MV-algebras freely generated by finite Kleene algebras

Stefano Aguzzoli D.S.I. University of Milano aguzzoli@dsi.unimi.it Joint work with Leonardo Cabrer and Vincenzo Marra

Dedicated to Tonino Di Nola in the occasion of his 65th birthday

Free V-algebras over W-algebras

Let \mathbb{V} and \mathbb{W} be two varieties such that each \mathbb{V} -algebra A has a reduct U(A) in \mathbb{W} .

- Forgetful functor $U: \mathbb{V} \to \mathbb{W}$ (U identity on morphisms).
- U has a left-adjoint $F \colon \mathbb{W} \to \mathbb{V}$.

F(B) is the free V-algebra over the W-algebra B.

$$B \in \mathbb{W} \quad \iff \quad B \cong \mathcal{F}_{\kappa}^{\mathbb{W}} / \Theta \text{ for some congruence } \Theta$$
$$\Theta \subseteq \mathcal{F}_{\kappa}^{\mathbb{W}} \times \mathcal{F}_{\kappa}^{\mathbb{W}}.$$

 Θ generates a uniquely determined congruence $\widehat{\Theta} \subseteq \mathcal{F}_{\kappa}^{\mathbb{V}} \times \mathcal{F}_{\kappa}^{\mathbb{V}}$. $F(B) \cong \mathcal{F}_{\kappa}^{\mathbb{V}} / \widehat{\Theta}$.

Free MV-algebras over Kleene algebras

In this work we solve, for the varieties of MV-algebras and of Kleene algebras, and for finitely generated Kleene algebras, the two classical problems of:

- 1. *Description* which consists in describing the MV-algebraic structure of F(B) in terms of the finitely generated Kleene algebra B;
- 2. Recognition which consists in finding conditions on the structure of an MV-algebra A that are necessary and sufficient for the existence of a finitely generated Kleene algebra B such that $A \cong F(B)$.

The proofs rely on the Davey-Werner natural duality for Kleene algebras, on the representation of finitely presented MV-algebras by compact rational polyhedra, and on the theory of bases of MV-algebras.

Similar (recent) results

- MV-algebras free over finite distributive lattices: [Marra, Archive for Mathematical Logic, 2008]
- Gödel algebras free over finite distributive lattices: [Aguzzoli, Gerla, Marra, Annals of Pure and Applied Logic, 2008]

MV-algebras and Kleene algebras

• Variety \mathbb{M} of MV-algebras:

$$(M,\oplus,
eg,0)$$

such that $(M, \oplus, 0)$ is a commutative monoid, $\neg \neg x = x, x \oplus \neg 0 = \neg 0$ and $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$. M is generated by $([0, 1], \min\{1, x + y\}, 1 - x, 0)$.

• Variety \mathbb{K} of Kleene algebras:

 $(K, \lor, \land, \neg, 0, 1)$

such that $(K, \lor, \land, 0, 1)$ is a bounded distributive lattice, $\neg \neg x = x$, $\neg (x \land y) = \neg x \lor \neg y$ and $(x \land \neg x) \lor (y \lor \neg y) = (y \lor \neg y)$.

K is generated by $(\{0, 1/2, 1\}, \max\{x, y\}, \min\{x, y\}, 1 - x, 0, 1)$.

Upon defining $x \lor y := \neg(\neg x \oplus y) \oplus y$ and $x \land y = \neg(\neg x \lor \neg y)$ each MV-algebra M has a Kleene algebra reduct U(M).

Kleene algebras

Finite Kleene space:

$$(W, \leq, R, M)$$

such that (W, \leq) is a finite poset, $M \subseteq \max W$, and $R \subseteq W^2$ satisfies

1. $(x, x) \in R;$

- 2. $(x, y) \in R$ and $x \in M$ imply $y \leq x$;
- 3. $(x, y) \in R$ and $z \leq y$ imply $(z, x) \in R$.

A morphism of Kleene spaces $f: (W, \leq, R, M) \to (W', \leq', R', M')$ is an order-preserving and *R*-preserving function $f: W \to W'$ such that $f(M) \subseteq M'$.

The category KS of finite Kleene spaces and their morphisms is dually equivalent to the category \mathbb{K}_{fin} of finite Kleene algebras and homomorphisms.

$$\mathsf{KS}\equiv\mathbb{K}_{fin}^{\operatorname{op}}$$

Denote:

$$\mathbf{K} = (\{0, 1/2, 1\}, \max\{x, y\}, \min\{x, y\}, 1 - x, 0, 1)$$

$$\tilde{K} = (\{0, 1/2, 1\}, \preceq, \sim, \{0, 1\}),$$

where \leq is the following order:

and ~ is the relation $\{0, 1/2, 1\}^2 \setminus \{(0, 1), (1, 0)\}$

Kleene algebras

$$\mathsf{KS}\equiv\mathbb{K}_{fin}^{\operatorname{op}}$$

The equivalence $\mathsf{KS} \equiv \mathbb{K}_{fin}^{\mathrm{op}}$ is implemented by the functors:

$$D: \mathbb{K}_{fin} \to \mathsf{KS}, \qquad E: \mathsf{KS} \to \mathbb{K}_{fin}$$

For each finite Kleene algebra B: $D(B) = \text{Hom}(B, \mathbf{K}) \subseteq \tilde{K}^B;$

for every homomorphism $f: B \to C$: $D(f): D(C) \to D(B)$ is defined by $(D(f))(h) = h \circ f$ for each $h \in D(C)$.

For each finite Kleene space X: $E(X) = \text{Hom}(X, \tilde{K}) \subseteq \mathbf{K}^X;$

for each morphism $f: X \to Y$: $E(f): E(Y) \to E(X)$ is defined by $(E(f))(h) = h \circ f$ for each $h \in E(Y)$.

Salerno, July 4-7 2012 9

Kleene algebras Dual representation of free algebras

$$\tilde{K}^n = (\{0, 1/2, 1\}^n, \leq_n, \sim_n, \{0, 1\}^n)$$

where \leq_n and \sim_n are defined componentwise from \leq and \sim . Example: \tilde{K}^2 :

For each $n \ge 1$, $E(\tilde{K}^n)$ is the free Kleene algebra over n generators.

Kleene algebras Dual representation of finite algebras

For any $\Theta \subseteq E(\tilde{K}^n)^2$ define:

 $Sol_{\mathbb{K}}(\Theta) = \{ v \in \{0, 1/2, 1\}^n \mid f(v) = g(v) \text{ for each } (f, g) \in \Theta \}.$

Let $W \subseteq \{0, 1/2, 1\}^n$.

Then (W, \leq, \sim, M) is a subobject of \tilde{K}^n if \leq, \sim and M are defined by restriction from \leq_n, \sim_n and $\{0, 1\}^n$, resp.

Considering the embedding $\iota \colon (W, \preceq, \sim, M) \hookrightarrow \tilde{K}^n$:

 $W = Sol_{\mathbb{K}}(\{(f,g) \in E(\tilde{K}^n) \mid (E(\iota))(f) = (E(\iota))(g)\}).$

The polyhedron associated with a Kleene space

Abstract Simplicial Complex over a finite set V: a family $S \subseteq 2^V$, closed under taking subsets and including all singletons.

k-simplices := Elements of S of cardinality k + 1; vertices of S := 0-simplices.

Weighted Abstract Simplicial Complex : a pair (\mathcal{S}, ω) where \mathcal{S} is an abstract simplicial complex over V, and $\omega \colon V \to \mathbb{N}^+$.

Isomorphism of weighted abstract simplicial complexes (\mathcal{S}, ω) and (\mathcal{S}', ω') over V and V', resp.: a bijection $f: V \to V'$ such that:

- carries simplices to simplices: $\{v_1, \ldots, v_u\} \in \mathcal{S}$ iff $\{f(v_1), \ldots, f(v_u)\} \in \mathcal{S}'$
- preserves weights: $\omega' \circ f = \omega$.

Polytope associated to a weighted abstract simplex $S = \{v_{i_1}, \ldots, v_{i_u}\} \in (S, \omega)$: $\bar{S} := \operatorname{conv} \{e_{i_1}/\omega(v_{i_1}), \ldots, e_{i_u}/\omega(v_{i_u})\} \subseteq \mathbb{R}^d.$ $(e_{i_j}: \text{ unit vector of } \mathbb{R}^d)$ Polyhedron associated with $(S, \omega): P_S^{\omega} := \bigcup_{S \in S} \bar{S}.$

The polyhedron associated with a Kleene space

 $P_{\mathcal{S}}^{\omega}$ is called the geometric realisation of (\mathcal{S}, ω) .

The nerve $\mathcal{N}(O)$ of a finite poset O:

family of all subsets of O that are chains under the order inherited by restriction from O.

 $\mathcal{N}(O)$ is an abstract simplicial complex.

For any $(W, \leq, R, M) \in \mathsf{KS}$:

- its associated weighted abstract simplicial complex is defined as $(\mathcal{N}(W), \omega)$, where $\omega(v) = 1$ if $v \in M$; $\omega(v) = 2$ otherwise.
- its companion polyedron is the geometric realisation $P^{\omega}_{\mathcal{N}(W)}$ of $(\mathcal{N}(W), \omega)$. (Note $(\mathcal{N}(W), \omega)$ does not depend on R).

Regular triangulations

Rational *n*-simplex: $\sigma := \operatorname{conv} S$, for $S = \{v_0, v_1, \dots, v_n\}$ set of affinely independent points in \mathbb{Q}^d . ver $\sigma := S$.

Denominator of $v = (p_1/q_1, \ldots, p_d/q_d) \in \mathbb{Q}^d$: den $v := \operatorname{lcm}(q_1, q_2, \ldots, q_d)$.

A rational simplex conv $\{v_0, v_1, \ldots, v_d\}$ is regular if $\det((v_i, 1) \det v_i)_{i=0}^d = \pm 1$.

Regular triangulation Σ in \mathbb{R}^d : finite family of regular simplices in \mathbb{R}^d such that any two of them intersect in a common face. Support of Σ : $|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma$.

Kleene triangulation of $[0,1]^n$: $S_n := \{\operatorname{conv} C \mid C \text{ chain of } (\{0,1/2,1\}^n, \preceq_n)\}.$

 S_n is a regular triangulation of (*i.e.*, with support) $[0,1]^n$.

MV-algebras

A function $f : \mathbb{R}^d \to \mathbb{R}$ is McNaughton, or, a Z-map if:

- f is continuous wrt. the Euclidean topology on \mathbb{R}^d ;
- f is piecewise linear, that is, $\exists p_1, \ldots, p_u$ linear polynomials, such that $\forall x \in \mathbb{R}^d \ \exists i \in \{1, 2, \ldots, u\} : f(x) = p_i(x);$
- each piece of f has integer coefficients: that is, all the coefficients of each p_i are integers.

For $X \subseteq [0,1]^d \subseteq \mathbb{R}^d$, a Z-map on X is a function $f: X \to [0,1]$ which coincides with a Z-map $\mathbb{R}^d \to \mathbb{R}$ over X.

$$\mathcal{M}(X) := \{ f \colon X \to [0,1] \mid f \text{ is a } \mathbb{Z}\text{-map} \}$$

 $\mathcal{M}(X)$ is an MV-algebra when equipped with operations defined pointwise from the standard MV-algebra [0, 1].

MV free over Kleene

Description problem

For each finite Kleene algebra B:

Let $D(B) = (W, \leq, R, M)$ denote the Kleene space dual to B;

Let $(\mathcal{N}(W), \omega)$ denote the weighted abstract simplicial complex associated with D(B);

Let $P^{\omega}_{\mathcal{N}(W)}$ denote the companion polyhedron of D(B).

Then:

 $F(B) \cong \mathcal{M}(P^{\omega}_{\mathcal{N}(W)}).$

$$F(B) \cong \mathcal{M}(P^{\omega}_{\mathcal{N}(W)})$$

Tools for the proof

- $\mathcal{M}_n := \mathcal{M}([0,1]^n)$ is (isomorphic to) $\mathcal{F}_n^{\mathbb{M}}$.
- For any $\Theta \subseteq \mathcal{M}_n^2$ define $\operatorname{Sol}_{\mathbb{M}}(\Theta) := \{ v \in [0,1]^n \mid f(v) = g(v) \text{ for each } (f,g) \in \Theta \}.$ Then $\mathcal{M}_n / \widehat{\Theta} \cong \mathcal{M}(\operatorname{Sol}_{\mathbb{M}}(\Theta)).$
- For any $\Theta \subseteq E(\tilde{K}^n)^2$ it holds that $\operatorname{Sol}_{\mathbb{K}}(\Theta) = \operatorname{Sol}_{\mathbb{M}}(\Theta) \cap \{0, 1/2, 1\}^n$.
- For any $\Theta \subseteq E(\tilde{K}^n)^2$ the set $\Sigma_{\Theta} := \{ \sigma \in \mathcal{S}_n \mid \text{ver } \sigma \subseteq \text{Sol}_{\mathbb{K}}(\Theta) \}$ is a regular triangulation in $[0,1]^n$ such that $\text{Sol}_{\mathbb{M}}(\Theta) = |\Sigma_{\Theta}|$.
- For each regular triangulation Δ , $\mathcal{S}(\Delta) := \{ \operatorname{ver} \sigma \mid \sigma \in \Sigma \}$ is an abstract simplicial complex.
- Let Σ and Δ be regular triangulations of $P \subseteq \mathbb{R}^d$ and $Q \subseteq \mathbb{R}^{d'}$. If $(\mathcal{S}(\Sigma), \operatorname{den}) \cong (\mathcal{S}(\Delta), \operatorname{den})$ then $\mathcal{M}(P) \cong \mathcal{M}(Q)$.

$$F(B) \cong \mathcal{M}(P^{\omega}_{\mathcal{N}(W)})$$

- $B \in \mathbb{K}_{fin} \Longrightarrow B \cong E(\tilde{K}^n) / \Theta$ for some congruence Θ ;
- $E(\tilde{K}^n) \to B$ dualises to $D(B) \hookrightarrow \tilde{K}^n$, where $D(B) = (W, \preceq, R, M)$ with $W = \operatorname{Sol}_{\mathbb{K}}(\Theta)$.
- On the other hand $F(B) = \mathcal{M}_n / \widehat{\Theta} \cong \mathcal{M}(\mathrm{Sol}_{\mathbb{M}}(\Theta)).$
- But $\operatorname{Sol}_{\mathbb{M}}(\Theta) = |\Sigma_{\Theta}|$, for $\Sigma_{\Theta} = \{\sigma \in \mathcal{S}_n \mid \operatorname{ver} \sigma \subseteq \operatorname{Sol}_{\mathbb{K}}(\Theta)\}$.
- Then $(\mathcal{S}(\Sigma_{\Theta}), \operatorname{den}) \cong (\mathcal{N}(\operatorname{Sol}_{\mathbb{K}}(\Theta)), \omega).$
- Hence, $\mathcal{M}(\operatorname{Sol}_{\mathbb{M}}(\Theta)) \cong \mathcal{M}(P^{\omega}_{\mathcal{N}(\operatorname{Sol}_{\mathbb{K}}(\Theta))})$ that yields the desired

 $F(B) \cong \mathcal{M}(P^{\omega}_{\mathcal{N}(W)}).$

MV-algebras

Bases

Let $\mathcal{B} = \{b_1, \dots, b_t\} \subseteq A \in \mathbb{M}, b_i \neq 0.$ Pick $b_r \neq b_s \in \mathcal{B}$ such that $b_r \wedge b_s \neq 0.$ The stellar subdivision of \mathcal{B} at $\{b_r, b_s\}$ is

$$\mathcal{B}_{b_r,b_s} := \{b'_1,\ldots,b'_t,b'_{t+1}\} \setminus \{0\},\$$

where:

$$b'_r := b_r \odot \neg (b_r \land b_s)$$

$$b'_s := b_s \odot \neg (b_r \land b_s)$$

$$b'_{t+1} := b_r \land b_s$$

$$b'_i := b_i \text{ otherwise.}$$

MV-algebras

Bases

Let $\mathcal{B} = \{b_1, \ldots, b_t\} \subseteq A \in \mathbb{M}, \ b_i \neq 0.$

• \mathcal{B} is 1-regular if for each stellar subdivision \mathcal{B}_{b_r,b_s} it holds that for any $1 \leq i_1 < \cdots < i_k \leq t$: if $(b_r \wedge b_s) \wedge b_{i_1} \wedge \cdots \wedge b_{i_k} > 0$ holds in Athen for every $\emptyset \neq J \subseteq \{i_1, \ldots, i_k\}$, with $\{r, s\} \not\subseteq J$

$$(b_r \wedge b_s) \wedge \bigwedge_{j \in J} b'_j > 0$$
 holds in A .

- *B* is regular if it is 1-regular, and each one of its stellar subdivisions is 1-regular, too.
- \mathcal{B} is a basis of A, if it generates A, it is regular, and there are integers (multipliers) $m_1, \ldots, m_t \ge 1$ such that for each $i \in \{1, \ldots, t\}$:

$$eg b_i = (m_i - 1)b_i \oplus \bigoplus_{i \neq j} m_j b_j.$$

Missing faces and comparabilities

Let \mathcal{S} be an abstract simplicial complex over the vertex set V.

Non-face of S: a subset $N \subseteq V$ such that $N \notin S$;

Missing face of S: a non-face that is inclusion-minimal.

Write $\mathcal{S}^{(2)}$ for the 2-skeleton of \mathcal{S} , that is $\mathcal{S}^{(2)} := \{S \in \mathcal{S} \mid |S| = 2\}$. There is a comparability over the graph $\mathcal{S}^{(2)}$ if its edges can be transitively oriented, that is:

whenever $\{p, r_1\}, \{r_1, r_2\}, \ldots, \{r_{u-1}, r_u\}, \{r_u, q\} \in S^{(2)}$ are oriented as $(p, r_1), (r_1, r_2), \ldots, (r_{u-1}, r_u), (r_u, q)$ then there is $\{p, q\} \in S^{(2)}$ oriented as (p, q).

Example:

MV free over Kleene

Recognition problem

Any basis ${\mathcal B}$ of an MV-algebra A determines an abstract simplicial complex

$$\mathcal{B}^{\bowtie} := \{ C \subseteq \mathcal{B} \mid \bigwedge C > 0 \text{ holds in } A \}.$$

A basis \mathcal{B} of an MV-algebra A is a Kleene basis if

- The multiplier of each $b \in \mathcal{B}$ is either 1 or 2;
- The abstract simplicial complex \mathcal{B}^{\bowtie} has no missing faces of cardinality ≥ 3 ;
- There is a comparability over $(\mathcal{B}^{\bowtie})^{(2)}$ such that each $b \in \mathcal{B}$ with multiplier 1 is a sink (it never occurs as first member of an edge of the comparability).

Let A be any MV-algebra.

Then A is free over some finite Kleene algebra iff A has a Kleene basis.

Examples

 \tilde{K}_2 :

$\mathcal{F}^2_{\mathbb{M}}$ and $\mathcal{F}^2_{\mathbb{K}}$

Some Schauder hats belonging to a Kleene basis for $\mathcal{F}^2_{\mathbb{M}}$:

Examples

$$x = x \lor (y \land \neg y)$$

Let $\Theta \subseteq \mathcal{F}^2_{\mathbb{K}} \times \mathcal{F}^2_{\mathbb{K}}$ be the congruence determined by $x = x \vee (y \wedge \neg y)$.

Examples

$\mathcal{F}^2_{\mathbb{M}}$ free over a non-free Kleene algebra

 Σ_{Θ} shows *B* is 3-generated:

