Proof theory for many valued logics - some applications

Agata Ciabattoni

Vienna University of Technology agata@logic.at

The beginning of the story

(Cost Action "Many-valued Logics for CS Applications")

The beginning of the story

(Cost Action "Many-valued Logics for CS Applications")

This talk

Many-valued logics have semantic origins. But as *logics* they also have something to do with proofs.

This talk

Many-valued logics have semantic origins. But as *logics* they also have something to do with proofs.

My aim is to

- introduce some recent developments in proof theory for non-classical logics (especially many-valued logics)
- use proof theory for uniform (and automated) proofs of standard completeness

Analytic Calculi

"Praedicatum Inest Subjecto"

Calculi in which proof search proceeds by step-wise decomposition of the formulas to be proved

Analytic Calculi

"Praedicatum Inest Subjecto"

Calculi in which proof search proceeds by step-wise decomposition of the formulas to be proved

Sequent, hypersequent calculi, labelled calculi, manyplaced sequents, sequents-of-relations, display logic, CoS

Introducing such calculi

Semantic-based approach

(Baaz, Fermüller, Montagna, ...)

Syntactic approach

(Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)

Introducing such calculi

- Semantic-based approach
- E.g. decidability, complexity of validity ... (Baaz, Fermüller, Montagna, ...)
 - Syntactic approach

(Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)

Introducing such calculi

Semantic-based approach

E.g. decidability, complexity of validity ... (Baaz, Fermüller, Montagna, ...)

Syntactic approach : uniform and systematic

E.g.

- Herbrand theorem
- order theoretic completions
- standard completeness

(Avron, Baaz, Baldi, Galatos, Terui, Metcalfe, Spendier, ...)

Finite-valued logics: (Baaz, Zach...)

 $S_1 \mid \ldots \mid S_n \quad (\mathsf{Ex.} A \mid B \mid C)$

MULTLOG

Finite-valued logics: (Baaz, Zach...)

 $S_1 \mid \ldots \mid S_n \quad (\mathsf{Ex.} A \mid B \mid C)$

Projective logics: (Baaz and Fermüller)

$$\Box^{M}(x_{1},...,x_{n}) = \begin{cases} t_{1} & \text{if } \land \lor R_{j_{k}} \\ \vdots & \vdots \\ t_{m} & \text{if } \land \lor R_{p_{q}} \end{cases}$$

 $R_{i_1}(F_1^1, \dots, F_{r_1}^1) \mid \dots \mid R_{i_k}(F_1^k, \dots, F_{r_k}^k) \qquad (\mathsf{Ex.} A \le B \mid A < C)$

Finite-valued logics: (Baaz, Zach...)

$$S_1 \mid \ldots \mid S_n \qquad (\mathsf{Ex.} A \mid B \mid C)$$

Projective logics: (Baaz and Fermüller)

$$\Box^{M}(x_{1},...,x_{n}) = \begin{cases} t_{1} & \text{if } \land \lor R_{j_{k}} \\ \vdots & \vdots \\ t_{m} & \text{if } \land \lor R_{p_{q}} \end{cases}$$

 $R_{i_1}(F_1^1, \dots, F_{r_1}^1) \mid \dots \mid R_{i_k}(F_1^k, \dots, F_{r_k}^k) \qquad (\mathsf{Ex.} A \le B \mid A < C)$

Semi-Projective logics: (- and Montagna, new) Ex.: Nilpotent Minimum logic, n-contractive BL...

Syntactic Approach

From Hilbert calculi to analytic calculi.

Hilbert calculi consist of:

- many axioms
- few rules (MP, generalization,...)
- Pro : easy to define logics Contra : not suitable for
 - finding proofs
 - analyzing proofs
 - establishing properties of logics

Sequent Calculi

Sequents

 $A_1, \ldots, A_n \Rightarrow B$

Intuitively a sequent is understood as "the conjunction of A_1, \ldots, A_n implies B.

Sequent Calculi

Sequents

 $A_1, \ldots, A_n \Rightarrow B$

Intuitively a sequent is understood as "the conjunction of A_1, \ldots, A_n implies B. Axioms

E.g., $A \Rightarrow A$ Rules

$$\frac{\Gamma \Rightarrow A \quad A, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Pi} \ Cut$$

The system FLe

FLe = commutative Lambek calculus (= intuitionistic Linear Logic or Monoidal Logic)

The system FLe

$$\begin{array}{ccc} \frac{A,B,\Gamma\Rightarrow\Pi}{A\otimes B,\Gamma\Rightarrow\Pi}\otimes l & \frac{\Gamma\Rightarrow A}{\Gamma,\Delta\Rightarrow A\otimes B}\otimes r\\ \\ \frac{\Gamma\Rightarrow A}{R\otimes B,\Gamma\Rightarrow\Pi}\otimes l & \frac{A,\Gamma\Rightarrow B}{\Gamma\Rightarrow A\otimes B}\rightarrow r\\ \\ \frac{A,\Gamma\Rightarrow\Pi}{\Gamma,A\rightarrow B,\Delta\Rightarrow\Pi}\rightarrow l & \frac{A,\Gamma\Rightarrow B}{\Gamma\Rightarrow A\rightarrow B}\rightarrow r\\ \\ \frac{A,\Gamma\Rightarrow\Pi}{A\vee B,\Gamma\Rightarrow\Pi}\otimes l & \frac{\Gamma\Rightarrow A_i}{\Gamma\Rightarrow A_1\vee A_2}\vee r & \overline{\mathbf{0}\Rightarrow}\mathbf{0}l\\ \\ \\ \frac{A_i,\Gamma\Rightarrow\Pi}{A_1\&A_2,\Gamma\Rightarrow\Pi}\& l & \frac{\Gamma\Rightarrow A}{\Gamma\Rightarrow A\&B}\& r & \overline{\Gamma\Rightarrow\top} \top r\\ \\ \\ \frac{\Gamma\Rightarrow}{\Gamma\Rightarrow\mathbf{0}}\mathbf{0}r & \overline{\Rightarrow\mathbf{1}}\mathbf{1}r & \underline{\perp}, \Gamma\Rightarrow\Pi \perp l & \frac{\Gamma\Rightarrow\Pi}{\mathbf{1},\Gamma\Rightarrow\Pi}\mathbf{1}l \end{array}$$

Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

$$\mathbf{P} = \langle P, \&, \lor, \otimes, \rightarrow, \top, \mathbf{0}, \mathbf{1}, \bot \rangle$$

- 1. $\langle P, \&, \lor, \top, \mathbf{0} \rangle$ is a lattice with \top greatest and \bot least
- 2. $\langle P, \otimes, \mathbf{1} \rangle$ is a commutative monoid.
- 3. For any $x, y, z \in P$, $x \otimes y \leq z \iff y \leq x \rightarrow z$
- **4.** 0 ∈ *P*.

Many-valued logics= FLe + axioms

Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

$$\mathbf{P} = \langle P, \&, \lor, \otimes, \rightarrow, \top, \mathbf{0}, \mathbf{1}, \bot \rangle$$

- 1. $\langle P, \&, \lor, \top, \mathbf{0} \rangle$ is a lattice with \top greatest and \bot least
- 2. $\langle P, \otimes, \mathbf{1} \rangle$ is a commutative monoid.
- 3. For any $x, y, z \in P$, $x \otimes y \leq z \iff y \leq x \rightarrow z$
- **4.** 0 ∈ *P*.

Many-valued logics= FLe + axioms

Cut elimination is not preserved when axioms are added

Commutative Residuated Lattices

A (bounded pointed) commutative residuated lattice is

$$\mathbf{P} = \langle P, \&, \lor, \otimes, \rightarrow, \top, \mathbf{0}, \mathbf{1}, \bot \rangle$$

- 1. $\langle P, \&, \lor, \top, \mathbf{0} \rangle$ is a lattice with \top greatest and \bot least
- 2. $\langle P, \otimes, \mathbf{1} \rangle$ is a commutative monoid.
- 3. For any $x, y, z \in P$, $x \otimes y \leq z \iff y \leq x \rightarrow z$
- **4. 0** ∈ *P*.

Many-valued logics= FLe + axioms

- Cut elimination is not preserved when axioms are added
- (Idea) Transform axioms into 'good' structural rules

On the structural rules

Example

- **•** Contraction: $\alpha \rightarrow \alpha \otimes \alpha$
- Weakening I: $\alpha \rightarrow 1$
- Weakening r: $0 \rightarrow \alpha$

On the structural rules

Example

- **•** Contraction: $\alpha \to \alpha \otimes \alpha$
- Weakening I: $\alpha \rightarrow 1$
- Weakening r: $0 \rightarrow \alpha$

$$\frac{A, A, \Gamma \Rightarrow \Pi}{A, \Gamma \Rightarrow \Pi} (c)$$
$$\frac{\Gamma \Rightarrow \Pi}{\Gamma, A \Rightarrow \Pi} (w, l)$$
$$\frac{\Gamma \Rightarrow}{\Gamma \Rightarrow A} (w, r)$$

On the structural rules

Example

- **•** Weakening I: $\alpha \rightarrow 1$
- **•** Weakening r: $0 \rightarrow \alpha$

$$\frac{A, A, \Gamma \Rightarrow \Pi}{A, \Gamma \Rightarrow \Pi} (c)$$
$$\frac{\Gamma \Rightarrow \Pi}{\Gamma, A \Rightarrow \Pi} (w, l)$$
$$\frac{\Gamma \Rightarrow}{\Gamma \Rightarrow A} (w, r)$$

Equivalence between rules and axioms

$$-_{FLe+(axiom)} = \vdash_{FLe+(rule)}$$

The sets \mathcal{P}_n , \mathcal{N}_n of formulas defined by:

 $\mathcal{P}_0, \, \mathcal{N}_0 := \text{Atomic formulas}$

 $\mathcal{P}_{n+1} := \mathcal{N}_n \mid \mathcal{P}_{n+1} \otimes \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \vee \mathcal{P}_{n+1} \mid 1 \mid \bot$

 $\mathcal{N}_{n+1} := \mathcal{P}_n \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid 0 \mid \top$

 ${\mathcal P} \text{ and } {\mathcal N}$

- Positive connectives 1, ⊥, ⊗, ∨ have invertible left rules:
- Negative connectives T, 0, ∧, → have invertible right rules:

The sets $\mathcal{P}_n, \mathcal{N}_n$ of formulas defined by:

 $\mathcal{P}_0, \, \mathcal{N}_0 := \text{Atomic formulas}$

 $\mathcal{P}_{n+1} := \mathcal{N}_n \mid \mathcal{P}_{n+1} \otimes \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \vee \mathcal{P}_{n+1} \mid 1 \mid \bot$ $\mathcal{N}_{n+1} := \mathcal{P}_n \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1} \mid \mathcal{N}_{n+1} \wedge \mathcal{N}_{n+1} \mid 0 \mid \top$

 ${\mathcal P} \text{ and } {\mathcal N}$

- Positive connectives 1, ⊥, ⊗, ∨ have invertible left rules:
- Negative connectives $\top, 0, \land, \rightarrow$ have invertible right rules:

Examples

Class	Axiom	Name
\mathcal{N}_2	$lpha ightarrow {f 1}$, $ot ightarrow lpha$	weakening
	$lpha ightarrow lpha \otimes lpha$	contraction
	$\alpha\otimes\alpha\to\alpha$	expansion
	$\otimes \alpha^n \to \otimes \alpha^m$	knotted axioms ($n, m \ge 0$)
	$\neg(\alpha \& \neg \alpha)$	weak contraction
\mathcal{P}_2	$\alpha \vee \neg \alpha$	excluded middle
	$(\alpha ightarrow \beta) \lor (\beta ightarrow lpha)$	prelinearity
\mathcal{P}_3	$\neg \alpha \lor \neg \neg \alpha$	weak excluded middle
	$ eg(lpha\otimeseta)\lor(lpha\wedgeeta olpha\otimeseta)$	(wnm)
\mathcal{N}_3	$((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha)$	Lukasiewicz axiom

Algorithm to transform:

 \mathcal{N}_2

 \mathcal{N}_1

 \mathcal{P}_{2}

 \mathcal{P}_1

- axioms up to the class N₂ into "good" structural rules in sequent calculus
- axioms up to the class \mathcal{P}_3 into "good" structural rules in hypersequent calculus

(-, N. Galatos and K. Terui. LICS 2008) and

(-, L. Strassburger and K. Terui. CSL 2009)

Algorithm to transform:

 \mathcal{P}_2

 \mathcal{P}_1

 \mathcal{N}_1

axioms up to the class N₂ into "good" structural rules in sequent calculus

• axioms up to the class \mathcal{P}_3 into "good" structural rules in hypersequent calculus

(-, N. Galatos and K. Terui. LICS 2008) and

(-, L. Strassburger and K. Terui. CSL 2009)

Prolog program: AxiomCalc

http://www.logic.at/people/lara/axiomcalc.html

It is obtained embedding sequents into hypersequents

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n$

where for all $i = 1, ..., n, \Gamma_i \Rightarrow \Pi_i$ is an ordinary sequent.

$$\frac{\Gamma \Rightarrow A \quad A, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Pi} Cut \quad \frac{A \Rightarrow A}{A \Rightarrow A} Identity$$
$$\frac{\Gamma \Rightarrow A \quad B, \Delta \Rightarrow \Pi}{\Gamma, A \to B, \Delta \Rightarrow \Pi} \rightarrow l \quad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \to B} \rightarrow r$$

$$\begin{array}{ll} \displaystyle \frac{G|\Gamma \Rightarrow A & G|A, \Delta \Rightarrow \Pi}{G|\Gamma, \Delta \Rightarrow \Pi} \ Cut & \displaystyle \frac{G|A \Rightarrow A}{G|A \Rightarrow A} \ Identity \\ \\ \displaystyle \frac{G|\Gamma \Rightarrow A & G|B, \Delta \Rightarrow \Pi}{G|\Gamma, A \to B, \Delta \Rightarrow \Pi} \to l & \displaystyle \frac{G|A, \Gamma \Rightarrow B}{G|\Gamma \Rightarrow A \to B} \to r \end{array}$$

$$\begin{split} \frac{G|\Gamma \Rightarrow A \quad G|A, \Delta \Rightarrow \Pi}{G|\Gamma, \Delta \Rightarrow \Pi} & Cut \quad \frac{G|A \Rightarrow A}{G|A \Rightarrow A} & Identity \\ \frac{G|\Gamma \Rightarrow A \quad G|B, \Delta \Rightarrow \Pi}{G|\Gamma, A \to B, \Delta \Rightarrow \Pi} \to l \quad \frac{G|A, \Gamma \Rightarrow B}{G|\Gamma \Rightarrow A \to B} \to r \end{split}$$

and adding suitable rules to manipulate the additional layer of structure.

$$\frac{G}{G \mid \Gamma \Rightarrow A} \text{ (ew)} \qquad \qquad \frac{G \mid \Gamma \Rightarrow A \mid \Gamma \Rightarrow A}{G \mid \Gamma \Rightarrow A} \text{ (ec)}$$

From axioms to analytic rules

From axioms to analytic rules

Step 1

Transformation of any \mathcal{N}_2 (\mathcal{P}_3) axiom into an equivalent (set of) structural rule(s).

Step 2

Analytic *completion* of the generated rules

From axioms to analytic rules

Step 1

Transformation of any \mathcal{N}_2 (\mathcal{P}_3) axiom into an equivalent (set of) structural rule(s).

Step 2

Analytic completion of the generated rules

How? Using

- the invertibility of the rules $(\lor, l), (\&, r), (\otimes, l), (\rightarrow, r)$.
- the Lemma: Any axiom $A \Rightarrow B$ is equivalent to

$$\frac{\alpha \Rightarrow A}{\alpha \Rightarrow B} \quad \text{and also to} \quad \frac{B \Rightarrow \beta}{A \Rightarrow \beta}$$

for α, β fresh variables.

 $(\alpha \to \beta) \lor (\beta \to \alpha)$

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

is equivalent to

$$G\,|\,\Rightarrow \alpha \to \beta\,|\,\Rightarrow \beta \to \alpha$$

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

and to

$$\overline{G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha}$$

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

$$\overline{G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha}$$

and by the Lemma: Any sequent $\alpha' \Rightarrow \beta'$ is equivalent to

$$\frac{\Gamma \Rightarrow \alpha'}{\Gamma \Rightarrow \beta'} \quad \text{and also to} \quad \frac{\beta', \Gamma \Rightarrow \Delta}{\alpha', \Gamma \Rightarrow \Delta}$$

(for Γ, Δ fresh meta-variables)

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

$$\overline{G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha}$$

by the Lemma: Any sequent $\alpha' \Rightarrow \beta'$ is equivalent to

$$\frac{\Gamma \Rightarrow \alpha'}{\Gamma \Rightarrow \beta'} \quad \text{and also to} \quad \frac{\beta', \Gamma \Rightarrow \Delta}{\alpha', \Gamma \Rightarrow \Delta}$$

(for Γ, Δ fresh meta-variables) is equivalent to

$$\frac{G \mid \Gamma \Rightarrow \alpha}{G \mid \Gamma \Rightarrow \beta \mid \beta \Rightarrow \alpha}$$

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

$$\overline{G \mid \alpha \Rightarrow \beta \mid \beta \Rightarrow \alpha}$$

is equivalent to

$$\frac{G \mid \Gamma \Rightarrow \alpha \quad G \mid \Gamma' \Rightarrow \beta \quad G \mid \Sigma, \beta \Rightarrow \Delta \quad G \mid \Sigma', \alpha \Rightarrow \Delta'}{G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma', \Sigma' \Rightarrow \Delta'}$$

$$(\alpha \to \beta) \lor (\beta \to \alpha)$$

$$\overline{G \,|\, \alpha \Rightarrow \beta \,|\, \beta \Rightarrow \alpha}$$

$$\frac{G \mid \Gamma \Rightarrow \alpha \quad G \mid \Gamma' \Rightarrow \beta \quad G \mid \Sigma, \beta \Rightarrow \Delta \quad G \mid \Sigma', \alpha \Rightarrow \Delta'}{G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma', \Sigma' \Rightarrow \Delta'}$$

is equivalent to

$$\frac{G \mid \Gamma, \Sigma' \Rightarrow \Delta' \quad G \mid \Gamma', \Sigma \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma', \Sigma' \Rightarrow \Delta'} \ (com)$$

(Avron, Annals of Math and art. Intell. 1991)

Some examples

$$\begin{split} & \otimes \alpha^{n} \to \otimes \alpha^{m} \\ & \qquad \frac{\{\Delta_{i_{1}}, \dots, \Delta_{i_{m}}, \Gamma \Rightarrow \Pi\}_{i_{1},\dots,i_{m} \in \{1,\dots,n\}}}{\Delta_{1},\dots,\Delta_{n}, \Gamma \Rightarrow \Pi} \ (knot_{m}^{n}) \\ & \neg \alpha \lor \neg \neg \alpha \\ & \qquad \frac{G \mid \Gamma_{1}, \Gamma_{2}}{G \mid \Gamma_{1} \Rightarrow \mid \Gamma_{2} \Rightarrow} \ (lq) \\ & \neg (\alpha \otimes \beta) \lor (\alpha \land \beta \to \alpha \otimes \beta) \\ & \qquad \frac{G \mid \Gamma_{2}, \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1} \quad G \mid \Gamma_{1}, \Gamma_{3}, \Delta_{1} \Rightarrow \Pi_{1}}{G \mid \Gamma_{1}, \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1} \quad G \mid \Gamma_{2}, \Gamma_{3}, \Delta_{1} \Rightarrow \Pi_{1}} \ (wnm) \end{split}$$

Uniform cut-elimination

Theorem

The cut rule is admissible in (the hypersequent version of) **FLe** extended with any completed rule.

Uniform cut-elimination

Theorem

The cut rule is admissible in (the hypersequent version of) **FLe** extended with any completed rule.

Syntactic argument:

elimination procedure

Cut-ful Proofs

 \implies

Cut-free Proofs

Semantic argument:

Quasi-DM completion

CRL ← 'Intransitive' CRL

Expressive powers of (hyper)sequents

Expressive powers of (hyper)sequents

Sequent structural rules: only equations

- that hold in Heyting algebras (IL)
- closed under DM completion
- (-, N. Galatos and K. Terui. APAL 2012)

Expressive powers of (hyper)sequents

 \mathcal{N}_2 \mathcal{P}_{2} \mathcal{N}_1 \mathcal{P}_1 \mathcal{N}_0

Sequent structural rules: only equations

- that hold in Heyting algebras (IL)
- closed under DM completion

Hypersequent structural rules: only equations

- closed under regular completions
- (-, N. Galatos and K. Terui. Draft 2012)

An application

- A logic is standard complete when it is complete w.r.t. evaluations on [0, 1]
- Algebraically:

A logic is standard complete \Leftrightarrow it is complete w.r.t algebras order-isomorphic to [0, 1]

SC: algebraic approach

Given a logic \mathcal{L} :

- 1. Identify the algebraic semantics of \mathcal{L} (\mathcal{L} -algebras)
- 2. Show completeness of \mathcal{L} w.r.t. linear, countable \mathcal{L} -algebras
- 3. (Rational completeness): Find an embedding of countable \mathcal{L} -algebras into dense countable \mathcal{L} -algebras
- 4. Dedekind-Mac Neille style completion (embedding into \mathcal{L} -algebras with lattice reduct [0, 1])

SC: algebraic approach

Given a logic \mathcal{L} :

- 1. Identify the algebraic semantics of \mathcal{L} (\mathcal{L} -algebras)
- 2. Show completeness of \mathcal{L} w.r.t. linear, countable \mathcal{L} -algebras
- 3. (Rational completeness): Find an embedding of countable \mathcal{L} -algebras into dense countable \mathcal{L} -algebras
- 4. Dedekind-Mac Neille style completion (embedding into \mathcal{L} -algebras with lattice reduct [0, 1])
- **Step** 1, 2, 4: routine
- Step 3: problematic (only ad hoc solutions)

SC: proof-theoretic approach

(Metcalfe, Montagna JSL 2007) Given a logic \mathcal{L} :

- Define a suitable hypersequent calculus
- Add the density rule

$$\frac{G \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta} \ (density)$$

(= \mathcal{L} + (density) is rational complete)

- Show that the addition of density produces no new theorems
- Dedekind-Mac Neille style completion

SC: proof-theoretic approach

(Metcalfe, Montagna JSL 2007) Given a logic \mathcal{L} :

- Define a suitable hypersequent calculus
- Add the density rule

$$\frac{G \mid \Gamma \Rightarrow p \mid \Sigma, p \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta} \ (density)$$

(= \mathcal{L} + (density) is rational complete)

- Show that the addition of density produces no new theorems
- Dedekind-Mac Neille style completion

$$\frac{A \Rightarrow p \mid p \Rightarrow B}{A \Rightarrow B} \ (density)$$

Density elimination

- Similar to cut-elimination
- Proof by induction on the length of derivations

Density elimination

- Similar to cut-elimination
- Proof by induction on the length of derivations
- (-, Metcalfe TCS 2008)

Given a density-free derivation, ending in

$$\frac{G \mid \Sigma, p \Rightarrow \Delta \mid \Gamma \Rightarrow p}{G \mid \Gamma, \Sigma \Rightarrow \Delta} (D)$$

Asymmetric substitution: p is replaced

- With $\Sigma \Rightarrow \Delta$ when occuring on the right
- With Γ when occuring on the left

Method for density elimination

becomes:

$$\frac{G \mid \Gamma, \Sigma \Rightarrow \Delta \mid \Gamma, \Sigma \Rightarrow \Delta}{G \mid \Gamma, \Sigma \Rightarrow \Delta}_{(\text{EC})}$$

A problem

Asymmetric substitutions do not preserve derivability, as :

- A sequent $\Pi, p \Rightarrow p$ is derivable from $p \Rightarrow p$ + *(weakening)*
- $\Pi, \Gamma, \Sigma \Rightarrow \Delta$ is not derivable

A problem

Asymmetric substitutions do not preserve derivability, as :

- A sequent $\Pi, p \Rightarrow p$ is derivable from $p \Rightarrow p$ + *(weakening)*
- $\Pi, \Gamma, \Sigma \Rightarrow \Delta$ is not derivable
- We can solve the problem with a suitable restructuring of the derivation...

Our Results

(Baldi, - ,Spendier: Wollic 2012)

Theorem: Hypersequent calculus for MTL + convergent rules admits density elimination

Our Results

(Baldi, - ,Spendier: Wollic 2012)

Theorem: Hypersequent calculus for MTL + convergent rules admits density elimination

i.e. rules whose premises do not mix "too much" the conclusion

• Example :

$$\begin{array}{l}
G \mid \Gamma_{2}, \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1} \quad G \mid \Gamma_{1}, \Gamma_{3}, \Delta_{1} \Rightarrow \Pi_{1} \\
G \mid \Gamma_{1}, \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1} \quad G \mid \Gamma_{2}, \Gamma_{3}, \Delta_{1} \Rightarrow \Pi_{1} \\
G \mid \Gamma_{2}, \Gamma_{3} \Rightarrow \mid \Gamma_{1}, \Delta_{1} \Rightarrow \Pi_{1}
\end{array} (wnm)$$
Axiom: $\neg(\alpha \otimes \beta) \lor (\alpha \land \beta \rightarrow \alpha \otimes \beta)$

Our Results

(Baldi, - ,Spendier: Wollic 2012)

Theorem: Hypersequent calculus for MTL + convergent rules admits density elimination

(Baldi, - ,Spendier: In Preparation)

Theorem: Hypersequent calculus for UL + sequent rules admits density elimination.

Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

 \checkmark define a hypersequent calculus for $\mathcal L$

Let \mathcal{L} be a *suitable* axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
- check whether the calculus satisfies the condition for density elimination (rational completeness)

Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
- check whether the calculus satisfies the condition for density elimination (rational completeness)
- standard completeness follows by (-, Galatos, Terui Algebra Universalis 2011)

Let \mathcal{L} be a suitable axiomatic extension of MTL (UL)

- define a hypersequent calculus for \mathcal{L}
- check whether the calculus satisfies the condition for density elimination (rational completeness)
- standard completeness follows by (-, Galatos, Terui Algebra Universalis 2011)

http://www.logic.at/people/lara/axiomcalc.html

AxiomCalc Web Interface

Use AxiomCalc

Axiom:

(a -> b) v (b -> a)

Check for Standard Completeness Submit

Example

Known Logics

- $MTL + \neg(\alpha \otimes \beta) \lor ((\alpha \land \beta) \to (\alpha \otimes \beta))$
- $MTL + \neg \alpha \vee \neg \neg \alpha$
- $MTL + \alpha^{n-1} \to \alpha^n$
- $UL + \alpha^{n-1} \to \alpha^n$
- **_**
- **New Fuzzy Logics**

Example

Known Logics

- $MTL + \neg(\alpha \otimes \beta) \lor ((\alpha \land \beta) \to (\alpha \otimes \beta))$
- $MTL + \neg \alpha \vee \neg \neg \alpha$
- $MTL + \alpha^{n-1} \to \alpha^n$
- $UL + \alpha^{n-1} \to \alpha^n$

_

New Fuzzy Logics

- $MTL + \neg (\alpha \otimes \beta)^n \lor ((\alpha \land \beta)^{n-1} \to (\alpha \otimes \beta)^n)$, for all n > 1
- $UL + \neg \alpha \vee \neg \neg \alpha$
- $UL + \alpha^m \to \alpha^n$
Open problems

- Uniform treatment of axioms behond \mathcal{P}_3
- Systematic introduction of analytic calculi
 - first-order logic
 - modal and temporal logic
 - Iogics with different connectives
 - more on standard completeness
 - Proving useful properties for classes
 logics in a uniform and systematic way
 - ... many more ...

Non-classical Proofs: Theory, Applications and Tools", research project 2012-2017

How far can we go?

How far can we go?

Analytic Calculi

- sequent, hypersequent calculi...
- display calculi
- nested sequents, deep inference, calculus of structures
- Iabelled systems

How far can we go?

Analytic Calculi

- sequent, hypersequent calculi...
- display calculi
- nested sequents, deep inference, calculus of structures
- Iabelled systems

(Strongly) Analytic calculus = weaker for of Herbrand theorem: If $\exists x B(x)$ is provable, where *B* is quantifier-free, so is $\bigvee_{i=1}^{n} B(t_i)$, for some *n*.

A negative result

Let \mathcal{L} be a first-order logic satisfying:

1.
$$\vdash_{\mathcal{L}} A \to A$$

- **2.** $\vdash_{\mathcal{L}} \forall x A(x) \to B \to \exists x (A(x) \to B)$
- **3.** $\vdash_{\mathcal{L}}(B \to \forall x A(x)) \to \forall x (B \to A(x))$
- **4.** $\vdash_{\mathcal{L}} \forall x A(x) \rightarrow A(t)$, for any term t
- 5. there is an atomic formula A in \mathcal{L} such that for no n

$$\vdash_{\mathcal{L}} \bigvee_{i=1}^{n} A(x_i) \to A(x_{i+1})$$

then \mathcal{L} does not admit any strongly analytic calculus. (Baaz, -, Work in progress)

Corollary

The following logics do not admit any strongly analytic calculus:

- witnessed logics (∀= min and ∃= max), e.g. Gödel logic with truth values in [0,1], ∧= min, ∨= max, v(A) → v(B) = 1 iff v(A) ≤ v(B), v(B) otherwise. ∀= min and ∃= max.
- (fragments of) first-order Lukasiewicz logic
- Gödel logic with set of truth values $\{1-1/n : n \ge 1\} \cup \{1\}$
- first-order nilpotent minimum logic NM with set of truth values $\{1/n : n \ge 1\} \cup \{1 - 1/n : n \ge 1\}$