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MTL Logic

The formulas of MTL are constructed by starting from the set of connectives

{&, A, —, L}, as follows
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Axiomatization of MTL

MTL is axiomatized as follows
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(=)= (¥ —=x) = (¢ = X))
(p&1p) — ¢

(p&tp) = (V&)

(pAY) =@

(e AY) = (W Ap)

(p&(p =) = (VA @)

(o= (¥ = x)) = ((v&¥) = x)

((p&) = x) = (¢ = (¥ = X))
(p=¥)=x) = (V=) = x) = x)
1 =0
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Axiomatization of MTL

MTL is axiomatized as follows

(A1) (=)= (¥ —=x) = (¢ = X))

(A2) (p&1p) — ¢

(A3) (p&tp) = (V&)

(Ad) (pAY) =@

(A5) (e AY) = (W Ap)

(A6) (p&(p =) = (VA @)

(A7a) (o= (¥ = x)) = ((v&¥) = x)

(A7b) ((p&) = x) = (¢ = (¥ = X))

(A8) (p=¥)=x) = (V=) = x) = x)
(A9) Lo

As an inference rule, we have modus ponens
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As an inference rule, we have modus ponens

© o=
(MP) e

MTL can be equivalently axiomatized as FLew plus (¢ — ) V (¥ — ¢).
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MTL-algebras

An MTL-algebra is an FL.-algebra satisfying prelinearity; that is, an algebraic
structure of the form (A, M, L, x, =, 0, 1) such that

@ (A ,1,0,1) is a bounded lattice
@ (A x,1) is a commutative monoid
@ (x,=) form a residuated pair, that is

zxx<y iff z<x=y (xX=y=max{z: zxx < y})
@ the following equation holds

(prelinearity) x=y)uy=x)=1.
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Single-chain completeness properties

Definition ([Mon11])
Let L be an axiomatic extension of MTL. Then

@ L enjoys the single chain completeness (SCC) if there is an L-chain A that is
complete w.r.t. it. That is, for every ¢

Ly iff AE .

@ L enjoys the strong single chain completeness (SSCCQ) if there is an L-chain A that
is strongly complete w.r.t. it. That is for every ¢, I’

FELe iff T EA @

Clearly the SSCC implies the SCC, but the vice-versa is an open problem.
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Disjunction property and Halldén completeness

Definition

We say that a logic L has the disjunction property (DP) if . ¢ V2 implies that -, ¢ or
L.

For example the intuitionistic logic enjoys this property: however it fails for many
superintuitionistic logics ([CZ91]) and for classical logic (for this last one x vV —x is
a counterexample).

For the case of axiomatic extensions of MTL, we obtain a negative result

Let L be a (consistent) axiomatic extension of MTL: then DP fails for L.

There is a property weaker than DP: the Halldén completeness.

Definition

A logic L has the Halldén completeness (HC) if for every formulas ¢, ¢ with no
variables in common, -, ¢ V 1 implies that -, ¢ or -, .
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Algebraic characterization of HC

Definition

An FLey-algebra is said to be well-connected whenever for every pair of elements x, y,
ifxUy=1,thenx=1ory=1.

Theorem ([GJKOO7, theorem 5.28])

Let L be a substructural logic over FLew. The following are equivalent:
@ L has the Halldén completeness.
© There is a well-connected FLy-algebra A such that L is complete w.r.t. it.

Proposition

An MTL-algebra is well-connected if and only if it is a chain.
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Halldén completeness and single chain completeness

Let L be an axiomatic extension of MTL. The following are equivalent
@ L has the Halldén completeness.
@ There is an MTL-chain A such that L is complete w.r.t. it.

For every axiomatic extension of MTL, the HC is equivalent to the SCC.
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Deductive Maksimova variable separation property

Definition

A substructural logic L has the deductive Maksimova’s variable separation property
(DMVP), if for all sets of formulas I' U {¢} and X U {+} that have no variables in
common, ', X -, ¢ Vo impliesT ;. o or X .

Theorem ([Kih06, theorem 6.9])

The following conditions are equivalent for every substructural logic L over Fley:
@ L has the DMVP.

@ All pairs of subdirectly irreducible L-algebras are jointly embeddable into a
well-connected L-algebra.

@ All pairs of subdirectly irreducible L-algebras are jointly embeddable into a
subdirectly irreducible L-algebra.

Problem

Are there some examples of extensions of MTL enjoying the HC but not the DMVP ?
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DMVP and SSCC

Definition

Let L be an axiomatic extension of MTL. We say that its corresponding variety enjoys
the chain joint embedding property (CJEP) whenever every pair of L-chains is
embeddable into some L-chain.

Theorem ([Mon11])

Let L be an axiomatic extension of MTL. Then L enjoys the SSCC iff its corresponding
variety has the CJEP,

Theorem

Let L be an axiomatic extension of MTL. If the variety of L-algebras enjoys the CJEP,
then L has the DMVP,

| A

Problem
Does the DMVP imply the CJEP ?
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Pseudo-relevance properties. . .

@ Alogic L has the pseudo-relevance property (PRP), if for all pairs of formulas ¢, ¢
with no variables in common, ; ¢ — v implies either -, - or F; .

@ Alogic L has the deductive pseudo-relevance property (DPRP), if for every theory
I" and formula « with no variables in common, I -, ) implies either I' -, L or i, .

@ A logic L has the strong deductive pseudo-relevance property (SDPRP), if for

every sets of formulas I and X U {¢} with no variables in common, ', X, ¢
implies either ' =, L or X +; .




...and their algebraic characterization

Theorem ([GJKOO07])

Let L be a logic over FLey .




...and their algebraic characterization

Theorem ([GJKOO07])

Let L be a logic over FLey .

@ L enjoys the SDPRP if and only if every pair of subdirectly irreducible L-algebras is
jointly embeddable into an L-algebra.




...and their algebraic characterization

Theorem ([GJKOO07])

Let L be a logic over FLey .

@ L enjoys the SDPRP if and only if every pair of subdirectly irreducible L-algebras is
jointly embeddable into an L-algebra.

@ SDPRP implies DPRP for every L, and the converse holds also when the variety of
L-algebras has the CEP (i.e. every pair of L-algebras A, B, with A being a
subalgebra of B, is such that for every congruence 6 of A there is a congruence ¢’
of B such that 0 = 6’ N A2).




...and their algebraic characterization

Theorem ([GJKOO07])

Let L be a logic over FLey .

@ L enjoys the SDPRP if and only if every pair of subdirectly irreducible L-algebras is
jointly embeddable into an L-algebra.

@ SDPRP implies DPRP for every L, and the converse holds also when the variety of
L-algebras has the CEP (i.e. every pair of L-algebras A, B, with A being a
subalgebra of B, is such that for every congruence 6 of A there is a congruence 6’
of B such that 0 = 6’ N A?).

Lemma ([Nog06, page 42])
Every variety of MTL-algebras enjoys the CEP.




...and their algebraic characterization

Theorem ([GJKOO07])

Let L be a logic over FLey .

@ L enjoys the SDPRP if and only if every pair of subdirectly irreducible L-algebras is
jointly embeddable into an L-algebra.

@ SDPRP implies DPRP for every L, and the converse holds also when the variety of
L-algebras has the CEP (i.e. every pair of L-algebras A, B, with A being a
subalgebra of B, is such that for every congruence 6 of A there is a congruence 0’
of B such that 0 = 6’ N A?).

Lemma ([Nog06, page 42])
Every variety of MTL-algebras enjoys the CEP.

For every variety of MTL-algebras the SDPRP is equivalent to the DPRP,
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The relation between PRP and DPRP

Theorem ([Kih06, page 45])

For every axiomatic extension of MTL, the PRP implies the DPRP.

Theorem ([GJKOO7, theorem 5.57])

Every extension of the logic FLe with the axiom —(p A —¢) has the PRP,

Let L be an axiomatic extension of MTL: then L enjoys the PRP if and only if it is an
extension of SMTL.

Note that the DPRP however does not imply the PRP, in general: a
counterexample is given by NM, that enjoys the CJEP (and hence the DPRP),
whilst the PRP fails to hold.
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Definition

We say that a variety K of MTL-algebras has the amalgamation property (AP) if for
every tuple (A4, B,C,i,j), where A, B,C € K and A ;> B, A i> C, there is a tuple
(D, h, k), with D € K, B3 D, ¢ & D, such that ho i = k o j.

The AP implies the SDPRP.

Definition

A logic L has the deductive interpolation property (DIP) if for any theory I' and for any
formula « of L, if ' =, 4, then there is a formula v such that ' -, ~, v I, ¢ and every
propositional variable occurring in « occurs both in T and in 2.

Theorem ([GJKOO07])

An axiomatic extension of MTL enjoys the DIP iff the corresponding variety has the AP,




A general picture

? ?

SCC HC DmVP CJEP §scC

N 12

DIP <—— AP <—\—— SDPRP DPRP <——= PRP
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Open problems

One of the most interesting open problems of [Mon11] is the following:

Problem
Let L be an axiomatic extension of MTL enjoying the SCC: does L enjoy the SSCC ?

Note that this problem is connected to the followings

Problem
Are there some examples of extensions of MTL enjoying the HC but not the DMVP ?

Problem
Does the DMVP imply the CJEP ?

Finally, another open question is the SCC for MTL: the results of this work can be
useful to this aim.
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Let L be an n-contractive substructural logic over FLey : the following are equivalent.
@ L enjoys the HC.
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v

Let L be an axiomatic extension of MTL. We say that L enjoys the subdirect single
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The following n-contractive extensions of MTL enjoy the subSCC: WNM, NM, G, t,,
SMTL", SBL".
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In [MNHO86, proposition 37] it is shown that every locally finite subvariety of
MTL-algebras is n-contractive, for some n, then

Let L be an extension of MTL whose corresponding variety is locally finite: the following
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Are there (non n-contractive) axiomatic extensions of MTL enjoying the SCC but not
the subSCC ? )

Theorem

The following non n-contractive extensions of MTL enjoy the subSCC: SMTL, BL, SBL,
£, M.
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(local deduction theorem)

Theorem ([Cin04])
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For the axiomatic extensions of MTL it holds the following form of deduction theorem
(local deduction theorem)

Theorem ([Cin04])

Let L be an axiomatic extension of MTL and T, o, be a theory and two formulas. It
holds that
TU{y}tLe iffthereexistsn € Nt st THo 4" — .

For every n-contractive axiomatic extension of MTL we obtain the following
(global) form.

Theorem ([HNPO7, theorem 3.3])

Let L, T, o, be an n-contractive extension of MTL, a theory and two formulas. It holds
that
Fru{y}tLe iff My — .
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Interpolation theorems

Definition

Let L be an axiomatic extension of MTL. We say that the Craig interpolation theorem
holds for L iff for any two formulas ¢ and v of L, if -, ¢ — 1, then there is a formula ~
such that -, ¢ — ~, b v — 1 and every propositional variable occurring in v occurs
both in ¢ and in .

@ This theorem, however, fails for many axiomatic extensions of MTL: in fact in
[Mon06] it is shown that this property holds only for G, G3 and classical logic,
between the axiomatic extensions of BL.

@ Nevertheless, for the n-contractive axiomatic extensions of MTL that enjoys the
DIP, we can obtain a weaker form of Craig’s theorem (a generalization of the
theorem given in [BM11] for some families of n-contractive extensions of BL).

Theorem (Weak Craig interpolation theorem)

Let L be an n-contractive extension of MTL that enjoys the DIP. For every pair of
formulas o, v, ift-; ©" — 1, then there is a formula v such thatt-; ¢" — v, FL 4" —
and every propositional variable occurring in ~ occurs both in p and in 1.
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