Proof theory for many valued logics – some applications

Agata Ciabattoni

Vienna University of Technology

agata@logic.at
The beginning of the story

(Cost Action "Many-valued Logics for CS Applications")
The beginning of the story

(Cost Action "Many-valued Logics for CS Applications")
This talk

Many-valued logics have semantic origins. But as logics they also have something to do with proofs.
This talk

Many-valued logics have semantic origins. But as logics they also have something to do with proofs.

My aim is to

- introduce some recent developments in proof theory for non-classical logics (especially many-valued logics)
- use proof theory for uniform (and automated) proofs of standard completeness
Analytic Calculi

"Praedicatum Inest Subjecto"

Calculi in which proof search proceeds by step-wise decomposition of the formulas to be proved
Analytic Calculi

"Praedicatum Inest Subjecto"

Calculi in which proof search proceeds by step-wise decomposition of the formulas to be proved

Sequent, hypersequent calculi, labelled calculi, many-placed sequents, sequents-of-relations, display logic, CoS...
Introducing such calculi

- Semantic-based approach
 (Baaz, Fermüller, Montagna, ...)
- Syntactic approach
 (Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)

Proof theory for many valued logics – some applications – p.5/33
Introducing such calculi

- Semantic-based approach
 - E.g. decidability, complexity of validity ..
 (Baaz, Fermüller, Montagna, ...)
- Syntactic approach

 (Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)

Proof theory for many valued logics – some applications – p.5/33
Introducing such calculi

- Semantic-based approach

 E.g. decidability, complexity of validity ..
 (Baaz, Fermüller, Montagna, ...)

- Syntactic approach: uniform and systematic

 E.g.

 - Herbrand theorem
 - order theoretic completions
 - standard completeness
 - ...

 (Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)
Semantic-based Approach
Semantic-based Approach

Finite-valued logics: (Baaz, Zach...)

\[S_1 \mid \ldots \mid S_n \quad \text{(Ex. } A \mid B \mid C') \]

MULTLOG
Semantic-based Approach

- Finite-valued logics: (Baaz, Zach...)

\[S_1 \mid \ldots \mid S_n \quad (\text{Ex. } A \mid B \mid C') \]

- Projective logics: (Baaz and Fermüller)

\[\Box^M(x_1, \ldots, x_n) = \begin{cases}
 t_1 & \text{if } \land \lor R_{jk} \\
 \vdots & \vdots \\
 t_m & \text{if } \land \lor R_{pq}
\end{cases} \]

\[R_{i_1}(F^1_1, \ldots, F^1_{r_1}) \mid \ldots \mid R_{i_k}(F^k_1, \ldots, F^k_{r_k}) \quad (\text{Ex. } A \leq B \mid A < C') \]
Semantic-based Approach

- Finite-valued logics: (Baaz, Zach...)
 \[S_1 \mid \ldots \mid S_n \quad (\text{Ex. } A \mid B \mid C') \]

- Projective logics: (Baaz and Fermüller)
 \[\square^M(x_1, \ldots, x_n) = \begin{cases}
 t_1 & \text{if } \land \lor R_{jk} \\
 \vdots & \vdots \\
 t_m & \text{if } \land \lor R_{pq}
\end{cases} \]

 \[R_{i_1}(F^1_1, \ldots, F^1_{r_1}) \mid \ldots \mid R_{i_k}(F^k_1, \ldots, F^k_{r_k}) \quad (\text{Ex. } A \leq B \mid A < C') \]

- Semi-Projective logics: (- and Montagna, new)
 \textbf{Ex.}: Nilpotent Minimum logic, \(n\)-contractive BL...
Syntactic Approach

From Hilbert calculi to analytic calculi.

Hilbert calculi consist of:

- many axioms
- few rules (MP, generalization,...)

Pro: easy to define logics
Contra: not suitable for

- finding proofs
- analyzing proofs
- establishing properties of logics
Sequent Calculi

Sequents

\[A_1, \ldots, A_n \Rightarrow B \]

Intuitively a sequent is understood as “the conjunction of \(A_1, \ldots, A_n \) implies \(B \).
Sequent Calculi

Sequents

\[A_1, \ldots, A_n \Rightarrow B \]

Intuitively a sequent is understood as “the conjunction of \(A_1, \ldots, A_n \) implies \(B \).

Axioms

E.g., \(A \Rightarrow A \)

Rules

- Logical
- (cut)

\[
\frac{\Gamma \Rightarrow A \quad A, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Pi} \text{ Cut}
\]

Structural
The system FLe

\[\text{FLe} = \text{commutative Lambek calculus (} = \text{ intuitionistic Linear Logic or Monoidal Logic) } \]
The system FLε

\[
\begin{align*}
A, B, \Gamma \Rightarrow \Pi & \quad \rightarrow l \\
A \otimes B, \Gamma \Rightarrow \Pi & \quad \otimes l \\
\Gamma \Rightarrow A, \Delta \Rightarrow B & \quad \otimes r \\
\Gamma, \Delta \Rightarrow A \otimes B & \\
\Gamma \Rightarrow A \quad B, \Delta \Rightarrow \Pi & \quad \rightarrow l \\
\Gamma, A \rightarrow B, \Delta \Rightarrow \Pi & \quad \rightarrow r \\
\Gamma \Rightarrow A \rightarrow B & \\
\Gamma, A \Rightarrow B & \quad \rightarrow l \\
\end{align*}
\]
A (bounded pointed) commutative residuated lattice is

\[P = \langle P, \& , \lor , \otimes , \to , \top , 0 , 1 , \bot \rangle \]

1. \(\langle P, \& , \lor , \top , 0 \rangle \) is a lattice with \(\top \) greatest and \(\bot \) least.

2. \(\langle P, \otimes , 1 \rangle \) is a commutative monoid.

3. For any \(x, y, z \in P \), \(x \otimes y \leq z \iff y \leq x \to z \)

4. \(0 \in P \).

Many-valued logics = \(FL_e + \) axioms
Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

\[P = \langle P, \& , \lor , \otimes , \rightarrow , \top , 0, 1, \bot \rangle \]

1. \(\langle P, \& , \lor , \top , 0 \rangle \) is a lattice with \(\top \) greatest and \(\bot \) least
2. \(\langle P, \otimes , 1 \rangle \) is a commutative monoid.
3. For any \(x, y, z \in P \), \(x \otimes y \leq z \iff y \leq x \rightarrow z \)
4. \(0 \in P \).

Many-valued logics = FL_e + axioms

Cut elimination is not preserved when axioms are added
Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

\[P = \langle P, \&, \lor, \otimes, \to, \top, 0, 1, \bot \rangle \]

1. \(\langle P, \&, \lor, \top, 0 \rangle \) is a lattice with \(\top \) greatest and \(\bot \) least
2. \(\langle P, \otimes, 1 \rangle \) is a commutative monoid.
3. For any \(x, y, z \in P \), \(x \otimes y \leq z \iff y \leq x \to z \)
4. \(0 \in P \).

Many-valued logics = \(\mathbf{FL} e \) + axioms

• Cut elimination is not preserved when axioms are added
• (Idea) Transform axioms into ‘good’ structural rules
On the structural rules

Example

- Contraction: \(\alpha \rightarrow \alpha \otimes \alpha \)
- Weakening l: \(\alpha \rightarrow 1 \)
- Weakening r: \(0 \rightarrow \alpha \)
On the structural rules

Example

- **Contraction**: $\alpha \rightarrow \alpha \otimes \alpha$
 \[
 \frac{A, A, \Gamma \Rightarrow \Pi}{A, \Gamma \Rightarrow \Pi} \quad (c)
 \]

- **Weakening l**: $\alpha \rightarrow 1$
 \[
 \frac{\Gamma \Rightarrow \Pi}{\Gamma, A \Rightarrow \Pi} \quad (w, l)
 \]

- **Weakening r**: $0 \rightarrow \alpha$
 \[
 \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow \Pi} \quad (w, r)
 \]
On the structural rules

Example

- **Contraction:** $\alpha \rightarrow \alpha \otimes \alpha$

- **Weakening l:** $\alpha \rightarrow 1$

- **Weakening r:** $0 \rightarrow \alpha$

Equivalence between rules and axioms

\[\vdash FLe+(axiom) = \vdash FLe+(rule) \]
Our preliminary results
Our preliminary results

The sets $\mathcal{P}_n, \mathcal{N}_n$ of formulas defined by:

$\mathcal{P}_0, \mathcal{N}_0 := \text{Atomic formulas}$

$\mathcal{P}_{n+1} := \mathcal{N}_n \mid \mathcal{P}_{n+1} \otimes \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \lor \mathcal{P}_{n+1} \mid 1 \mid \bot$

$\mathcal{N}_{n+1} := \mathcal{P}_n \mid \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid 0 \mid \top$

\mathcal{P} and \mathcal{N}

- Positive connectives $1, \bot, \otimes, \lor$ have invertible left rules:

- Negative connectives $\top, 0, \land, \rightarrow$ have invertible right rules:
Our preliminary results

The sets \(\mathcal{P}_n, \mathcal{N}_n \) of formulas defined by:

\[
\mathcal{P}_0, \mathcal{N}_0 := \text{Atomic formulas}
\]

\[
\mathcal{P}_{n+1} := \mathcal{N}_n \mid \mathcal{P}_{n+1} \otimes \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \lor \mathcal{P}_{n+1} \mid 1 \mid \bot
\]

\[
\mathcal{N}_{n+1} := \mathcal{P}_n \mid \mathcal{P}_{n+1} \rightarrow \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid 0 \mid \top
\]

\(\mathcal{P} \) and \(\mathcal{N} \)

- **Positive connectives** \(1, \bot, \otimes, \lor \) have *invertible* left rules:

- **Negative connectives** \(\top, 0, \land, \rightarrow \) have *invertible* right rules:
Examples

<table>
<thead>
<tr>
<th>Class</th>
<th>Axiom</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{N}_2</td>
<td>$\alpha \rightarrow 1$, $\bot \rightarrow \alpha$</td>
<td>weakening</td>
</tr>
<tr>
<td></td>
<td>$\alpha \rightarrow \alpha \otimes \alpha$</td>
<td>contraction</td>
</tr>
<tr>
<td></td>
<td>$\alpha \otimes \alpha \rightarrow \alpha$</td>
<td>expansion</td>
</tr>
<tr>
<td></td>
<td>$\otimes \alpha^n \rightarrow \otimes \alpha^m$</td>
<td>knotted axioms $(n, m \geq 0)$</td>
</tr>
<tr>
<td></td>
<td>$\neg (\alpha & \neg \alpha)$</td>
<td>weak contraction</td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td>$\alpha \lor \neg \alpha$</td>
<td>excluded middle</td>
</tr>
<tr>
<td></td>
<td>$(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$</td>
<td>prelinearity</td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td>$\neg \alpha \lor \neg \neg \alpha$</td>
<td>weak excluded middle (wnm)</td>
</tr>
<tr>
<td></td>
<td>$\neg (\alpha \otimes \beta) \lor (\alpha \land \beta \rightarrow \alpha \otimes \beta)$</td>
<td></td>
</tr>
<tr>
<td>\mathcal{N}_3</td>
<td>$((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha)$</td>
<td>Łukasiewicz axiom</td>
</tr>
</tbody>
</table>
Our preliminary results

Algorithm to transform:

- axioms up to the class \mathcal{N}_2 into "good" structural rules in sequent calculus
- axioms up to the class \mathcal{P}_3 into "good" structural rules in hypersequent calculus

(-, N. Galatos and K. Terui. LICS 2008) and
(- , L. Strassburger and K. Terui. CSL 2009)
Our preliminary results

Algorithm to transform:

- axioms up to the class \mathcal{N}_2 into "good" structural rules in sequent calculus
- axioms up to the class \mathcal{P}_3 into "good" structural rules in hypersequent calculus

(-, N. Galatos and K. Terui. LICS 2008) and
(-, L. Strassburger and K. Terui. CSL 2009)

Prolog program: AxiomCalc

http://www.logic.at/people/lara/axiomcalc.html
Hypersequent calculus

It is obtained embedding sequents into hypersequents

\[\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n \]

where for all \(i = 1, \ldots n \), \(\Gamma_i \Rightarrow \Pi_i \) is an ordinary sequent.
Hypersequent calculus

\[\frac{\Gamma \Rightarrow A}{\Gamma, \Delta \Rightarrow \Pi} \quad \frac{A, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Pi} \quad \text{Cut} \quad \frac{A \Rightarrow A}{\text{Identity}} \]

\[\frac{\Gamma \Rightarrow A \quad B, \Delta \Rightarrow \Pi}{\Gamma, A \rightarrow B, \Delta \Rightarrow \Pi} \quad \rightarrow \quad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \quad \rightarrow \quad \frac{A \Rightarrow A \rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \]
Hypersequent calculus

\[
\frac{G | \Gamma \Rightarrow A \quad G | A, \Delta \Rightarrow \Pi}{G | \Gamma, \Delta \Rightarrow \Pi} \quad \text{Cut} \quad \frac{G | A \Rightarrow A}{Identity} \quad \frac{G | \Gamma \Rightarrow A \quad G | B, \Delta \Rightarrow \Pi}{G | \Gamma, A \rightarrow B, \Delta \Rightarrow \Pi} \quad \rightarrow l \quad \frac{G | A, \Gamma \Rightarrow B}{G | \Gamma \Rightarrow A \rightarrow B} \quad \rightarrow r
\]
Hypersequent calculus

\[
\begin{align*}
& G|\Gamma \Rightarrow A \quad G|A, \Delta \Rightarrow \Pi \\
& \quad \quad \quad \frac{\text{Cut}}{G|\Gamma, \Delta \Rightarrow \Pi} \\
& G|\Gamma \Rightarrow A \\
& \quad \quad \quad \frac{\text{Identity}}{G|A \Rightarrow A} \\
& G|\Gamma \Rightarrow A \quad G|B, \Delta \Rightarrow \Pi \\
& \quad \quad \quad \frac{\rightarrow l}{G|\Gamma, A \rightarrow B, \Delta \Rightarrow \Pi} \\
& G|A, \Gamma \Rightarrow B \\
& \quad \quad \quad \frac{\rightarrow r}{G|\Gamma \Rightarrow A \rightarrow B} \\
& \end{align*}
\]

and adding suitable rules to manipulate the additional layer of structure.

\[
\begin{align*}
& G \\
& \quad \quad \quad \frac{(ew)}{G|\Gamma \Rightarrow A} \\
& G|\Gamma \Rightarrow A \\
& \quad \quad \quad \frac{(ec)}{G|\Gamma \Rightarrow A | \Gamma \Rightarrow A} \\
& \end{align*}
\]
From axioms to analytic rules

- Step 1
- Step 2
From axioms to analytic rules

- **Step 1**
 Transformation of any $N_2 (P_3)$ axiom into an equivalent (set of) structural rule(s).

- **Step 2**
 Analytic *completion* of the generated rules
From axioms to analytic rules

1. **Step 1**
 Transformation of any $N_2 (P_3)$ axiom into an equivalent (set of) structural rule(s).

2. **Step 2**
 Analytic *completion* of the generated rules

How? Using

- the invertibility of the rules $(\lor, l), (\land, r), (\otimes, l), (\to, r)$.
- the Lemma: Any axiom $A \Rightarrow B$ is equivalent to

$$\begin{align*}
\alpha \Rightarrow A \\
\alpha \Rightarrow B \\
\frac{B \Rightarrow \beta}{A \Rightarrow \beta}
\end{align*}$$

for α, β fresh variables.
An example

\[(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)\]
An example

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

is equivalent to

$$G \models \alpha \to \beta \models \beta \to \alpha$$
An example

\[(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)\]

and to

\[G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha\]
An example

\[(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)\]

\[G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha\]

and by the Lemma: Any sequent \(\alpha' \Rightarrow \beta'\) is equivalent to

\[\frac{\Gamma \Rightarrow \alpha'}{\Gamma \Rightarrow \beta'}\]

and also to

\[\frac{\beta', \Gamma \Rightarrow \Delta}{\alpha', \Gamma \Rightarrow \Delta}\]

(for \(\Gamma, \Delta\) fresh meta-variables)
An example

\[(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)\]

\[G | \alpha \Rightarrow \beta | \beta \Rightarrow \alpha\]

by the Lemma: Any sequent \(\alpha' \Rightarrow \beta'\) is equivalent to

\[\frac{\Gamma \Rightarrow \alpha'}{\Gamma \Rightarrow \beta'}\]

and also to

\[\frac{\beta', \Gamma \Rightarrow \Delta}{\alpha', \Gamma \Rightarrow \Delta}\]

(for \(\Gamma, \Delta\) fresh meta-variables) is equivalent to

\[G | \Gamma \Rightarrow \alpha\]

\[G | \Gamma \Rightarrow \beta | \beta \Rightarrow \alpha\]
An example

\[(\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)\]

\[G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha\]

is equivalent to

\[G \mid \Gamma \Rightarrow \alpha \quad G \mid \Gamma' \Rightarrow \beta \quad G \mid \Sigma, \beta \Rightarrow \Delta \quad G \mid \Sigma', \alpha \Rightarrow \Delta'\]

\[G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma', \Sigma' \Rightarrow \Delta'\]
An example

\[(\alpha \to \beta) \lor (\beta \to \alpha)\]

\[\begin{align*}
G \mid \alpha & \Rightarrow \beta \mid \beta \Rightarrow \alpha \\
G \mid \Gamma \Rightarrow \alpha & \quad G \mid \Gamma' \Rightarrow \beta & \quad G \mid \Sigma, \beta \Rightarrow \Delta & \quad G \mid \Sigma', \alpha \Rightarrow \Delta'
\end{align*}\]

is equivalent to

\[G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma', \Sigma' \Rightarrow \Delta'\]

Some examples

\[\otimes \alpha^n \rightarrow \otimes \alpha^m \]

\[\{\Delta_{i_1}, \ldots, \Delta_{i_m}, \Gamma \Rightarrow \Pi\}_{i_1,\ldots,i_m \in \{1,\ldots,n\}} \]

\[\Delta_1, \ldots, \Delta_n, \Gamma \Rightarrow \Pi \]

\[(\text{knot}_m^n) \]

\[\neg \alpha \lor \neg \neg \alpha \]

\[\frac{G \mid \Gamma_1, \Gamma_2}{G \mid \Gamma_1 \Rightarrow \Gamma_2 \Rightarrow} \]

\[(\text{lq}) \]

\[\neg (\alpha \otimes \beta) \lor (\alpha \land \beta \rightarrow \alpha \otimes \beta) \]

\[\begin{align*}
G \mid \Gamma_2, \Gamma_1, \Delta_1 \Rightarrow \Pi_1 \\
G \mid \Gamma_1, \Gamma_3, \Delta_1 \Rightarrow \Pi_1 \\
G \mid \Gamma_1, \Gamma_1, \Delta_1 \Rightarrow \Pi_1 \\
G \mid \Gamma_2, \Gamma_3, \Delta_1 \Rightarrow \Pi_1 \\
\end{align*} \]

\[G \mid \Gamma_2, \Gamma_3 \Rightarrow \mid \Gamma_1, \Delta_1 \Rightarrow \Pi_1 \]

\[(\text{wnm}) \]
Uniform cut-elimination

Theorem

The cut rule is admissible in (the hypersequent version of) FL_e extended with any completed rule.
Uniform cut-elimination

Theorem
The cut rule is admissible in (the hypersequent version of) FLc extended with any completed rule.

- **Syntactic argument:**

 elimination procedure

 Cut-ful Proofs \implies Cut-free Proofs

- **Semantic argument:**

 Quasi-DM completion

 CRL \iff ‘Intransitive’ CRL
Expressive powers of (hyper)sequents

Hilbert axioms = equations over CRL
Expressive powers of (hyper)sequents

Sequent *structural* rules: only equations

- that hold in Heyting algebras (IL)
- closed under DM completion

(-, N. Galatos and K. Terui. APAL 2012)
Expressive powers of (hyper)sequents

Sequent *structural* rules: only equations
- that hold in Heyting algebras (IL)
- closed under DM completion

Hypersequent *structural* rules: only equations
- closed under regular completions

(−, N. Galatos and K. Terui. Draft 2012)
An application

- A logic is **standard complete** when it is complete w.r.t. evaluations on \([0, 1]\).

- Algebraically:
 A logic is **standard complete** ⇔ it is complete w.r.t. algebras order-isomorphic to \([0, 1]\).
SC: algebraic approach

Given a logic \mathcal{L}:

1. Identify the algebraic semantics of \mathcal{L} (\mathcal{L}-algebras)
2. Show completeness of \mathcal{L} w.r.t. linear, countable \mathcal{L}-algebras
3. (Rational completeness): Find an embedding of countable \mathcal{L}-algebras into dense countable \mathcal{L}-algebras
4. Dedekind-Mac Neille style completion (embedding into \mathcal{L}-algebras with lattice reduct $[0, 1]$)
SC: algebraic approach

Given a logic \mathcal{L}:

1. Identify the algebraic semantics of \mathcal{L} (\mathcal{L}-algebras)
2. Show completeness of \mathcal{L} w.r.t. linear, countable \mathcal{L}-algebras
3. (Rational completeness): Find an embedding of countable \mathcal{L}-algebras into dense countable \mathcal{L}-algebras
4. Dedekind-Mac Neille style completion (embedding into \mathcal{L}-algebras with lattice reduct $[0, 1]$)

- Step 1, 2, 4: routine
- Step 3: problematic (only ad hoc solutions)
(Metcalfe, Montagna JSL 2007) Given a logic \mathcal{L}:

- Define a suitable hypersequent calculus
- Add the density rule

$\frac{G \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta} \quad (density)$

($= \mathcal{L} + (density)$ is rational complete)

- Show that the addition of density produces no new theorems
- Dedekind-Mac Neille style completion
SC: proof-theoretic approach

(Metcalfe, Montagna JSL 2007) Given a logic \(\mathcal{L} \):

- Define a suitable hypersequent calculus
- Add the density rule

\[
\frac{G \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta} \quad (density)
\]

\((= \mathcal{L} + (density) \text{ is rational complete})\)

- Show that the addition of density produces no new theorems
- Dedekind-Mac Neille style completion

\[
\frac{A \Rightarrow p \mid p \Rightarrow B}{A \Rightarrow B} \quad (density)
\]
Density elimination

- Similar to cut-elimination
- Proof by induction on the length of derivations
Density elimination

- Similar to cut-elimination
- Proof by induction on the length of derivations

(-, Metcalfe TCS 2008)

Given a density-free derivation, ending in

\[G \mid \Sigma, p \Rightarrow \Delta \mid \Gamma \Rightarrow p \]

\[\frac{G \mid \Gamma, \Sigma \Rightarrow \Delta}{(D)} \]

- Asymmetric substitution: \(p \) is replaced
 - With \(\Sigma \Rightarrow \Delta \) when occurring on the right
 - With \(\Gamma \) when occurring on the left
Method for density elimination

\[
G \mid \Sigma, p \Rightarrow \Delta \mid \Gamma \Rightarrow p \\
\frac{G \mid \Gamma, \Sigma \Rightarrow \Delta}{(D)}
\]

becomes:

\[
G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma, \Sigma \Rightarrow \Delta \\
\frac{G \mid \Gamma, \Sigma \Rightarrow \Delta}{(EC)}
\]
A problem

Asymmetric substitutions do not preserve derivability, as:

- A sequent $\Pi, p \Rightarrow p$ is derivable from $p \Rightarrow p +$ (weakening)
- $\Pi, \Gamma, \Sigma \Rightarrow \Delta$ is not derivable
A problem

Asymmetric substitutions do not preserve derivability, as:

- A sequent $\Pi, p \Rightarrow p$ is derivable from $p \Rightarrow p +$ (weakening)
- $\Pi, \Gamma, \Sigma \Rightarrow \Delta$ is not derivable

We can solve the problem with a suitable restructuring of the derivation...
Our Results

(Baldi, - , Spendier: Wollic 2012)

Theorem: Hypersequent calculus for $MTL +$ convergent rules admits density elimination
Our Results

(Baldi, - ,Spendier: Wollic 2012)

- **Theorem:** Hypersequent calculus for $MTL +$ convergent rules admits density elimination

 i.e. rules whose premises do not mix "too much" the conclusion

- **Example:**

 \[
 \begin{align*}
 G \mid \Gamma_2, \Gamma_1, \Delta_1 &\Rightarrow \Pi_1 & G \mid \Gamma_1, \Gamma_3, \Delta_1 &\Rightarrow \Pi_1 \\
 G \mid \Gamma_1, \Gamma_1, \Delta_1 &\Rightarrow \Pi_1 & G \mid \Gamma_2, \Gamma_3, \Delta_1 &\Rightarrow \Pi_1 \\
 \hline
 G \mid \Gamma_2, \Gamma_3 &\Rightarrow \Gamma_1, \Delta_1 &\Rightarrow \Pi_1
 \end{align*}
 \]

 \[\text{(wnm)}\]

 Axiom: $\neg(\alpha \otimes \beta) \lor (\alpha \land \beta \rightarrow \alpha \otimes \beta)$
Our Results

(Baldi, - , Spendier: Wollic 2012)

- Theorem: Hypersequent calculus for $MTL +$ convergent rules admits density elimination

(Baldi, - , Spendier: In Preparation)

- Theorem: Hypersequent calculus for $UL +$ sequent rules admits density elimination.
Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)
Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
SC: Automated Proofs

Let \mathcal{L} be a *suitable* axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
- check whether the calculus satisfies the condition for density elimination (*rational completeness*)
Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
- check whether the calculus satisfies the condition for density elimination (rational completeness)
- standard completeness follows by (-, Galatos, Terui Algebra Universalis 2011)
Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
- check whether the calculus satisfies the condition for density elimination ($\text{rational completeness}$)
- standard completeness follows by (-, Galatos, Terui Algebra Universalis 2011)

http://www.logic.at/people/lara/axiomcalc.html

AxiomCalc Web Interface

Use AxiomCalc

Axiom:

$(a \rightarrow b) \lor (b \rightarrow a)$

☑ Check for Standard Completeness Submit
Example

Known Logics

\[MTL + \neg(\alpha \otimes \beta) \lor ((\alpha \land \beta) \rightarrow (\alpha \otimes \beta)) \]

\[MTL + \neg\alpha \lor \neg\neg\alpha \]

\[MTL + \alpha^{n-1} \rightarrow \alpha^n \]

\[UL + \alpha^{n-1} \rightarrow \alpha^n \]

\[\ldots \]

New Fuzzy Logics
Example

Known Logics

\[MTL + \neg (\alpha \otimes \beta) \lor ((\alpha \land \beta) \rightarrow (\alpha \otimes \beta)) \]

\[MTL + \neg \alpha \lor \neg \neg \alpha \]

\[MTL + \alpha^{n-1} \rightarrow \alpha^n \]

\[UL + \alpha^{n-1} \rightarrow \alpha^n \]

...

New Fuzzy Logics

\[MTL + \neg (\alpha \otimes \beta)^n \lor ((\alpha \land \beta)^{n-1} \rightarrow (\alpha \otimes \beta)^n), \text{ for all } n > 1 \]

\[UL + \neg \alpha \lor \neg \neg \alpha \]

\[UL + \alpha^m \rightarrow \alpha^n \]

...
Open problems

- **Uniform** treatment of axioms beyond P_3
- **Systematic** introduction of analytic calculi

 - first-order logic
 - modal and temporal logic
 - logics with different connectives

- More on **standard completeness**

- Proving useful **properties** for classes

 - logics in a uniform and systematic way

 - ... many more ...

"Non-classical Proofs: Theory, Applications and Tools", research project 2012-2017
How far can we go?
How far can we go?

Analytic Calculi

- sequent, hypersequent calculi...
- display calculi
- nested sequents, deep inference, calculus of structures
- labelled systems
-
How far can we go?

Analytic Calculi
- sequent, hypersequent calculi...
- display calculi
- nested sequents, deep inference, calculus of structures
- labelled systems
-

(Strongly) Analytic calculus = weaker for of Herbrand theorem: If $\exists x B(x)$ is provable, where B is quantifier-free, so is $\bigvee_{i=1}^{n} B(t_i)$, for some n.

A negative result

Let \mathcal{L} be a first-order logic satisfying:

1. $\vdash_{\mathcal{L}} A \rightarrow A$

2. $\vdash_{\mathcal{L}} \forall x A(x) \rightarrow B \rightarrow \exists x (A(x) \rightarrow B)$

3. $\vdash_{\mathcal{L}} (B \rightarrow \forall x A(x)) \rightarrow \forall x (B \rightarrow A(x))$

4. $\vdash_{\mathcal{L}} \forall x A(x) \rightarrow A(t)$, for any term t

5. there is an atomic formula A in \mathcal{L} such that for no n

$$\vdash_{\mathcal{L}} \bigvee_{i=1}^{n} A(x_i) \rightarrow A(x_{i+1})$$

then \mathcal{L} does not admit any strongly analytic calculus.

(Baaz, -, Work in progress)
Corollary

The following logics do not admit any strongly analytic calculus:

- **witnessed logics** \((\forall = \text{min} \text{ and } \exists = \text{max})\), e.g. Gödel logic with truth values in \([0, 1]\), \(\wedge = \text{min}, \lor = \text{max}\),
 \[v(A) \rightarrow v(B) = 1 \text{ iff } v(A) \leq v(B), v(B) \text{ otherwise.} \forall = \text{min} \text{ and } \exists = \text{max}.\]

- (fragments of) **first-order Lukasiewicz logic**

- **Gödel logic** with set of truth values
 \[\{1 - 1/n : n \geq 1\} \cup \{1\}\]

- **first-order nilpotent minimum logic NM** with set of truth values
 \[\{1/n : n \geq 1\} \cup \{1 - 1/n : n \geq 1\}\]

-