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O. Ore, Galois connexions, Trans. AMS 55(1944), 493513.
A. Tarski: Sur quelques propriétés caractéristiques des images d’ensembles,
Annales de la Société Polonaise de Mathématique,6(1927), 127-128.

Definition
1 Let A,B be two pre-ordered sets and f ∶ A→ B, g ∶ B → A be maps.

▸ f and g form an antitone (or contravariant) Galois connection between A and
B if

b ≤ (a)f ⇔ a ≤ (b)g .

▸ f and g form an isotone (or covariant) Galois connection or adjunction
between A and B if

(a)f ≤ b⇔ a ≤ (b)g .

2 Let A = (A,∨,∧,0,1) be a Boolean algebra, Two functions f ,g ∶ A→ A form
a conjugated pair if

(a)f ∧ b = 0⇔ (b)g ∧ a = 0.
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Definition
1 Let A,B be two pre-ordered sets and f ∶ A→ B, g ∶ B → A be maps.

▸ f and g form an antitone (or contravariant) Galois connection between A and
B if

b ≤ (a)f ⇔ a ≤ (b)g .

▸ f and g form an isotone (or covariant) Galois connection or adjunction
between A and B if

(a)f ≤ b⇔ a ≤ (b)g .

2 Let A = (A,∨,∧,0,1) be a Boolean algebra, Two functions f ,g ∶ A→ A form
a conjugated pair if

(a)f ∧ b = 0⇔ (b)g ∧ a = 0.

It is well known the behavior of Galois connections and conjugated pair with
respect the sup and inf; moreover, through these properties, it is possible to
characterize them.
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C. Guido, P. Toto: Extended-order algebras, Journal of Applied Logic, 6(4)
(2008), 609-626.
M.E.D.S., C. Guido: Associativity, commutativity and symmetry in residuated
structures, Order, doi: 10.1007/s11083-012-9250-8.
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structures, Order, doi: 10.1007/s11083-012-9250-8.

Definition

Let L be a set, →∶ L × L→ L a binary operation, ⊺ ∈ L a fixed element. The triple
(L,→,⊺) is a complete distributive extended-order algebra, shortly cdeo algebra, if

1 the relation ≤ in L defined by the equivalence x ≤ y ⇔ x → y = ⊺,∀x , y ∈ L, is
an order relation, called natural ordering in L (induced by →);

2 (L,≤) is a complete lattice with maximum ⊺ and minimum, say, �;

3 (⋁A)→ (⋀B) = ⋀a∈A,b∈B a → b, ∀A,B ⊆ L (distributivity).
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The distributivity condition allows to consider the adjoint product

⊗ ∶ L × L→ L

defined by
a⊗ x = ⋀{t ∈ L∣ x ≤ a → t} .

Of course, ⊗ and → form an adjoint pair, i.e.

∀x , y , z ∈ L ∶ x ⊗ y ≤ z ⇔ y ≤ x → z .
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The distributivity condition allows to consider the adjoint product

⊗ ∶ L × L→ L

defined by
a⊗ x = ⋀{t ∈ L∣ x ≤ a → t} .

Of course, ⊗ and → form an adjoint pair, i.e.

∀x , y , z ∈ L ∶ x ⊗ y ≤ z ⇔ y ≤ x → z .

Proposition

1 a⊗ ⊺ = a;
2 if b ≤ c, then a⊗ b ≤ a⊗ c and b ⊗ a ≤ c ⊗ a;

3 a⊗ (⋁B) = ⋁b∈B(a⊗ b); (⋁A)⊗ b = ⋁a∈A(a⊗ b).
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The symmetry condition adds further properties on L, without assuming
commutatitivity and associativity.

Definition

A cdeo algebra (L,→,⊺) is called symmetrical if

∃ a (dual) binary operation ¨∶ L×L→ L such that (L,¨,⊺) is a cdeo algebra;

→ and ¨ induce the same order;

y ≤ x ¨ z ⇔ x ≤ y → z ,∀x , y , z ∈ L, i.e. [→,¨] is a Galois pair.
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The symmetry condition adds further properties on L, without assuming
commutatitivity and associativity.

Definition

A cdeo algebra (L,→,⊺) is called symmetrical if

∃ a (dual) binary operation ¨∶ L×L→ L such that (L,¨,⊺) is a cdeo algebra;

→ and ¨ induce the same order;

y ≤ x ¨ z ⇔ x ≤ y → z ,∀x , y , z ∈ L, i.e. [→,¨] is a Galois pair.

Remark

Under distributivity assumption, the adjoint products ⊗ and ⊗̃ of → and ¨
are related by a⊗̃b = b ⊗ a, for all a,b ∈ L.

A cdeo algebra is symmetrical if and only if ⊺ is a unit for ⊗.

A cdeo algebra with ⊗ commutative and associative is a complete integral
commutative residuated lattice, according to notation of
P. Jipsen, C. Tsinakis: A survey of residuated lattices, Ordered Algebraic
Structures (J. Martinez, Editor), Kluwer Academic Publishers, Dordrecht
2002, 19-56.
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Now, we give the definitions of global and relative equivalence.
Let Z ,L be two sets, ≡ be an equivalence relation on L and let h, k ∶ Z → L be two
functions.
Obviously, h and k are equivalent with respect to ≡ (h ≡ k) if (z)h ≡ (z)k , for
every z ∈ Z .
Let E ⊆ L and denote by

⟨E ⟩
≡
= {x ∈ L∣∃a ∈ E ∶ x ≡ a}

the saturation of E with respect ≡.

Definition

h and k are E-equivalent, shortly h ≡E k, if for every z ∈ Z, the following
equivalence holds:

(z)h ∈ ⟨E ⟩
≡
⇔ (z)k ∈ ⟨E ⟩

≡
.

Obviously, h ≡ k if and only if, for every E ⊆ L,h ≡E k .

7 / 29



We are interested in the case when (L,≤) is a (pre-)ordered set and consider the
equivalence relation ≡, induced by ≤ on L, i.e.

∀a,b ∈ L ∶ a ≡ b⇔ a ≤ b ∧ b ≤ a,

which is the equality if ≤ is an order.
We call

1 the upper-hull of E the set ↑ E = {x ∈ L∣ ∃e ∈ E ∶ e ≤ x} ;
2 the lower-hull of E the set E : ↓ E = {x ∈ L∣ ∃e ∈ E ∶ x ≤ e} .

With this notation, we give the following Definition.

Definition

The functions h, k ∶ Z → L are upper (lower) E-equivalent with respect to ≡,
shortly h ≡↑E k (h ≡↓E k), if ∀z ∈ Z one has

(z)h ∈↑ E ⇔ (z)k ∈↑ E ((z)h ∈↓ E ⇔ (z)k ∈↓ E).

Remark

Since ↑ E = ⟨↑ E ⟩
≡
and ↓ E = ⟨↓ E ⟩

≡
, we can say that a relative upper (lower)

equivalence is an equivalence relative to an upper (lower) set of L.
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On the base of equivalences of functions with values in a (pre-)ordered set (L ≤),
in particular of L-relations, we shall present our general approach to connections,
including their classification in four types, related to each other by analogies and
dualities, as in

J. Gutiérrez Garćıa, I. Mardones-Pérez, M.A. de Prada Vicente, D. Zhang: Fuzzy
Galois connections categorically, Math. Log. Quart. 56 (2010), 131-147

Our general approach will allow also to include further the classical notion of
conjugated pairs of functions introduced by Tarski and developed in

B. Jónsson and A. Tarski: Boolean algebras with operators, I, Amer. J. Math. 73
(1951), 891-939; 74, (1952), 127-162.

We note that not only the notion of conjugated pairs, also considered recently in

G. Georgescu, A. Popescu: Non-dual fuzzy connections, Archive Math. Logic 43

(8) (2004), 1009-1039

will be extended, but it will be also classified into four types (we shall call them
Tarski connections) that are perfectly order-dual to Galois connections.
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We propose a quite general framework where Galois connections and Tarski
connections (our terminology for conjugated pairs) are special instances of
(global) connections, which are generalizations of fuzzy connections. All these
notions are, in fact, determined by suitable pairs of relations which are (globally or
relatively) equivalent.
Let (L,≤) be a (pre-)ordered set, (X , α), (Y , β) be two possibly structured sets,
each equipped with a fixed binary L-relation on it and f ∶ X → Y , g ∶ Y → X be
two functions. Consider the L-relations from X to Y defined for all x ∈ X , y ∈ Y
by:

Rβf ∶ X ×Y → L, (x , y)↦ (x , y)Rβf = (y , (x)f )β;

Rf β ∶ X ×Y → L, (x , y)↦ (x , y)Rf β = ((x)f , y)β;

Rαg ∶ X ×Y → L, (x , y)↦ (x , y)Rαg = (x , (y)g)α;

Rgα ∶ X ×Y → L, (x , y)↦ (x , y)Rgα = ((y)g , x)α.
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With the above notations, we state the following.

Definition

The pair of maps f and g is called

- a type I (global) connection between X and Y , denoted by [f -g], if
Rβf ≡ Rαg .

- a type II (global) connection between X and Y , denoted by ]f -g[, if
Rf β ≡ Rgα.

- a type III (global) connection between X and Y , denoted by (f ,g), if
Rf β ≡ Rαg .

- a type IV (global) connection between X and Y , denoted by )f ,g(, if
Rβf ≡ Rgα.
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Definition

Let E ⊆ L be a subset of the (pre-)ordered set (L,≤).The pair of maps f and g is
called

- a type I E-connection between X and Y , denoted by [f -g]E , if Rβf ≡E Rαg .
- a type II E -connection between X and Y , denoted by ]f -g[E , if Rf β ≡E Rgα.

- a type III E -connection between X and Y , denoted by (f ,g)E , if
Rf β ≡E Rαg .

- a type IV E-connection between X and Y , denoted by )f ,g(E , if
Rβf ≡E Rgα.

12 / 29



Definition

Let E ⊆ L be a subset of the (pre-)ordered set (L,≤).The pair of maps f and g is
called

- a type I Galois E-connection between X and Y , denoted by [f -g]
↑E , if

Rβf ≡↑E Rαg .

- a type II Galois E-connection between X and Y , denoted by ]f -g[↑E , if
Rf β ≡↑E Rgα.

- a type III Galois E-connection between X and Y , denoted by (f ,g)↑E , if
Rf β ≡↑E Rαg .

- a type IV Galois E-connection between X and Y , denoted by )f ,g(↑E , if
Rβf ≡↑E Rgα.
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Definition

Let E ⊆ L be a subset of the (pre-)ordered set (L,≤).The pair of maps f and g is
called

- a type I Tarski E-connection between X and Y , denoted by < f ,g >↓E , if
Rβf ≡↓E Rαg .

- a type II Tarski E-connection between X and Y , denoted by > f ,g <↓E , if
Rf β ≡↓E Rgα.

- a type III Tarski E -connection between X and Y , denoted by {f ,g}↓E , if
Rf β ≡↓E Rαg .

- a type IV Tarski E-connection between X and Y , denoted by }f ,g{↓E , if
Rβf ≡↓E Rgα.
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In the classical approaches:
● to Galois connections, (X , α) and (Y , β) are possibly complete posets and L = 2.
Classical Galois connections are, in our terminology, Galois 1-connections between
posets; more precisely, antitonic Galois connections are Galois 1-connections of
type I while isotonic Galois connections are Galois 1-connections of type III (those
of type II and IV are closely related to those of type I and III, respectively).
●[−] to conjugated pairs, X = Y are Boolean algebras and hence these are, in our
terminology, Tarski 0-connections of any of the types I-IV on X .

The implicative structure of logic and, in particular, the order-theoretic approach
to cdeo algebras, give a suitable framework to explain details of our viewpoint and
allows to prove the main properties of Galois connections (most well-known) and
Tarski connections (which extend results of B. Jónsson and A. Tarski).
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Proposition

With the above notation, the following hold.

1 [f -g] if and only if [g-f ];
2 [f -g] if and only if ]f -g[.
3 [f -g]↑e , if and only if ∀x ∈ X , y ∈ Y : (x , y)Rβf ≥ e⇔ (x , y)Rαg ≥ e;

Proposition

Let (L,→,⊺) be a cdeo algebra and let e ∈ L that satisfy(n) x ≤ y ⇔ e ≤ x → y , ∀x , y ∈ L (i.e. x ⊗ e = x, ∀x ∈ L).
1 If f ,g ∶ (L,→)→ (L,→) are two functions such that [f ,g]↑e , then

1 (y)g = ⋁{x ∣ y ≤ (x)f };
2 (x)f = ⋁{y ∣ x ≤ (y)g}.

2 Let f ∶ (L,→)→ (L,→) be a function. There exist a map g ∶ (L,→)→ (L,→)
such that [f -g]↑e if and only if (⋁(S))f = ⋀s∈S(s)f , for every S ⊆ L.
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Proposition

With above notation, the following hold.

1 < f ,g > if and only if < g , f >;
2 < f ,g > if and only if > f ,g <;
3 < f ,g >↓d , if and only if ∀x ∈ X , y ∈ Y (x , y)Rf β ≤ d ⇔ (x , y)Rgα ≤ d;
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Let (L,→,⊺) a cdeo algebra. If d ∈ L the relative d-negation of x ∈ L is defined by
setting x−d = x → d . If L is symmetrical, we can define a dual relative d-negation
of x ∈ L by setting x∼d = x ¨ d . An element d ∈ L is called dualizing if it satisfies
the condition x∼d−d = x−d∼d = x ,∀x ∈ L.
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of x ∈ L by setting x∼d = x ¨ d . An element d ∈ L is called dualizing if it satisfies
the condition x∼d−d = x−d∼d = x ,∀x ∈ L.

Proposition

Let (L,→,⊺) be a symmetrical cdeo algebras, with adjoint product ⊗ and d be a
dualizing element of L.

1 If f ,g ∶ (L,⊗)→ (L,⊗) are two functions such that < f ,g >↓d , then
1 (y)g = ⋀{x

∼d ∣(x)f ⊗ y ≤ d} = (⋁{x ∣(x)f ≤ y
∼d })∼d ;

2 (x)f = ⋀{y
∼d ∣(y)g ⊗ x ≤ d} = (⋁{y ∣(y)g ≤ x

∼d })∼d .

2 Let f ∶ (L,⊗)→ (L,⊗) be a function. There exist a map g ∶ (L,⊗)→ (L,⊗)
such that < f ,g >↓d if and only if (⋁(S))f = ⋁s∈S(s)f , for every S ⊆ L.
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Let (L,→,⊺) a cdeo algebra. If d ∈ L the relative d-negation of x ∈ L is defined by
setting x−d = x → d . If L is symmetrical, we can define a dual relative d-negation
of x ∈ L by setting x∼d = x ¨ d . An element d ∈ L is called dualizing if it satisfies
the condition x∼d−d = x−d∼d = x ,∀x ∈ L.

Proposition

Let (L,→,⊺) be a symmetrical cdeo algebras, with adjoint product ⊗ and d be a
dualizing element of L.

1 If f ,g ∶ (L,⊗)→ (L,⊗) are two functions such that < f ,g >↓d , then
1 (y)g = ⋀{x

∼d ∣(x)f ⊗ y ≤ d} = (⋁{x ∣(x)f ≤ y
∼d })∼d ;

2 (x)f = ⋀{y
∼d ∣(y)g ⊗ x ≤ d} = (⋁{y ∣(y)g ≤ x

∼d })∼d .

2 Let f ∶ (L,⊗)→ (L,⊗) be a function. There exist a map g ∶ (L,⊗)→ (L,⊗)
such that < f ,g >↓d if and only if (⋁(S))f = ⋁s∈S(s)f , for every S ⊆ L.

Remark

Although the Tarski connections are order dual of Galois connections, the contexts
in which their classical notions are located are not mutually dual. The given
framework explains, as already noted by Georgescu and Popescu, why the Galois
connections and the conjugate pairs both fall in the scheme of so-called fuzzy
Galois connections.
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The relational triangles are simple tools involving L-relations and their
compositions and they are useful to describe the structure of class L-relations and
also its underlying algebra. In fact, in addition to those that we will see, by using
the E -connections, we can define their weak (local) version that allow to describe
completely the structure of the (symmetrical) cdeo algebra.
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The relational triangles are simple tools involving L-relations and their
compositions and they are useful to describe the structure of class L-relations and
also its underlying algebra. In fact, in addition to those that we will see, by using
the E -connections, we can define their weak (local) version that allow to describe
completely the structure of the (symmetrical) cdeo algebra.

Definition

Let L be a possibly structured set and (A, α, α̃), (B , β, β̃) and (C , γ, γ̃) be sets,
each equipped with two fixed binary L-relations on it. The diagram

(C , γ, γ̃)
χ χ̃

%%KKKKKKKKKK

(A, α, α̃)
ψ ψ̃

99ssssssssss

ϕ ϕ̃
// (B , β, β̃)

with ϕ, ϕ̃ ∶ A ×B → C, ψ, ψ̃ ∶ A × C → B and χ, χ̃ ∶ B × C → A, is called double
relational triangle if for all a ∈ A,b ∈ B , c ∈ C the following equalities hold:

Rαχ = Rϕ̃β ; Rα̃χ̃ = Rψβ̃ ; Rαχ̃ = Rγ̃ϕ; Rα̃χ = Rγϕ̃.
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Explicitly, for all a ∈ A,b ∈ B , c ∈ C the above equalities become:

[1] (a, (c ,b)χ)α = ((a, c)ψ̃,b)β;
[2] (a, (c ,b)χ̃)α̃ = ((a, c)ψ,b)β̃;
[3] (a, (c ,b)χ̃)α = (c , (a,b)ϕ)γ̃;
[4] (a, (c ,b)χ)α̃ = (c , (a,b)ϕ̃)γ.
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Fixing c ∈ C , we can consider the applications:

ψ̃c ∶ A→ B , a ↦ (a)ψ̃c = (a, c)ψ̃
χc ∶ B → A, b ↦ (b)χc = (c ,b)χ.

Hence, the equality [1] becomes (a, (b)χc)α = ((a)ψ̃c ,b)β; it establishes
that ψ̃c and χc form a type III (global) connection between A and B .

Fixing c ∈ C , we can consider the applications:

ψc ∶ A→ B , a ↦ (a)ψc = (a, c)ψ
χ̃c ∶ B → A, b ↦ (b)χ̃c = (c ,b)χ̃.

Hence, the equality [2] becomes (a, (b)χ̃c)α̃ = ((a)ψc ,b)β̃; it establishes
that ψc and χ̃c form a type IV type (global) connection between A and B .
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Fixing b ∈ B , we can consider the applications:

ϕb ∶ A→ C , a ↦ (a)ϕb = (a,b)ϕ
χ̃b ∶ C → A, c ↦ (c)χ̃b = (c ,b)χ̃.

Hence, the equality [3] becomes (a, (c)χ̃b)α = (c , (a)ϕb)γ̃; it establishes
that ϕb and χ̃b form a type I (global) connection between A and C .

Fixing b ∈ B , we can consider the applications:

ϕ̃b ∶ A→ C , a ↦ (a)ϕ̃b = (a,b)ϕ
χb ∶ C → A, c ↦ (c)χ̃b = (c ,b)χ̃.

Hence, the equality [4] becomes (a, (c)χb)α̃ = (c , (a)ϕ̃b)γ; it establishes
that ϕ̃b and χb form a type I (global) connection between A and C .

Since (a, (c)χ̃b)α = (c , (a)ϕb)γ̃ is equivalent to ((c)χ̃b, a)α− = ((a)ϕb, c)γ̃−
the equalities [3] establishes, moreover, that ϕb and χ̃b form a type II
(global) connection between A and C .
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The study of binary many-valued relations taking as a set of truth values some
kind of cdeo algebras is developed in

M.E.D.S., C. Guido: The structure of many-valued relations, (preprint),

where an algebraic abstract model of L-relation, called relation pseudo-category,
has been introduced and studied, as a generalization of Dedekind category and
MV -relation algebras considered, respectively, by M. Winter and A. Popescu.
We can give the following pointwise definitions.

Definition

1 áXY ∶ X ×Y → L : (x , y)áXY = �;
2 ãXY ∶ X ×Y → L : (x , y)ãXY = ⊺;

3 IX ∶ X ×X → L : (x , x ′)IX = { ⊺ if x = x ′

� otherwise
;

4 R→R′ ∶ X ×Y → L: (x , y)(R→R′) = (x , y)R→ (x , y)R′.
It is easy to show that the triple

(LX×Y ,→,ãXY )
is a cdeo algebra. Indeed, this algebra of L-relations inherits all the properties
assumed on L.
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If L is a symmetrical cdeo algebra, one can consider the following partial
compositions of L-relations R ∶ X ×Y → L and S ∶ Y × Z → L in a similar way as
has been done in

R.Bělohlávek: Fuzzy Relational Systems: Foundations and Principles, IFSR
International Series on Systems Science and Engineering, Vol. 20, Kluwer
Academic, Plenum Press, Dordrecht, NewYork, 2002.

in the context of residuated lattices.

- (x , z)(R� S) = ⋀y∈Y (x , y)R→ (y , z)S;
- (x , z)(R�̃S) = ⋀y∈Y (x , y)R ¨ (y , z)S;
- (x , z)(R� S) = ⋀y∈Y (y , z)S → (x , y)R;
- (x , z)(R�̃S) = ⋀y∈Y (y , z)S ¨ (x , y)R;
- (x , z)(R� S) = ⋁y∈Y (x , y)R⊗ (y , z)S;
- (x , z)(R�̃S) = ⋁y∈Y (x , y)R⊗̃(y , z)S.
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Proposition

Let L = (L,→,⊺) be a symmetrical cdeo algebra. Then for any triple of sets(X ,Y ,Z) the diagram

(LX×Y ,SX×Y , S̃X×Y )
χ χ̃

''OOOOOOOOOOO

(LZ×X ),SZ×X , S̃Z×X )
ψ ψ̃

77ooooooooooo

ϕ ϕ̃
// (LY×Z ,SY×Z , S̃Y×Z)

where

(ρ, σ)ϕ = (σ � ρ)−; (ρ, τ)ψ = (ρ� τ)−; (τ, σ)χ = (τ�̃σ)−;
(ρ, σ)ϕ̃ = (σ�̃ρ)−; (ρ, τ)ψ̃ = (ρ�̃τ)−; (τ, σ)χ̃ = (τ � σ)−

is a double r -triangle if and only if L is associative.

Proof.

In fact, under associativity assumption the following equalities hold:

- a → (c → b) = (a⊗̃c)→ b; a ¨ (c ¨ b) = (a⊗ c)¨ b;

- a → (c ¨ b) = c ¨ (a → b); a ¨ (c → b) = c → (a ¨ b).
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Proposition

Let L = (L,→,⊺) be a symmetrical cdeo algebra. Then for any triple of sets(X ,Y ,Z) the diagram

(LX×Y ,SX×Y )
χ

##FFFFFFFF

(LZ×X ,SZ×X )
ψ

;;xxxxxxxx

ϕ
// (LY×Z ,SY×Z)

where

(ρ, σ)ϕ = (σ � ρ)−; (ρ, τ)ψ = (ρ� τ)−; (τ, σ)χ = (τ � σ)−
is a (double) relational triangle if and only if L is associative and commutative.
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Further examples of the above defined triangles can be obtained replacing the
subsethood degree with the overlap degree defined as follows.
Let X be a set and let (L,→,⊺) be a cdeo algebra.
The overlap degree is the L-relation TX ∶ LX × LX → L defined by(A,B)TX = ⋁x∈X (x)A⊗ (x)B , for all A,B ∈ LX .
If (L,→,⊺) is a symmetrical cdeo algebra, we can define a further L-relationT̃X ∶ LX × LX → L such that (A,B)T̃X = ⋁x∈X (x)A⊗̃(x)B , for all A,B ∈ LX .
We notice that the equality (A,B)TX = (B ,A)T̃X holds for all A,B ∈ LX .
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Proposition

Let L = (L,→,⊺) be a symmetrical cdeo algebra. Then for any triple of sets(X ,Y ,Z) the diagram

(LX×Y ,TX×Y , T̃X×Y )
χ χ̃

''NNNNNNNNNNN

(LZ×X ,TZ×X , T̃Z×X )
ψ ψ̃

77ppppppppppp

ϕ ϕ̃
// (LY×Z ,TY×Z , T̃Y×Z)

where

(ρ, σ)ϕ = σ�̃ρ; (ρ, τ)ψ = ρ�̃τ ; (τ, σ)χ = τ � σ;

(ρ, σ)ϕ̃ = σ � ρ; (ρ, τ)ψ̃ = ρ� τ ; (τ, σ)χ̃ = τ�̃σ,
is a double r -triangle if and only if L is associative.

Proof.

In fact, under associativity assumption:

1 a⊗ (b ⊗ c) = (a⊗ b)⊗ c ; a⊗̃(b⊗̃c) = (a⊗̃b)⊗̃c ;
2 a⊗ (b⊗̃c) = (a⊗ c)⊗ b; a⊗̃(b ⊗ c) = b ⊗ (c ⊗ a).
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Proposition

Let L = (L,→,⊺) be a symmetrical cdeo algebra. Then for any triple of sets(X ,Y ,Z) the diagram

(LX×Y ,TX×Y )
χ

##FFFFFFFF

(LZ×X ,TZ×X )
ψ

;;xxxxxxxx

ϕ
// (LY×Z ,TY×Z)

where

(ρ, σ)ϕ = σ � ρ; (ρ, τ)ψ = ρ� τ ; (τ, σ)χ = τ � σ

is a (double) relational triangle if and only if L is associative and commutative.
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