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This talk

Many-valued logics have semantic origins. But as logics
they also have something to do with proofs.
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This talk

Many-valued logics have semantic origins. But as logics
they also have something to do with proofs.

My aim is to

introduce some recent developments in proof theory
for non-classical logics (especially many-valued logics)

use proof theory for uniform (and automated) proofs of
standard completeness
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Analytic Calculi

"Praedicatum Inest Subjecto"

Calculi in which proof search proceeds by step-wise
decomposition of the formulas to be proved
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Analytic Calculi

"Praedicatum Inest Subjecto"

Calculi in which proof search proceeds by step-wise
decomposition of the formulas to be proved

Sequent, hypersequent calculi, labelled calculi, many-

placed sequents, sequents-of-relations, display logic, CoS

...
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Introducing such calculi

Semantic-based approach

(Baaz, Fermüller, Montagna, ...)

Syntactic approach

(Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)

Proof theory for many valued logics – some applications – p.5/33



Introducing such calculi

Semantic-based approach
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Introducing such calculi

Semantic-based approach

E.g. decidability, complexity of validity ..
(Baaz, Fermüller, Montagna, ...)

Syntactic approach : uniform and systematic

E.g.

Herbrand theorem

order theoretic completions

standard completeness

...

(Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)
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Semantic-based Approach
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Semantic-based Approach

Finite-valued logics: (Baaz, Zach...)

S1 | . . . | Sn (Ex. A | B | C)

MULTLOG
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Semantic-based Approach

Finite-valued logics: (Baaz, Zach...)

S1 | . . . | Sn (Ex. A | B | C)

Projective logics: (Baaz and Fermüller)
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Semantic-based Approach

Finite-valued logics: (Baaz, Zach...)

S1 | . . . | Sn (Ex. A | B | C)

Projective logics: (Baaz and Fermüller)

¤
M (x1, ..., xn) =











t1 if ∧ ∨Rjk

...
...

tm if ∧ ∨Rpq

Ri1(F
1
1 , . . . , F 1

r1
) | . . . | Rik(F

k
1 , . . . , F k

rk
) (Ex. A ≤ B | A < C)

Semi-Projective logics: (- and Montagna, new)
Ex.: Nilpotent Minimum logic, n-contractive BL...
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Syntactic Approach

From Hilbert calculi to analytic calculi.

Hilbert calculi consist of:

many axioms

few rules (MP, generalization,...)

Pro : easy to define logics
Contra : not suitable for

finding proofs

analyzing proofs

establishing properties of logics
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Sequent Calculi

Sequents
A1, . . . , An ⇒ B

Intuitively a sequent is understood as “the conjunction of
A1, . . . , An implies B.
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Sequent Calculi

Sequents
A1, . . . , An ⇒ B

Intuitively a sequent is understood as “the conjunction of
A1, . . . , An implies B.
Axioms
E.g., A ⇒ A

Rules

Logical

(cut)
Γ ⇒ A A, ∆ ⇒ Π

Γ, ∆ ⇒ Π
Cut

Structural
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The system FLe

FLe = commutative Lambek calculus (= intuitionistic Linear
Logic or Monoidal Logic)
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The system FLe

A,B, Γ ⇒ Π
A ⊗ B, Γ ⇒ Π

⊗l
Γ ⇒ A ∆ ⇒ B
Γ, ∆ ⇒ A ⊗ B

⊗r

Γ ⇒ A B, ∆ ⇒ Π
Γ, A → B, ∆ ⇒ Π

→ l
A, Γ ⇒ B

Γ ⇒ A → B
→ r

A, Γ ⇒ Π B, Γ ⇒ Π
A ∨ B, Γ ⇒ Π

∨l
Γ ⇒ Ai

Γ ⇒ A1 ∨ A2

∨r
0 ⇒ 0l

Ai, Γ ⇒ Π

A1 & A2, Γ ⇒ Π
&l

Γ ⇒ A Γ ⇒ B
Γ ⇒ A & B

&r
Γ ⇒ ⊤

⊤r

Γ ⇒
Γ ⇒ 0

0r
⇒ 1

1r ⊥, Γ ⇒ Π
⊥l

Γ ⇒ Π
1, Γ ⇒ Π

1l
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Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

P = 〈P,&,∨,⊗,→,⊤,0,1,⊥〉

1. 〈P,&,∨,⊤,0〉 is a lattice with ⊤ greatest and ⊥ least

2. 〈P,⊗,1〉 is a commutative monoid.

3. For any x, y, z ∈ P , x ⊗ y ≤ z ⇐⇒ y ≤ x → z

4. 0 ∈ P .

Many-valued logics= FLe + axioms
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Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

P = 〈P,&,∨,⊗,→,⊤,0,1,⊥〉

1. 〈P,&,∨,⊤,0〉 is a lattice with ⊤ greatest and ⊥ least

2. 〈P,⊗,1〉 is a commutative monoid.

3. For any x, y, z ∈ P , x ⊗ y ≤ z ⇐⇒ y ≤ x → z

4. 0 ∈ P .

Many-valued logics= FLe + axioms

Cut elimination is not preserved when axioms are added

(Idea) Transform axioms into ‘good’ structural rules
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On the structural rules

Example

Contraction: α → α ⊗ α

Weakening l: α → 1

Weakening r: 0 → α
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On the structural rules

Example

Contraction: α → α ⊗ α
A,A, Γ ⇒ Π
A, Γ ⇒ Π

(c)

Weakening l: α → 1
Γ ⇒ Π

Γ, A ⇒ Π
(w, l)

Weakening r: 0 → α
Γ ⇒

Γ ⇒ A
(w, r)
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On the structural rules

Example

Contraction: α → α ⊗ α
A,A, Γ ⇒ Π
A, Γ ⇒ Π

(c)

Weakening l: α → 1
Γ ⇒ Π

Γ, A ⇒ Π
(w, l)

Weakening r: 0 → α
Γ ⇒

Γ ⇒ A
(w, r)

Equivalence between rules and axioms

⊢FLe+(axiom) = ⊢FLe+(rule)
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Our preliminary results
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Our preliminary results

The sets Pn,Nn of formulas defined by:

P0, N0 := Atomic formulas

Pn+1 := Nn | Pn+1 ⊗ Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | ⊤

P and N

Positive connectives 1,⊥,⊗,∨ have
invertible left rules:

Negative connectives ⊤,0,∧,→ have in-
vertible right rules:
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Our preliminary results
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The sets Pn,Nn of formulas defined by:

P0, N0 := Atomic formulas

Pn+1 := Nn | Pn+1 ⊗ Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | ⊤

P and N

Positive connectives 1,⊥,⊗,∨ have invertible

left rules:

Negative connectives ⊤,0,∧,→ have invertible

right rules:
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Examples

Class Axiom Name

N2 α → 1, ⊥ → α weakening

α → α ⊗ α contraction

α ⊗ α → α expansion

⊗αn → ⊗αm knotted axioms (n, m ≥ 0)

¬(α & ¬α) weak contraction

P2 α ∨ ¬α excluded middle

(α → β) ∨ (β → α) prelinearity

P3 ¬α ∨ ¬¬α weak excluded middle

¬(α ⊗ β) ∨ (α ∧ β → α ⊗ β) (wnm)

N3 ((α → β) → β) → ((β → α) → α) Lukasiewicz axiom
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Our preliminary results

P3 N3

P2 N2
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Algorithm to transform:

axioms up to the class N2 into "good" structural

rules in sequent calculus

axioms up to the class P3 into "good" structural

rules in hypersequent calculus

(-, N. Galatos and K. Terui. LICS 2008) and

( -, L. Strassburger and K. Terui. CSL 2009)
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Algorithm to transform:

axioms up to the class N2 into "good" structural

rules in sequent calculus

axioms up to the class P3 into "good" structural

rules in hypersequent calculus

(-, N. Galatos and K. Terui. LICS 2008) and

( -, L. Strassburger and K. Terui. CSL 2009)

Prolog program: AxiomCalc

http://www.logic.at/people/lara/axiomcalc.html
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Hypersequent calculus

It is obtained embedding sequents into hypersequents

Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn

where for all i = 1, . . . n, Γi ⇒ Πi is an ordinary sequent.
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Hypersequent calculus

Γ ⇒ A A, ∆ ⇒ Π
Γ, ∆ ⇒ Π

Cut
A ⇒ A

Identity

Γ ⇒ A B, ∆ ⇒ Π
Γ, A → B, ∆ ⇒ Π

→ l
A, Γ ⇒ B

Γ ⇒ A → B
→ r
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Hypersequent calculus

G|Γ ⇒ A G|A, ∆ ⇒ Π

G|Γ, ∆ ⇒ Π
Cut

G|A ⇒ A
Identity

G|Γ ⇒ A G|B, ∆ ⇒ Π

G|Γ, A → B, ∆ ⇒ Π
→ l

G|A, Γ ⇒ B

G|Γ ⇒ A → B
→ r

Proof theory for many valued logics – some applications – p.15/33



Hypersequent calculus

G|Γ ⇒ A G|A, ∆ ⇒ Π

G|Γ, ∆ ⇒ Π
Cut

G|A ⇒ A
Identity

G|Γ ⇒ A G|B, ∆ ⇒ Π

G|Γ, A → B, ∆ ⇒ Π
→ l

G|A, Γ ⇒ B

G|Γ ⇒ A → B
→ r

and adding suitable rules to manipulate the additional layer
of structure.

G
G |Γ ⇒ A

(ew)
G |Γ ⇒ A |Γ ⇒ A

G |Γ ⇒ A
(ec)
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From axioms to analytic rules

Step 1

Step 2
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From axioms to analytic rules

Step 1
Transformation of any N2 (P3) axiom into an equivalent
(set of) structural rule(s).

Step 2
Analytic completion of the generated rules
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From axioms to analytic rules

Step 1
Transformation of any N2 (P3) axiom into an equivalent
(set of) structural rule(s).

Step 2
Analytic completion of the generated rules

How? Using

the invertibility of the rules (∨, l), (&, r), (⊗, l), (→, r).

the Lemma: Any axiom A ⇒ B is equivalent to

α ⇒ A
α ⇒ B and also to

B ⇒ β

A ⇒ β

for α, β fresh variables.
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An example

(α → β) ∨ (β → α)
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An example

(α → β) ∨ (β → α)

is equivalent to

G | ⇒ α → β | ⇒ β → α
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An example

(α → β) ∨ (β → α)

and to
G |α ⇒ β | β ⇒ α
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An example

(α → β) ∨ (β → α)

G |α ⇒ β | β ⇒ α

and by the Lemma: Any sequent α′ ⇒ β′ is equivalent to

Γ ⇒ α′

Γ ⇒ β′ and also to
β′, Γ ⇒ ∆

α′, Γ ⇒ ∆

(for Γ, ∆ fresh meta-variables)
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An example

(α → β) ∨ (β → α)

G |α ⇒ β | β ⇒ α

by the Lemma: Any sequent α′ ⇒ β′ is equivalent to

Γ ⇒ α′

Γ ⇒ β′ and also to
β′, Γ ⇒ ∆

α′, Γ ⇒ ∆

(for Γ, ∆ fresh meta-variables) is equivalent to

G |Γ ⇒ α

G |Γ ⇒ β | β ⇒ α
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An example

(α → β) ∨ (β → α)

G |α ⇒ β | β ⇒ α

is equivalent to

G |Γ ⇒ α G |Γ′ ⇒ β G |Σ, β ⇒ ∆ G |Σ′, α ⇒ ∆′

G |Γ, Σ ⇒ ∆ |Γ′, Σ′ ⇒ ∆′
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An example

(α → β) ∨ (β → α)

G |α ⇒ β | β ⇒ α

G |Γ ⇒ α G |Γ′ ⇒ β G |Σ, β ⇒ ∆ G |Σ′, α ⇒ ∆′

G |Γ, Σ ⇒ ∆ |Γ′, Σ′ ⇒ ∆′

is equivalent to

G |Γ, Σ′ ⇒ ∆′ G |Γ′, Σ ⇒ ∆

G |Γ, Σ ⇒ ∆ |Γ′, Σ′ ⇒ ∆′
(com)

(Avron, Annals of Math and art. Intell. 1991)
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Some examples

⊗αn → ⊗αm

{∆i1 , . . . , ∆im , Γ ⇒ Π}i1,...,im∈{1,...,n}

∆1, . . . , ∆n, Γ ⇒ Π
(knotnm)

¬α ∨ ¬¬α
G |Γ1, Γ2

G |Γ1 ⇒ |Γ2 ⇒
(lq)

¬(α ⊗ β) ∨ (α ∧ β → α ⊗ β)

G |Γ2, Γ1, ∆1 ⇒ Π1

G |Γ1, Γ1, ∆1 ⇒ Π1

G |Γ1, Γ3, ∆1 ⇒ Π1

G |Γ2, Γ3, ∆1 ⇒ Π1

G |Γ2, Γ3 ⇒ |Γ1, ∆1 ⇒ Π1

(wnm)
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Uniform cut-elimination

Theorem
The cut rule is admissible in (the hypersequent version of)
FLe extended with any completed rule.
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Uniform cut-elimination

Theorem
The cut rule is admissible in (the hypersequent version of)
FLe extended with any completed rule.

Syntactic argument:
elimination procedure

Cut-ful Proofs =⇒ Cut-free Proofs

Semantic argument:
Quasi-DM completion

CRL ⇐= ‘Intransitive’ CRL
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Expressive powers of (hyper)sequents

P3 N3

P2 N2

P1 N1

P0 N0
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Hilbert axioms = equations over CRL
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Expressive powers of (hyper)sequents

P3 N3

P2 N2

P1 N1

P0 N0
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Sequent structural rules: only equations

that hold in Heyting algebras (IL)

closed under DM completion

(-, N. Galatos and K. Terui. APAL 2012)
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Expressive powers of (hyper)sequents

P3 N3

P2 N2

P1 N1
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Sequent structural rules: only equations

that hold in Heyting algebras (IL)

closed under DM completion

Hypersequent structural rules: only equations

closed under regular completions

(-, N. Galatos and K. Terui. Draft 2012)
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An application

A logic is standard complete when it is complete w.r.t.
evaluations on [0, 1]

Algebraically:

A logic is standard complete ⇔ it is complete w.r.t
algebras order-isomorphic to [0, 1]
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SC: algebraic approach

Given a logic L:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable
L-algebras

3. (Rational completeness): Find an embedding of
countable L-algebras into dense countable L-algebras

4. Dedekind-Mac Neille style completion (embedding into
L-algebras with lattice reduct [0, 1])
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SC: algebraic approach

Given a logic L:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable
L-algebras

3. (Rational completeness): Find an embedding of
countable L-algebras into dense countable L-algebras

4. Dedekind-Mac Neille style completion (embedding into
L-algebras with lattice reduct [0, 1])

Step 1, 2, 4: routine

Step 3: problematic (only ad hoc solutions)
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SC: proof-theoretic approach

(Metcalfe, Montagna JSL 2007) Given a logic L:

Define a suitable hypersequent calculus

Add the density rule

G |Γ ⇒ p |Σ, p ⇒ ∆

G |Γ, Σ ⇒ ∆
(density)

(= L + (density) is rational complete)

Show that the addition of density produces no new
theorems

Dedekind-Mac Neille style completion
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SC: proof-theoretic approach

(Metcalfe, Montagna JSL 2007) Given a logic L:

Define a suitable hypersequent calculus

Add the density rule

G |Γ ⇒ p |Σ, p ⇒ ∆

G |Γ, Σ ⇒ ∆
(density)

(= L + (density) is rational complete)

Show that the addition of density produces no new
theorems

Dedekind-Mac Neille style completion

A ⇒ p | p ⇒ B

A ⇒ B
(density)
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Density elimination

Similar to cut-elimination

Proof by induction on the length of derivations
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Density elimination

Similar to cut-elimination

Proof by induction on the length of derivations

(-, Metcalfe TCS 2008)
Given a density-free derivation, ending in

·
·
·

G |Σ, p ⇒ ∆ |Γ ⇒ p
(D)

G |Γ, Σ ⇒ ∆

Asymmetric substitution: p is replaced
With Σ ⇒ ∆ when occuring on the right
With Γ when occuring on the left
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Method for density elimination

·
·
·

G |Σ, p ⇒ ∆ |Γ ⇒ p
(D)

G |Γ, Σ ⇒ ∆

becomes:

·
·
·

G |Γ, Σ ⇒ ∆ |Γ, Σ ⇒ ∆
(EC)

G |Γ, Σ ⇒ ∆
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A problem

Asymmmetric substitutions do not preserve derivability, as :

A sequent Π, p ⇒ p is derivable from p ⇒ p +
(weakening)

Π, Γ, Σ ⇒ ∆ is not derivable
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A problem

Asymmmetric substitutions do not preserve derivability, as :

A sequent Π, p ⇒ p is derivable from p ⇒ p +
(weakening)

Π, Γ, Σ ⇒ ∆ is not derivable

We can solve the problem with a suitable restructuring
of the derivation...
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Our Results

(Baldi, - ,Spendier: Wollic 2012)

Theorem: Hypersequent calculus for MTL +
convergent rules admits density elimination
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Our Results

(Baldi, - ,Spendier: Wollic 2012)

Theorem: Hypersequent calculus for MTL +
convergent rules admits density elimination

i.e. rules whose premises do not mix "too much" the
conclusion

Example :

G |Γ2, Γ1, ∆1 ⇒ Π1

G |Γ1, Γ1, ∆1 ⇒ Π1

G |Γ1, Γ3, ∆1 ⇒ Π1

G |Γ2, Γ3, ∆1 ⇒ Π1

G |Γ2, Γ3 ⇒ |Γ1, ∆1 ⇒ Π1
(wnm)

Axiom: ¬(α ⊗ β) ∨ (α ∧ β → α ⊗ β)
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Our Results

(Baldi, - ,Spendier: Wollic 2012)

Theorem: Hypersequent calculus for MTL +
convergent rules admits density elimination

(Baldi, - ,Spendier: In Preparation)

Theorem: Hypersequent calculus for UL + sequent
rules admits density elimination.
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Let L be a suitable axiomatic extension of MTL (UL )

define a hypersequent calculus for L

check whether the calculus satisfies the condition for
density elimination (rational completeness)
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Algebra Universalis 2011)
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SC: Automated Proofs

Let L be a suitable axiomatic extension of MTL (UL )

define a hypersequent calculus for L

check whether the calculus satisfies the condition for
density elimination (rational completeness)

standard completeness follows by (-, Galatos, Terui
Algebra Universalis 2011)

http://www.logic.at/people/lara/axiomcalc.html
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Example

Known Logics

MTL + ¬(α ⊗ β) ∨ ((α ∧ β) → (α ⊗ β))

MTL + ¬α ∨ ¬¬α

MTL + αn−1 → αn

UL + αn−1 → αn

...

New Fuzzy Logics
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Example

Known Logics

MTL + ¬(α ⊗ β) ∨ ((α ∧ β) → (α ⊗ β))

MTL + ¬α ∨ ¬¬α

MTL + αn−1 → αn

UL + αn−1 → αn

...

New Fuzzy Logics

MTL + ¬(α⊗ β)n ∨ ((α∧ β)n−1 → (α⊗ β)n), for all n > 1

UL + ¬α ∨ ¬¬α

UL + αm → αn

...
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Open problems

P3 N3

P2 N2

P1 N1

P0 N0

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

6

6

¡
¡¡µ 6

@
@@I

6

¡
¡¡µ 6

@
@@I

6

¡
¡¡µ 6

@
@@I

Uniform treatment of axioms behond P3

Systematic introduction of analytic calculi

first-order logic

modal and temporal logic

logics with different connectives

more on standard completeness

Proving useful properties for classes

logics in a uniform and systematic way

... many more ...

"Non-classical Proofs: Theory, Applications and

Tools", research project 2012-2017
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How far can we go?
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How far can we go?

Analytic Calculi

sequent, hypersequent calculi...

display calculi

nested sequents, deep inference, calculus of structures

labelled systems

......
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How far can we go?

Analytic Calculi

sequent, hypersequent calculi...

display calculi

nested sequents, deep inference, calculus of structures

labelled systems

......

(Strongly) Analytic calculus = weaker for of Herbrand
theorem: If ∃xB(x) is provable, where B is
quantifier-free, so is

∨n
i=1 B(ti), for some n.
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A negative result

Let L be a first-order logic satisfying:

1. ⊢LA → A

2. ⊢L∀xA(x) → B → ∃x(A(x) → B)

3. ⊢L(B → ∀xA(x)) → ∀x(B → A(x))

4. ⊢L∀xA(x) → A(t), for any term t

5. there is an atomic formula A in L such that for no n

⊢L

n
∨

i=1

A(xi) → A(xi+1)

then L does not admit any strongly analytic calculus.

(Baaz, -, Work in progress)
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Corollary

The following logics do not admit any strongly analytic
calculus:

witnessed logics (∀= min and ∃= max), e.g. Gödel logic
with truth values in [0, 1], ∧= min, ∨= max,
v(A) → v(B) = 1 iff v(A) ≤ v(B), v(B) otherwise. ∀=
min and ∃= max.

(fragments of) first-order Lukasiewicz logic

Gödel logic with set of truth values
{1 − 1/n : n ≥ 1} ∪ {1}

first-order nilpotent minimum logic NM with set of truth
values {1/n : n ≥ 1} ∪ {1 − 1/n : n ≥ 1}

....
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