MV-algebras freely generated by finite Kleene algebras

Stefano Aguzzoli
D.S.I.
University of Milano
aguzzoli@dsi.unimi.it

Joint work with Leonardo Cabrer and Vincenzo Marra

Dedicated to Tonino Di Nola in the occasion of his $65^{\text {th }}$ birthday

Free \mathbb{V}-algebras over \mathbb{W}-algebras

Let \mathbb{V} and \mathbb{W} be two varieties such that each \mathbb{V}-algebra A has a reduct $U(A)$ in \mathbb{W}.

- Forgetful functor $U: \mathbb{V} \rightarrow \mathbb{W}$ (U identity on morphisms).
- U has a left-adjoint $F: \mathbb{W} \rightarrow \mathbb{V}$.
$F(B)$ is the free \mathbb{V}-algebra over the \mathbb{W}-algebra B.

$$
\begin{gathered}
B \in \mathbb{W} \quad \Longleftrightarrow \quad B \cong \mathcal{F}_{\kappa}^{\mathbb{W}} / \Theta \text { for some congruence } \Theta \\
\Theta \subseteq \mathcal{F}_{\kappa}^{\mathbb{W}} \times \mathcal{F}_{\kappa}^{\mathbb{W}} .
\end{gathered}
$$

Θ generates a uniquely determined congruence $\widehat{\Theta} \subseteq \mathcal{F}_{\kappa}^{\mathbb{V}} \times \mathcal{F}_{\kappa}^{\mathbb{V}}$.

$$
F(B) \cong \mathcal{F}_{\kappa}^{\mathbb{V}} / \widehat{\Theta}
$$

Free MV-algebras over Kleene algebras

In this work we solve, for the varieties of MV-algebras and of Kleene algebras, and for finitely generated Kleene algebras, the two classical problems of:

1. Description - which consists in describing the MV-algebraic structure of $F(B)$ in terms of the finitely generated Kleene algebra B;
2. Recognition - which consists in finding conditions on the structure of an MV-algebra A that are necessary and sufficient for the existence of a finitely generated Kleene algebra B such that $A \cong F(B)$.

The proofs rely on the Davey-Werner natural duality for Kleene algebras, on the representation of finitely presented MV-algebras by compact rational polyhedra, and on the theory of bases of MV-algebras.

Similar (recent) results

- MV-algebras free over finite distributive lattices:
[Marra, Archive for Mathematical Logic, 2008]
- Gödel algebras free over finite distributive lattices:
[Aguzzoli, Gerla, Marra, Annals of Pure and Applied Logic, 2008]

MV-algebras and Kleene algebras

- Variety \mathbb{M} of MV-algebras:

$$
(M, \oplus, \neg, 0)
$$

such that $(M, \oplus, 0)$ is a commutative monoid, $\neg \neg x=x, x \oplus \neg 0=\neg 0$ and $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.
\mathbb{M} is generated by $([0,1], \min \{1, x+y\}, 1-x, 0)$.

- Variety \mathbb{K} of Kleene algebras:

$$
(K, \vee, \wedge, \neg, 0,1)
$$

such that $(K, \vee, \wedge, 0,1)$ is a bounded distributive lattice, $\neg \neg x=x$, $\neg(x \wedge y)=\neg x \vee \neg y$ and $(x \wedge \neg x) \vee(y \vee \neg y)=(y \vee \neg y)$.
\mathbb{K} is generated by $(\{0,1 / 2,1\}, \max \{x, y\}, \min \{x, y\}, 1-x, 0,1)$.
Upon defining $x \vee y:=\neg(\neg x \oplus y) \oplus y$ and $x \wedge y=\neg(\neg x \vee \neg y)$ each MV-algebra M has a Kleene algebra reduct $U(M)$.

Kleene algebras

Finite Kleene space:

$$
(W, \leq, R, M)
$$

such that (W, \leq) is a finite poset, $M \subseteq \max W$, and $R \subseteq W^{2}$ satisfies

1. $(x, x) \in R$;
2. $(x, y) \in R$ and $x \in M$ imply $y \leq x$;
3. $(x, y) \in R$ and $z \leq y$ imply $(z, x) \in R$.

A morphism of Kleene spaces $f:(W, \leq, R, M) \rightarrow\left(W^{\prime}, \leq^{\prime}, R^{\prime}, M^{\prime}\right)$ is an order-preserving and R-preserving function $f: W \rightarrow W^{\prime}$ such that $f(M) \subseteq M^{\prime}$.

The category KS of finite Kleene spaces and their morphisms is dually equivalent to the category $\mathbb{K}_{\text {fin }}$ of finite Kleene algebras and homomorphisms.

Kleene algebras

$$
\mathrm{KS} \equiv \mathbb{K}_{f i n}^{\mathrm{op}}
$$

Denote:

$$
\begin{gathered}
\mathbf{K}=(\{0,1 / 2,1\}, \max \{x, y\}, \min \{x, y\}, 1-x, 0,1) \\
\tilde{K}=(\{0,1 / 2,1\}, \preceq, \sim,\{0,1\}),
\end{gathered}
$$

where \preceq is the following order:

and \sim is the relation $\{0,1 / 2,1\}^{2} \backslash\{(0,1),(1,0)\}$

Kleene algebras

$$
\mathrm{KS} \equiv \mathbb{K}_{f i n}^{\mathrm{op}}
$$

The equivalence $\mathrm{KS} \equiv \mathbb{K}_{\text {fin }}^{\mathrm{op}}$ is implemented by the functors:

$$
D: \mathbb{K}_{f i n} \rightarrow \mathrm{KS}, \quad E: \mathrm{KS} \rightarrow \mathbb{K}_{f i n}
$$

For each finite Kleene algebra B :
$D(B)=\operatorname{Hom}(B, \mathbf{K}) \subseteq \tilde{K}^{B} ;$
for every homomorphism $f: B \rightarrow C$:
$D(f): D(C) \rightarrow D(B)$ is defined by $(D(f))(h)=h \circ f$ for each $h \in D(C)$.
For each finite Kleene space X :
$E(X)=\operatorname{Hom}(X, \tilde{K}) \subseteq \mathbf{K}^{X}$;
for each morphism $f: X \rightarrow Y$:
$E(f): E(Y) \rightarrow E(X)$ is defined by $(E(f))(h)=h \circ f$ for each $h \in E(Y)$.

Kleene algebras
 Dual representation of free algebras

$$
\tilde{K}^{n}=\left(\{0,1 / 2,1\}^{n}, \preceq_{n}, \sim_{n},\{0,1\}^{n}\right)
$$

where \preceq_{n} and \sim_{n} are defined componentwise from \preceq and \sim.
Example: \tilde{K}^{2} :

For each $n \geq 1, E\left(\tilde{K}^{n}\right)$ is the free Kleene algebra over n generators.

Kleene algebras
 Dual representation of finite algebras

For any $\Theta \subseteq E\left(\tilde{K}^{n}\right)^{2}$ define:

$$
\operatorname{Sol}_{\mathbb{K}}(\Theta)=\left\{v \in\{0,1 / 2,1\}^{n} \mid f(v)=g(v) \text { for each }(f, g) \in \Theta\right\}
$$

Let $W \subseteq\{0,1 / 2,1\}^{n}$.
Then (W, \preceq, \sim, M) is a subobject of \tilde{K}^{n} if \preceq, \sim and M are defined by restriction from \preceq_{n}, \sim_{n} and $\{0,1\}^{n}$, resp.

Considering the embedding $\iota:(W, \preceq, \sim, M) \hookrightarrow \tilde{K}^{n}$:

$$
W=\operatorname{Sol}_{\mathbb{K}}\left(\left\{(f, g) \in E\left(\tilde{K}^{n}\right) \mid(E(\iota))(f)=(E(\iota))(g)\right\}\right)
$$

The polyhedron associated with a Kleene space

Abstract Simplicial Complex over a finite set V : a family $\mathcal{S} \subseteq 2^{V}$, closed under taking subsets and including all singletons.
k-simplices $:=$ Elements of \mathcal{S} of cardinality $k+1$; vertices of $\mathcal{S}:=0$-simplices.
Weighted Abstract Simplicial Complex : a pair (\mathcal{S}, ω) where \mathcal{S} is an abstract simplicial complex over V, and $\omega: V \rightarrow \mathbb{N}^{+}$.

Isomorphism of weighted abstract simplicial complexes $\left(\mathcal{S}, \omega\right.$) and ($\left.\mathcal{S}^{\prime}, \omega^{\prime}\right)$ over V and V^{\prime}, resp.: a bijection $f: V \rightarrow V^{\prime}$ such that:

- carries simplices to simplices: $\left\{v_{1}, \ldots, v_{u}\right\} \in \mathcal{S}$ iff $\left\{f\left(v_{1}\right), \ldots, f\left(v_{u}\right)\right\} \in \mathcal{S}^{\prime}$
- preserves weights: $\omega^{\prime} \circ f=\omega$.

Polytope associated to a weighted abstract simplex $S=\left\{v_{i_{1}}, \ldots, v_{i_{u}}\right\} \in(\mathcal{S}, \omega)$: $\bar{S}:=\operatorname{conv}\left\{e_{i_{1}} / \omega\left(v_{i_{1}}\right), \ldots, e_{i_{u}} / \omega\left(v_{i_{u}}\right)\right\} \subseteq \mathbb{R}^{d}$. $\left(e_{i_{j}}\right.$: unit vector of $\left.\mathbb{R}^{d}\right)$
Polyhedron associated with $(\mathcal{S}, \omega): P_{\mathcal{S}}^{\omega}:=\bigcup_{S \in \mathcal{S}} \bar{S}$.

The polyhedron associated with a Kleene space

$P_{\mathcal{S}}^{\omega}$ is called the geometric realisation of (\mathcal{S}, ω).

The nerve $\mathcal{N}(O)$ of a finite poset O :
family of all subsets of O that are chains under the order inherited by restriction from O.
$\mathcal{N}(O)$ is an abstract simplicial complex.

For any $(W, \leq, R, M) \in \mathrm{KS}$:

- its associated weighted abstract simplicial complex is defined as $(\mathcal{N}(W), \omega)$, where $\omega(v)=1$ if $v \in M ; \omega(v)=2$ otherwise.
- its companion polyedron is the geometric realisation $P_{\mathcal{N}(W)}^{\omega}$ of $(\mathcal{N}(W), \omega)$. (Note $(\mathcal{N}(W), \omega)$ does not depend on R).

Regular triangulations

Rational n-simplex: $\sigma:=\operatorname{conv} S$, for $S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ set of affinely independent points in \mathbb{Q}^{d}.

$$
\text { ver } \sigma:=S
$$

Denominator of $v=\left(p_{1} / q_{1}, \ldots, p_{d} / q_{d}\right) \in \mathbb{Q}^{d}: \operatorname{den} v:=\operatorname{lcm}\left(q_{1}, q_{2}, \ldots, q_{d}\right)$.
A rational simplex conv $\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$ is regular if $\operatorname{det}\left(\left(v_{i}, 1\right) \operatorname{den} v_{i}\right)_{i=0}^{d}= \pm 1$.
Regular triangulation Σ in \mathbb{R}^{d} : finite family of regular simplices in \mathbb{R}^{d} such that any two of them intersect in a common face. Support of $\Sigma:|\Sigma|:=\bigcup_{\sigma \in \Sigma} \sigma$.

Kleene triangulation of $[0,1]^{n}: \mathcal{S}_{n}:=\left\{\operatorname{conv} C \mid C\right.$ chain of $\left.\left(\{0,1 / 2,1\}^{n}, \preceq_{n}\right)\right\}$. \mathcal{S}_{n} is a regular triangulation of (i.e., with support) $[0,1]^{n}$.

Example:

MV-algebras

Functional representation

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is McNaughton, or, a \mathbb{Z}-map if:

- f is continuous wrt. the Euclidean topology on \mathbb{R}^{d};
- f is piecewise linear, that is, $\exists p_{1}, \ldots, p_{u}$ linear polynomials, such that $\forall x \in \mathbb{R}^{d} \exists i \in\{1,2, \ldots, u\}: f(x)=p_{i}(x)$;
- each piece of f has integer coefficients: that is, all the coefficients of each p_{i} are integers.

For $X \subseteq[0,1]^{d} \subseteq \mathbb{R}^{d}$, a \mathbb{Z}-map on X is a function $f: X \rightarrow[0,1]$ which coincides with a \mathbb{Z}-map $\mathbb{R}^{d} \rightarrow \mathbb{R}$ over X.

$$
\mathcal{M}(X):=\{f: X \rightarrow[0,1] \mid f \text { is a } \mathbb{Z} \text {-map }\}
$$

$\mathcal{M}(X)$ is an MV-algebra when equipped with operations defined pointwise from the standard MV-algebra $[0,1]$.

MV free over Kleene

Description problem

For each finite Kleene algebra B:
Let $D(B)=(W, \preceq, R, M)$ denote the Kleene space dual to B;
Let $(\mathcal{N}(W), \omega)$ denote the weighted abstract simplicial complex associated with $D(B)$;

Let $P_{\mathcal{N}(W)}^{\omega}$ denote the companion polyhedron of $D(B)$.

Then:

$$
F(B) \cong \mathcal{M}\left(P_{\mathcal{N}(W)}^{\omega}\right)
$$

$F(B) \cong \mathcal{M}\left(P_{\mathcal{N}(W)}^{\omega}\right)$

Tools for the proof

- $\mathcal{M}_{n}:=\mathcal{M}\left([0,1]^{n}\right)$ is (isomorphic to) $\mathcal{F}_{n}^{\mathbb{M}}$.
- For any $\Theta \subseteq \mathcal{M}_{n}^{2}$ define
$\operatorname{Sol}_{\mathbb{M}}(\Theta):=\left\{v \in[0,1]^{n} \mid f(v)=g(v)\right.$ for each $\left.(f, g) \in \Theta\right\}$.
Then $\mathcal{M}_{n} / \widehat{\Theta} \cong \mathcal{M}\left(\operatorname{Sol}_{\mathbb{M}}(\Theta)\right)$.
- For any $\Theta \subseteq E\left(\tilde{K}^{n}\right)^{2}$ it holds that $\operatorname{Sol}_{\mathbb{K}}(\Theta)=\operatorname{Sol}_{\mathbb{M}}(\Theta) \cap\{0,1 / 2,1\}^{n}$.
- For any $\Theta \subseteq E\left(\tilde{K}^{n}\right)^{2}$ the set $\Sigma_{\Theta}:=\left\{\sigma \in \mathcal{S}_{n} \mid \operatorname{ver} \sigma \subseteq \operatorname{Sol}_{\mathbb{K}}(\Theta)\right\}$ is a regular triangulation in $[0,1]^{n}$ such that $\operatorname{Sol}_{\mathbb{M}}(\Theta)=\left|\Sigma_{\Theta}\right|$.
- For each regular triangulation $\Delta, \mathcal{S}(\Delta):=\{\operatorname{ver} \sigma \mid \sigma \in \Sigma\}$ is an abstract simplicial complex.
- Let Σ and Δ be regular triangulations of $P \subseteq \mathbb{R}^{d}$ and $Q \subseteq \mathbb{R}^{d^{\prime}}$. If $(\mathcal{S}(\Sigma)$, den $) \cong(\mathcal{S}(\Delta)$, den $)$ then $\mathcal{M}(P) \cong \mathcal{M}(Q)$.
- $B \in \mathbb{K}_{f i n} \Longrightarrow B \cong E\left(\tilde{K}^{n}\right) / \Theta$ for some congruence Θ;
- $E\left(\tilde{K}^{n}\right) \rightarrow B$ dualises to $D(B) \hookrightarrow \tilde{K}^{n}$, where $D(B)=(W, \preceq, R, M)$ with $W=\operatorname{Sol}_{\mathbb{K}}(\Theta)$.
- On the other hand $F(B)=\mathcal{M}_{n} / \widehat{\Theta} \cong \mathcal{M}\left(\operatorname{Sol}_{\mathbb{M}}(\Theta)\right)$.
- $\operatorname{But} \operatorname{Sol}_{\mathbb{M}}(\Theta)=\left|\Sigma_{\Theta}\right|$, for $\Sigma_{\Theta}=\left\{\sigma \in \mathcal{S}_{n} \mid \operatorname{ver} \sigma \subseteq \operatorname{Sol}_{\mathbb{K}}(\Theta)\right\}$.
- Then $\left(\mathcal{S}\left(\Sigma_{\Theta}\right), \operatorname{den}\right) \cong\left(\mathcal{N}\left(\operatorname{Sol}_{\mathbb{K}}(\Theta)\right), \omega\right)$.
- Hence, $\mathcal{M}\left(\operatorname{Sol}_{\mathbb{M}}(\Theta)\right) \cong \mathcal{M}\left(P_{\mathcal{N}\left(\operatorname{Sol}_{k}(\Theta)\right)}^{\omega}\right)$ that yields the desired

$$
F(B) \cong \mathcal{M}\left(P_{\mathcal{N}(W)}^{\omega}\right) .
$$

MV-algebras

Bases

Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{t}\right\} \subseteq A \in \mathbb{M}, b_{i} \neq 0$.
Pick $b_{r} \neq b_{s} \in \mathcal{B}$ such that $b_{r} \wedge b_{s} \neq 0$.
The stellar subdivision of \mathcal{B} at $\left\{b_{r}, b_{s}\right\}$ is

$$
\mathcal{B}_{b_{r}, b_{s}}:=\left\{b_{1}^{\prime}, \ldots, b_{t}^{\prime}, b_{t+1}^{\prime}\right\} \backslash\{0\},
$$

where:

$$
\begin{array}{ll}
b_{r}^{\prime} & :=b_{r} \odot \neg\left(b_{r} \wedge b_{s}\right) \\
b_{s}^{\prime} & :=b_{s} \odot \neg\left(b_{r} \wedge b_{s}\right) \\
b_{t+1}^{\prime} & :=b_{r} \wedge b_{s} \\
b_{i}^{\prime} & :=b_{i} \text { otherwise. }
\end{array}
$$

MV-algebras

Bases

Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{t}\right\} \subseteq A \in \mathbb{M}, b_{i} \neq 0$.

- \mathcal{B} is 1-regular if for each stellar subdivision $\mathcal{B}_{b_{r}, b_{s}}$ it holds that for any $1 \leq i_{1}<\cdots<i_{k} \leq t: \quad$ if $\left(b_{r} \wedge b_{s}\right) \wedge b_{i_{1}} \wedge \cdots \wedge b_{i_{k}}>0$ holds in A then for every $\emptyset \neq J \subseteq\left\{i_{1}, \ldots, i_{k}\right\}$, with $\{r, s\} \nsubseteq J$

$$
\left(b_{r} \wedge b_{s}\right) \wedge \bigwedge_{j \in J} b_{j}^{\prime}>0 \quad \text { holds in } A
$$

- \mathcal{B} is regular if it is 1-regular, and each one of its stellar subdivisions is 1-regular, too.
- \mathcal{B} is a basis of A, if it generates A, it is regular, and there are integers (multipliers) $m_{1}, \ldots, m_{t} \geq 1$ such that for each $i \in\{1, \ldots, t\}$:

$$
\neg b_{i}=\left(m_{i}-1\right) b_{i} \oplus \bigoplus_{i \neq j} m_{j} b_{j}
$$

Missing faces and comparabilities

Let \mathcal{S} be an abstract simplicial complex over the vertex set V.
Non-face of \mathcal{S} : a subset $N \subseteq V$ such that $N \notin \mathcal{S}$;
Missing face of \mathcal{S} : a non-face that is inclusion-minimal.
Write $\mathcal{S}^{(2)}$ for the 2-skeleton of \mathcal{S}, that is $\quad \mathcal{S}^{(2)}:=\{S \in \mathcal{S}| | S \mid=2\}$.
There is a comparability over the graph $\mathcal{S}^{(2)}$ if its edges can be transitively oriented, that is:
whenever $\left\{p, r_{1}\right\},\left\{r_{1}, r_{2}\right\}, \ldots,\left\{r_{u-1}, r_{u}\right\},\left\{r_{u}, q\right\} \in \mathcal{S}^{(2)}$ are oriented as $\left(p, r_{1}\right),\left(r_{1}, r_{2}\right), \ldots,\left(r_{u-1}, r_{u}\right),\left(r_{u}, q\right)$ then there is $\{p, q\} \in \mathcal{S}^{(2)}$ oriented as (p, q).

Example:

MV free over Kleene

Recognition problem

Any basis \mathcal{B} of an MV-algebra A determines an abstract simplicial complex

$$
\mathcal{B}^{\bowtie}:=\{C \subseteq \mathcal{B} \mid \bigwedge C>0 \text { holds in } A\}
$$

A basis \mathcal{B} of an MV-algebra A is a Kleene basis if

- The multiplier of each $b \in \mathcal{B}$ is either 1 or 2 ;
- The abstract simplicial complex \mathcal{B}^{\bowtie} has no missing faces of cardinality ≥ 3;
- There is a comparability over $\left(\mathcal{B}^{\bowtie}\right)^{(2)}$ such that each $b \in \mathcal{B}$ with multiplier 1 is a sink (it never occurs as first member of an edge of the comparability).

Let A be any MV-algebra.
Then A is free over some finite Kleene algebra iff A has a Kleene basis.

Examples
 $\mathcal{F}_{\mathbb{M}}^{2}$ and $\mathcal{F}_{\mathbb{K}}^{2}$

Some Schauder hats belonging to a Kleene basis for $\mathcal{F}_{\mathbb{M}}^{2}$:

Examples

$$
x=x \vee(y \wedge \neg y)
$$

Let $\Theta \subseteq \mathcal{F}_{\mathbb{K}}^{2} \times \mathcal{F}_{\mathbb{K}}^{2}$ be the congruence determined by $x=x \vee(y \wedge \neg y)$.

Examples $\quad \mathcal{F}_{\mathbb{M}}^{2}$ free over a non-free Kleene algebra

Σ_{Θ} shows B is 3-generated:

