non-commutative counterpart of the divisibility axiom:

(psDiv) $(\varphi \land \psi) \rightarrow ((\varphi \rightarrow \psi)\&\varphi)$ (psDiv[•]) $(\varphi \land \psi) \rightsquigarrow (\varphi\&(\varphi \rightsquigarrow \psi))$

• $psIMTL^r$ logic, $psIMTL \forall$ logic and $psIMTL^r \forall$ logic

• $\vdash_{\mathrm{psIMTL}\forall} (\exists x) \varphi \leftrightarrow \neg (\forall x) \sim \varphi$

• The axioms $(\exists 1), (\exists 2)$ and $(\forall 3)$ are redundant for $psIMTL^{t}\forall$ logic.

• The logic psIMTL is the extension of psMTL logic by the non-commutative counterpart of the double negation axiom:

 $\begin{array}{ll} (\text{psInv}) & \sim \neg \varphi \to \varphi \\ (\text{psInv}^{\bullet}) & \neg \sim \varphi \rightsquigarrow \varphi. \end{array}$

Theorem

The non-commutative Łukasiewicz logic is the extension of psIMTL logic by the non-commutative counterpart of the divisibility axiom:

(psDiv) $(\varphi \land \psi) \rightarrow ((\varphi \rightarrow \psi)\&\varphi)$ (psDiv[•]) $(\varphi \land \psi) \rightsquigarrow (\varphi\&(\varphi \rightsquigarrow \psi))$

• $psIMTL^r$ logic, $psIMTL \forall$ logic and $psIMTL^r \forall$ logic

• $\vdash_{\mathrm{psIMTL}\forall} (\exists x) \varphi \leftrightarrow \neg (\forall x) \sim \varphi$

• The axioms $(\exists 1), (\exists 2)$ and $(\forall 3)$ are redundant for $psIMTL^{t}\forall$ logic.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

ManvVal'12

23/41

• The logic psIMTL is the extension of psMTL logic by the non-commutative counterpart of the double negation axiom:

 $\begin{array}{ll} (\text{psInv}) & \sim \neg \varphi \to \varphi \\ (\text{psInv}^{\bullet}) & \neg \sim \varphi \rightsquigarrow \varphi. \end{array}$

Theorem

The non-commutative Łukasiewicz logic is the extension of psIMTL logic by the non-commutative counterpart of the divisibility axiom:

(psDiv) $(\varphi \land \psi) \rightarrow ((\varphi \rightarrow \psi)\&\varphi)$ (psDiv[•]) $(\varphi \land \psi) \rightsquigarrow (\varphi\&(\varphi \rightsquigarrow \psi))$

• $psIMTL^r$ logic, $psIMTL \forall$ logic and $psIMTL^r \forall$ logic

• $\vdash_{\mathrm{psIMTL} \forall} (\exists x) \varphi \leftrightarrow \neg (\forall x) \sim \varphi$

• The axioms (\exists 1), (\exists 2) and (\forall 3) are redundant for psIMTL^r \forall logic.

ManyVal'12 23 / 41

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

• The logic psIMTL is the extension of psMTL logic by the non-commutative counterpart of the double negation axiom:

 $\begin{array}{ll} (\text{psInv}) & \sim \neg \varphi \to \varphi \\ (\text{psInv}^{\bullet}) & \neg \sim \varphi \rightsquigarrow \varphi. \end{array}$

Theorem

The non-commutative Łukasiewicz logic is the extension of psIMTL logic by the non-commutative counterpart of the divisibility axiom:

(psDiv) $(\varphi \land \psi) \rightarrow ((\varphi \rightarrow \psi)\&\varphi)$ (psDiv[•]) $(\varphi \land \psi) \rightsquigarrow (\varphi\&(\varphi \rightsquigarrow \psi))$

• $psIMTL^r$ logic, $psIMTL \forall$ logic and $psIMTL^r \forall$ logic

$$\bullet \vdash_{\mathsf{psIMTL} \forall} (\exists x) \varphi \leftrightarrow \neg (\forall x) \sim \varphi$$

• The axioms (\exists 1), (\exists 2) and (\forall 3) are redundant for $psIMTL^{r}\forall$ logic.

ManvVal'12

23/41

Definition

A psIMTL-algebra A is a psMTL-algebra satisfying the condition:

(pDN) $(x^{-})^{\sim} = (x^{\sim})^{-} = x$.

Example

Let $(G, \lor, \land, +, -, 0)$ be a linearly ordered *l*-group and let $u \in G$, $u \leq 0$. Define the non-commutative generalization of Fodor's t-norm and Fodor's implication:

$$\begin{split} x \odot^{L} y &= \left\{ \begin{array}{cc} u, & \text{if } x + y \leq u \\ x \wedge y, & \text{if } x + y > u \end{array} \right., \\ x \to y &= \left\{ \begin{array}{cc} 0, & \text{if } x \leq y \\ (u - x) \lor y, & \text{if } x > y \end{array} \right., \quad x \rightsquigarrow y = \left\{ \begin{array}{cc} 0, & \text{if } x \leq y \\ (-x + u) \lor y, & \text{if } x > y \end{array} \right., \end{split}$$

The structure ([u, 0], \lor , \land , \odot^L , \rightarrow , \rightsquigarrow , u, 0) is a psIMTL-algebra.

standard psIMTL-algebra

Definition

A psIMTL-algebra A is a psMTL-algebra satisfying the condition:

 $(pDN) (x^{-})^{\sim} = (x^{\sim})^{-} = x.$

Example

Let $(G, \lor, \land, +, -, 0)$ be a linearly ordered *l*-group and let $u \in G$, $u \leq 0$. Define the non-commutative generalization of Fodor's t-norm and Fodor's implication:

$$\begin{split} x \odot^{L} y &= \left\{ \begin{array}{cc} u, & \text{if } x + y \leq u \\ x \wedge y, & \text{if } x + y > u \end{array} \right., \\ x \to y &= \left\{ \begin{array}{cc} 0, & \text{if } x \leq y \\ (u - x) \lor y, & \text{if } x > y \end{array} \right., \quad x \rightsquigarrow y = \left\{ \begin{array}{cc} 0, & \text{if } x \leq y \\ (-x + u) \lor y, & \text{if } x > y \end{array} \right., \end{split}$$

ManvVal'12

24/41

The structure ([u, 0], \lor , \land , \odot^{L} , \rightarrow , \rightsquigarrow , u, 0) is a psIMTL-algebra.

standard psIMTL-algebra

Definition

A psIMTL-algebra A is a psMTL-algebra satisfying the condition:

 $(pDN) (x^{-})^{\sim} = (x^{\sim})^{-} = x.$

Example

Let $(G, \lor, \land, +, -, 0)$ be a linearly ordered *l*-group and let $u \in G$, $u \leq 0$. Define the non-commutative generalization of Fodor's t-norm and Fodor's implication:

$$\begin{split} x \odot^{L} y &= \left\{ \begin{array}{cc} u, & \text{if } x + y \leq u \\ x \wedge y, & \text{if } x + y > u \end{array} \right., \\ x \to y &= \left\{ \begin{array}{cc} 0, & \text{if } x \leq y \\ (u - x) \lor y, & \text{if } x > y \end{array} \right., \quad x \rightsquigarrow y = \left\{ \begin{array}{cc} 0, & \text{if } x \leq y \\ (-x + u) \lor y, & \text{if } x > y \end{array} \right., \end{split}$$

The structure ([u, 0], \lor , \land , \odot^{L} , \rightarrow , \rightsquigarrow , u, 0) is a psIMTL-algebra.

standard psIMTL-algebra

Completeness results

- strong completeness for psIMTL
- strong chain completeness for psIMTL^r
- Strong completeness for psIMTL∀
- strong chain completeness for psIMTL^r∀

Theorem (Standard completeness for psIMTL^r)

The logic psIMTL^r is complete with respect to standard psIMTL-algebras.

Completeness results

- strong completeness for psIMTL
- strong chain completeness for psIMTL^r
- Strong completeness for psIMTL∀
- strong chain completeness for psIMTL^r∀

Theorem (Standard completeness for psIMTL^r)

The logic psIMTL^r is complete with respect to standard psIMTL-algebras.

イロト イポト イラト イラ

Outline

Motivations

- 2 psMTL logic
 - Propositional calculus
 - Predicate calculus
- 3 psSMTL logic
- 4 psIMTL logic

5

Kripke-style semantics

- For psMTL logic
- For psSMTL logic
- For psIMTL logic

A (10) A (10) A (10)

Outline

Motivations

- 2 psMTL logic
 - Propositional calculus
 - Predicate calculus
- 3 psSMTL logic
- 4 psIMTL logic

- Kripke-style semantics
- For psMTL logic
- For psSMTL logic
- For psIMTL logic

< 6 b

(4) (5) (4) (5)

A propositional pseudo-Kripke frame is a structure of the form

$$\mathcal{M} = (M, \leq, \odot, 0, 1)$$

- 1) $(M, \leq, 0, 1)$ such that \leq is a linear order on M
- 2) $(M, \odot, 1)$ is a monoid
- 3) \odot is non-decreasing in both arguments
- 4) $x \odot (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} (x \odot y_i)$ and $(\bigvee_{i \in I} y_i) \odot x = \bigvee_{i \in I} (y_i \odot x)$.
- A propositional pseudo-Kripke frame is called residuated if there exist

 $y \to z \stackrel{not}{=} \max\{x \mid x \odot y \le z\} \text{ and } x \rightsquigarrow z \stackrel{not}{=} \max\{y \mid x \odot y \le z\}.$

• A propositional pseudo-Kripke frame is called complete if \leq is a complete order.

イロト 不得 トイヨト イヨト 二日

A propositional pseudo-Kripke frame is a structure of the form

$$\mathcal{M} = (M, \leq, \odot, 0, 1)$$

- 1) $(M, \leq, 0, 1)$ such that \leq is a linear order on M
- 2) $(M, \odot, 1)$ is a monoid
- 3) \odot is non-decreasing in both arguments
- 4) $x \odot (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} (x \odot y_i)$ and $(\bigvee_{i \in I} y_i) \odot x = \bigvee_{i \in I} (y_i \odot x)$.
- A propositional pseudo-Kripke frame is called residuated if there exist

$$y \to z \stackrel{\text{not}}{=} \max\{x \mid x \odot y \le z\} \text{ and } x \rightsquigarrow z \stackrel{\text{not}}{=} \max\{y \mid x \odot y \le z\}.$$

• A propositional pseudo-Kripke frame is called complete if \leq is a complete order.

A propositional pseudo-Kripke frame is a structure of the form

$$\mathcal{M} = (M, \leq, \odot, 0, 1)$$

- 1) $(M, \leq, 0, 1)$ such that \leq is a linear order on M
- 2) $(M, \odot, 1)$ is a monoid
- 3) \odot is non-decreasing in both arguments
- 4) $x \odot (\bigvee_{i \in I} y_i) = \bigvee_{i \in I} (x \odot y_i)$ and $(\bigvee_{i \in I} y_i) \odot x = \bigvee_{i \in I} (y_i \odot x)$.
- A propositional pseudo-Kripke frame is called residuated if there exist

$$y \to z \stackrel{\text{not}}{=} \max\{x \mid x \odot y \le z\} \text{ and } x \rightsquigarrow z \stackrel{\text{not}}{=} \max\{y \mid x \odot y \le z\}.$$

• A propositional pseudo-Kripke frame is called complete if \leq is a complete order.

• A forcing relation on a propositional pseudo-Kripke frame \mathcal{M} is a binary relation $\parallel \subseteq \mathcal{M} \times Var$ such that

```
(a) if a \parallel p and b \le a, then b \parallel p
(b) 0 \parallel p
```

• A forcing relation \Vdash on a propositional pseudo-Kripke frame \mathcal{M} can be uniquely extended to a relation $\Vdash \subseteq \mathcal{M} \times Form_{psMTL}$ by the following:

(1)
$$a \parallel \overline{0}$$
 iff $a = 0$

(2)
$$a \models \varphi \land \psi$$
 iff $a \models \varphi$ and $a \models \psi$

- (3) $a \models \varphi \lor \psi$ iff either $a \models \varphi$ or $a \models \psi$
- (4) $a \Vdash \varphi \& \psi$ iff there are b, c such that $b \Vdash \varphi, c \Vdash \psi$ and $a \le b \odot c$
- (5) $a \Vdash \varphi \rightarrow \psi$ iff for all *b*, if $b \Vdash \varphi$, then $a \odot b \Vdash \psi$
- (6) $a \models \varphi \rightsquigarrow \psi$ iff for all *b*, if $b \models \varphi$, then $b \odot a \models \psi$
- If $a \models \varphi$, we say that *a* forces φ .

• A forcing relation on a propositional pseudo-Kripke frame \mathcal{M} is a binary relation $\parallel \subseteq \mathcal{M} \times Var$ such that

(a) if
$$a \Vdash p$$
 and $b \leq a$, then $b \Vdash p$

- (b) 0 ||- *p*

(1)
$$a \parallel \overline{0}$$
 iff $a = 0$

(2)
$$a \Vdash \varphi \land \psi$$
 iff $a \Vdash \varphi$ and $a \Vdash \psi$

(3)
$$a \Vdash \varphi \lor \psi$$
 iff either $a \Vdash \varphi$ or $a \Vdash \psi$

- (4) $a \Vdash \varphi \& \psi$ iff there are b, c such that $b \Vdash \varphi, c \Vdash \psi$ and $a \le b \odot c$
- (5) $a \Vdash \varphi \rightarrow \psi$ iff for all *b*, if $b \Vdash \varphi$, then $a \odot b \Vdash \psi$

(6)
$$a \Vdash \varphi \rightsquigarrow \psi$$
 iff for all *b*, if $b \Vdash \varphi$, then $b \odot a \Vdash \psi$

If $a \Vdash \varphi$, we say that *a* forces φ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

- A propositional pseudo-Kripke model is a pair (M, ⊨), where M is a propositional pseudo-Kripke frame and ⊨ is a forcing relation on M.
- A propositional pseudo-Kripke model is called complete if *M* is complete and ||- is an r-forcing relation on *M*.
- We say that a formula φ of psMTL logic is valid in a propositional pseudo-Kripke model (M, ⊢) if 1 ⊢ φ.
- We have the same definitions for psMTL^r logic.

- A forcing relation || on a propositional pseudo-Kripke frame M is called r-forcing relation if the set {x ∈ M | x || p} has a maximum.
- A propositional pseudo-Kripke model is a pair (M, ⊨), where M is a propositional pseudo-Kripke frame and ⊨ is a forcing relation on M.
- A propositional pseudo-Kripke model is called complete if *M* is complete and is an r-forcing relation on *M*.
- We say that a formula φ of psMTL logic is valid in a propositional pseudo-Kripke model (M, ⊢) if 1 ⊢ φ.
- We have the same definitions for psMTL^r logic.

イロト 不得 トイヨト イヨト

- A forcing relation || on a propositional pseudo-Kripke frame M is called r-forcing relation if the set {x ∈ M | x || p} has a maximum.
- A propositional pseudo-Kripke model is a pair (M, ⊨), where M is a propositional pseudo-Kripke frame and ⊨ is a forcing relation on M.
- A propositional pseudo-Kripke model is called complete if *M* is complete and is an r-forcing relation on *M*.
- We say that a formula φ of psMTL logic is valid in a propositional pseudo-Kripke model (M, ⊨) if 1 ⊨ φ.
- We have the same definitions for psMTL^r logic.

- A forcing relation || on a propositional pseudo-Kripke frame M is called r-forcing relation if the set {x ∈ M | x || p} has a maximum.
- A propositional pseudo-Kripke model is a pair (M, ⊨), where M is a propositional pseudo-Kripke frame and ⊨ is a forcing relation on M.
- A propositional pseudo-Kripke model is called complete if *M* is complete and is an r-forcing relation on *M*.
- We say that a formula φ of psMTL logic is valid in a propositional pseudo-Kripke model (M, ⊨) if 1 ⊨ φ.
- We have the same definitions for psMTL^r logic.

- A predicate pseudo-Kripke frame is a pair (M, U), where M is a complete propositional pseudo-Kripke frame and U = (U, (U_P)_{P∈Pred}, (u_c)_{c∈Cont}) is an M-structure for J.
- A forcing relation on a predicate pseudo-Kripke frame (M,U) is an r-forcing relation |⊢ between M and the closed atomic formulas of psMTL∀ logic, defined as above.
- A forcing relation ||- on a predicate pseudo-Kripke frame (*M*,*U*) can be uniquely extended to a relation between *M* and the formulas Form_{psMTL∀} of psMTL∀ logic by means of the above clauses and by the following clauses for quantifiers:

(7)
$$a \Vdash (\forall x) \varphi(x)$$
 iff for all $u \in U$, $a \Vdash \varphi(u)$,

- (8) $a \Vdash (\exists x)\varphi(x)$ iff for all b < a, there are c > b and $u \in U$ such that $c \Vdash \varphi(u)$.
- A predicate pseudo-Kripke model is a triple (M,U, ⊨), where (M,U) is a predicate pseudo-Kripke frame and ⊨ is a forcing relation on (M,U).
- We have the same definitions for $psMTL^r \forall$ logic.

- A predicate pseudo-Kripke frame is a pair (M, U), where M is a complete propositional pseudo-Kripke frame and U = (U, (U_P)_{P∈Pred}, (u_c)_{c∈Cont}) is an M-structure for J.
- A forcing relation ||- on a predicate pseudo-Kripke frame (M,U) can be uniquely extended to a relation between M and the formulas Form_{psMTL∀} of psMTL∀ logic by means of the above clauses and by the following clauses for quantifiers:

(7)
$$a \Vdash (\forall x) \varphi(x)$$
 iff for all $u \in U$, $a \Vdash \varphi(u)$,

- (8) $a \Vdash (\exists x)\varphi(x)$ iff for all b < a, there are c > b and $u \in U$ such that $c \Vdash \varphi(u)$.
- A predicate pseudo-Kripke model is a triple (M,U, ⊨), where (M,U) is a predicate pseudo-Kripke frame and ⊨ is a forcing relation on (M,U).
- We have the same definitions for $psMTL^r \forall$ logic.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- A predicate pseudo-Kripke frame is a pair (M, U), where M is a complete propositional pseudo-Kripke frame and U = (U, (U_P)_{P∈Pred}, (u_c)_{c∈Cont}) is an M-structure for J.
- A forcing relation on a predicate pseudo-Kripke frame (M, U) is an r-forcing relation ||- between M and the closed atomic formulas of psMTL∀ logic, defined as above.

(7)
$$a \Vdash (\forall x)\varphi(x)$$
 iff for all $u \in U$, $a \Vdash \varphi(u)$,

- (8) $a \models (\exists x)\varphi(x)$ iff for all b < a, there are c > b and $u \in U$ such that $c \models \varphi(u)$.
- We have the same definitions for $psMTL^r \forall$ logic.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- A predicate pseudo-Kripke frame is a pair (M, U), where M is a complete propositional pseudo-Kripke frame and U = (U, (U_P)_{P∈Pred}, (u_c)_{c∈Cont}) is an M-structure for J.
- A forcing relation on a predicate pseudo-Kripke frame (M, U) is an r-forcing relation ||- between M and the closed atomic formulas of psMTL∀ logic, defined as above.

(7)
$$a \Vdash (\forall x) \varphi(x)$$
 iff for all $u \in U$, $a \Vdash \varphi(u)$,

- (8) $a \models (\exists x)\varphi(x)$ iff for all b < a, there are c > b and $u \in U$ such that $c \models \varphi(u)$.
- We have the same definitions for $psMTL^r \forall$ logic.

- A predicate pseudo-Kripke frame is a pair (M, U), where M is a complete propositional pseudo-Kripke frame and U = (U, (U_P)_{P∈Pred}, (u_c)_{c∈Cont}) is an M-structure for J.
- A forcing relation on a predicate pseudo-Kripke frame (M, U) is an r-forcing relation ||- between M and the closed atomic formulas of psMTL∀ logic, defined as above.

(7)
$$a \Vdash (\forall x)\varphi(x)$$
 iff for all $u \in U$, $a \Vdash \varphi(u)$,

- (8) $a \models (\exists x)\varphi(x)$ iff for all b < a, there are c > b and $u \in U$ such that $c \models \varphi(u)$.
- We have the same definitions for $psMTL^r \forall$ logic.

< 日 > < 同 > < 回 > < 回 > < 回 > <
Kripke and standard completeness

- The logic psMTL^r is complete with respect to propositional pseudo-Kripke models.
- The logic $psMTL^r \forall$ is complete with respect to predicate pseudo-Kripke models.

Theorem (Standard completeness for $psMTL^r \forall$)

Let φ be a closed formula of psMTL^r \forall logic. The following are equivalent:

- (1) $\vdash_{psMTL^r \forall} \varphi;$
- (2) φ is valid in every predicate pseudo-Kripke model of the form

$$(([0,1],\leq,\hat{*},0,1),\mathcal{U},\Vdash),$$

where $\hat{*}$ is a left-continuous pseudo-t-norm, \mathcal{U} is any structure on the standard psMTL-algebra induced by $\hat{*}$ and \Vdash is any forcing relation.

(3) φ is a tautology with respect to any standard psMTL-algebra.

style semantics For psivit L to

Kripke and standard completeness

- The logic psMTL^r is complete with respect to propositional pseudo-Kripke models.
- The logic $psMTL^r \forall$ is complete with respect to predicate pseudo-Kripke models.

Theorem (Standard completeness for $psMTL^r\forall)$

Let φ be a closed formula of psMTL^r \forall logic. The following are equivalent:

- (1) $\vdash_{psMTL^r \forall} \varphi;$
- (2) φ is valid in every predicate pseudo-Kripke model of the form

$$(([0,1],\leq,\hat{*},0,1),\mathcal{U},\Vdash),$$

where $\hat{*}$ is a left-continuous pseudo-t-norm, \mathcal{U} is any structure on the standard psMTL-algebra induced by $\hat{*}$ and \Vdash is any forcing relation.

(3) φ is a tautology with respect to any standard psMTL-algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Motivations

- 2 psMTL logic
 - Propositional calculus
 - Predicate calculus
- 3 psSMTL logic
- 4 psIMTL logic

- Kripke-style semantics
- For psMTL logic
- For psSMTL logic
- For psIMTL logic

< 同 ト < 三 ト < 三 ト

(nn) for all x > 0, $x \odot x > 0$

Theorem

(ps Π 2) and (ps Π 2[•]) are valid in every propositional pseudo-Kripke model (M, \Vdash) iff M satisfies condition (nn).

- A propositional psSMTL-frame is just a propositional pseudo-Kripke frame that satisfies (nn).
- A propositional psSMTL-model is a pair (M, ⊨), where M is a propositional psSMTL-frame and ⊨ is a forcing relation on M.
- A predicate psSMTL-frame is just a predicate pseudo-Kripke frame that satisfies (nn).
- A predicate psSMTL-model is a triple (M,U, ⊢), where (M,U) is a predicate psSMTL-frame and ⊢ is a forcing relation on (M,U).
- We have the same definitions for $psSMTL^r$ logic $psSMTL^r \forall$ logic.

< 日 > < 同 > < 回 > < 回 > < □ > <

(nn) for all x > 0, $x \odot x > 0$

Theorem

 $(ps\Pi 2)$ and $(ps\Pi 2^{\bullet})$ are valid in every propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies condition (nn).

- A propositional psSMTL-frame is just a propositional pseudo-Kripke frame that satisfies (nn).
- A propositional psSMTL-model is a pair (M, ⊨), where M is a propositional psSMTL-frame and ⊨ is a forcing relation on M.
- A predicate psSMTL-frame is just a predicate pseudo-Kripke frame that satisfies (nn).
- A predicate psSMTL-model is a triple (M,U, ⊢), where (M,U) is a predicate psSMTL-frame and ⊢ is a forcing relation on (M,U).
- We have the same definitions for $psSMTL^r$ logic $psSMTL^r \forall$ logic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 We introduce the following property of a propositional pseudo-Kripke frame *M* = (*M*, ≤, ⊙, 0, 1):

(nn) for all x > 0, $x \odot x > 0$

Theorem

 $(ps\Pi 2)$ and $(ps\Pi 2^{\bullet})$ are valid in every propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies condition (nn).

- A propositional psSMTL-frame is just a propositional pseudo-Kripke frame that satisfies (nn).
- A propositional psSMTL-model is a pair (*M*, *⊨*), where *M* is a propositional psSMTL-frame and *⊨* is a forcing relation on *M*.
- A predicate psSMTL-frame is just a predicate pseudo-Kripke frame that satisfies (nn).
- A predicate psSMTL-model is a triple (M,U, ⊢), where (M,U) is a predicate psSMTL-frame and ⊢ is a forcing relation on (M,U).
- We have the same definitions for $psSMTL^r$ logic $psSMTL^r \forall$ logic.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

 We introduce the following property of a propositional pseudo-Kripke frame *M* = (*M*, ≤, ⊙, 0, 1):

(nn) for all x > 0, $x \odot x > 0$

Theorem

 $(ps\Pi 2)$ and $(ps\Pi 2^{\bullet})$ are valid in every propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies condition (nn).

- A propositional psSMTL-frame is just a propositional pseudo-Kripke frame that satisfies (nn).
- A predicate psSMTL-frame is just a predicate pseudo-Kripke frame that satisfies (nn).
- We have the same definitions for $psSMTL^r$ logic $psSMTL^r \forall$ logic.

4 **A** N A **B** N A **B** N

(nn) for all x > 0, $x \odot x > 0$

Theorem

 $(ps\Pi 2)$ and $(ps\Pi 2^{\bullet})$ are valid in every propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff *M* satisfies condition (nn).

- A propositional psSMTL-frame is just a propositional pseudo-Kripke frame that satisfies (nn).
- A propositional psSMTL-model is a pair (\mathcal{M}, \Vdash) , where \mathcal{M} is a propositional psSMTL-frame and \Vdash is a forcing relation on \mathcal{M} .
- A predicate psSMTL-frame is just a predicate pseudo-Kripke frame that satisfies (nn).
- A predicate psSMTL-model is a triple $(\mathcal{M}, \mathcal{U}, \Vdash)$, where $(\mathcal{M}, \mathcal{U})$ is a predicate psSMTL-frame and \parallel is a forcing relation on $(\mathcal{M}, \mathcal{U})$.
- We have the same definitions for $psSMTL^r$ logic $psSMTL^r \forall$ logic.

- The logic psSMTL^r is complete with respect to propositional psSMTL-models.
- The logic psSMTL^r∀ is complete with respect to predicate psSMTL-models.

Theorem (Standard completeness for $psSMTL^r \forall$)

Let φ be a closed formula of psSMTL' \forall logic. The following are equivalent:

- (1) $\vdash_{psSMTL^{r}\forall} \varphi;$
- (2) φ is valid in every predicate psSMTL-model of the form

 $(([0,1],\leq,\hat{*},0,1),\mathcal{U}, |\!|\!-),$

where $\hat{*}$ is a left-continuous strict pseudo-t-norm, \mathcal{U} is any structure on the standard psSMTL-algebra induced by $\hat{*}$ and $\mid \vdash$ is any forcing relation.

(3) φ is a tautology with respect to any standard psSMTL-algebra.

< 日 > < 同 > < 回 > < 回 > < □ > <

- The logic psSMTL^r is complete with respect to propositional psSMTL-models.
- The logic psSMTL^r∀ is complete with respect to predicate psSMTL-models.

Theorem (Standard completeness for psSMTL^r∀)

Let φ be a closed formula of psSMTL' \forall logic. The following are equivalent:

- (1) $\vdash_{psSMTL'\forall} \varphi;$
- (2) φ is valid in every predicate psSMTL-model of the form

 $(([0,1],\leq,\hat{*},0,1),\mathcal{U},\Vdash~),$

where $\hat{*}$ is a left-continuous strict pseudo-t-norm, \mathcal{U} is any structure on the standard psSMTL-algebra induced by $\hat{*}$ and \parallel is any forcing relation.

(3) φ is a tautology with respect to any standard psSMTL-algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Motivations

- 2 psMTL logic
 - Propositional calculus
 - Predicate calculus
- 3 psSMTL logic
- 4 psIMTL logic

Kripke-style semantics

- For psMTL logic
- For psSMTL logic
- For psIMTL logic

< 同 ト < 三 ト < 三 ト

(inv1) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $z \odot x = 0$ and $z \odot y \neq 0$ (inv2) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $x \odot z = 0$ and $y \odot z \neq 0$

Theorem

(psInv) and (psInv[•]) are valid in every residuated propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies conditions (inv1) and (inv2).

- A propositional psIMTL-frame is just a propositional pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-frame is just a predicate pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-model is a triple (M,U, ⊨), where (M,U) is a predicate psIMTL-frame and ⊨ is a forcing relation on (M,U).

(inv1) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $z \odot x = 0$ and $z \odot y \neq 0$ (inv2) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $x \odot z = 0$ and $y \odot z \neq 0$

Theorem

(psInv) and (psInv[•]) are valid in every residuated propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies conditions (inv1) and (inv2).

- A propositional psIMTL-frame is just a propositional pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-frame is just a predicate pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-model is a triple (M,U, ⊨), where (M,U) is a predicate psIMTL-frame and ⊨ is a forcing relation on (M,U).

(inv1) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $z \odot x = 0$ and $z \odot y \neq 0$ (inv2) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $x \odot z = 0$ and $y \odot z \neq 0$

Theorem

(psInv) and (psInv[•]) are valid in every residuated propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies conditions (inv1) and (inv2).

- A propositional psIMTL-frame is just a propositional pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-frame is just a predicate pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-model is a triple (M,U, ⊨), where (M,U) is a predicate psIMTL-frame and ⊨ is a forcing relation on (M,U).

ManvVal'12

37/41

(inv1) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $z \odot x = 0$ and $z \odot y \neq 0$ (inv2) for all $x, y \in M$, if x < y, then there is $z \in M$ such that $x \odot z = 0$ and $y \odot z \neq 0$

Theorem

(psInv) and (psInv[•]) are valid in every residuated propositional pseudo-Kripke model (\mathcal{M}, \Vdash) iff \mathcal{M} satisfies conditions (inv1) and (inv2).

- A propositional psIMTL-frame is just a propositional pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-frame is just a predicate pseudo-Kripke frame that satisfies (inv1) and (inv2).
- A predicate psIMTL-model is a triple (M,U, ⊨), where (M,U) is a predicate psIMTL-frame and ⊨ is a forcing relation on (M,U).

- The logic psIMTL^r is complete with respect to propositional psSMTL-models.
- The logic $psIMTL^r \forall$ is complete with respect to predicate psSMTL-models.

Theorem (Standard completeness for $psIMTL^r \forall$)

Let φ be a closed formula of psIMTL['] \forall logic. The following are equivalent:

- (1) $\vdash_{psIMTL^{r}\forall} \varphi$;
- (2) φ is valid in every predicate psIMTL-model of the form

 $(([0,1],\leq,\hat{*},0,1),\mathcal{U},\Vdash),$

where $\hat{*}$ is a left-continuous pseudo-t-norm whose corresponding negations satisfy condition (PDN), \mathcal{U} is any structure on the standard psIMTL-algebra induced by $\hat{*}$ and $\mid \vdash$ is any forcing relation.

(3) φ is a tautology with respect to any standard psIMTL-algebra.

< 日 > < 同 > < 回 > < 回 > < □ > <

- The logic psIMTL^r is complete with respect to propositional psSMTL-models.
- The logic psIMTL^r∀ is complete with respect to predicate psSMTL-models.

Theorem (Standard completeness for psIMTL^r∀)

Let φ be a closed formula of psIMTL^r \forall logic. The following are equivalent:

- (1) $\vdash_{psIMTL' \forall} \varphi;$
- (2) φ is valid in every predicate psIMTL-model of the form

 $(([0,1],\leq,\hat{*},0,1),\mathcal{U},\Vdash~),$

where $\hat{*}$ is a left-continuous pseudo-t-norm whose corresponding negations satisfy condition (PDN), \mathcal{U} is any structure on the standard psIMTL-algebra induced by $\hat{*}$ and \parallel is any forcing relation.

(3) φ is a tautology with respect to any standard psIMTL-algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Further research

psSMTL logic + (psInv) + (psInv[•]) $\stackrel{?}{=}$ Gödel logic psIMTL logic + (psП2) + (psП2[•]) $\stackrel{?}{=}$ Gödel logic

Further research

psSMTL logic + (psInv) + (psInv[•]) $\stackrel{?}{=}$ Gödel logic psIMTL logic + (psIl) + (psIl[•]) $\stackrel{?}{=}$ Gödel logic

A b

For psIMTL logic

Further research

psSMTL logic + (psInv) + (psInv $^{\bullet}$) $\stackrel{?}{=}$ Gödel logic psIMTL logic + (ps $\Pi 2$) + (ps $\Pi 2^{\bullet}$) $\stackrel{?}{=}$ Gödel logic

Thank you for your attention!

イロト イヨト イヨト イヨト