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Introduction

The prevailing view in the development of logic up to XX century was that
every proposition is either true or else false. This thesis was, however, al-
ready questioned in antiquity. For example in Aristotle’s De interpretatione
truth values of future contingents matters were discussed, while in medieval
times truth indeterminacy was opposed by theological difficulties about di-
vine foreknowledge (for an historical overview see [102, 80]).

Nevertheless, the beginning of formal many-valued logic is the work [78]
of Jan �Lukasiewicz in 1920 studying three valued logic, and the independent
work of Post in 1921 [99]. Few years later, Heyting [70] introduced a three
valued propositional calculus related with intuitionistic logic and Gödel [60]
proposed an infinite hierarchy of finitely-valued systems: his aim is to show
that there is no finitely-valued propositional calculus which is sound and
complete for intuitionistic logic.

In the last few decades many-valued logics have been the object of a
renewed interest: in 1965 Zadeh published the paper [115] where fuzzy sets
are defined and the discipline of Fuzzy Logic began. Nowadays the vari-
ous approaches to many-valued logics found in literature are competing as
natural candidates to offer to the engineering discipline of Fuzzy Logic the
theoretical foundations that have been lacking for several years.

Anyway, a strong condition distinguishes many-valued logic from fuzzy
logic: fuzziness phenomena are not present at the meta-logical level, for
example both the set of axioms and the related set of logical consequences
in many-valued logics are crisp sets (see [95]). Logical and mathematical
analysis on Fuzzy Logics with a fuzzy deduction apparatus can be found for
example in Pavelka [98] and in [57], [62], [93].

The basic property of many-valued logics as studied in this thesis is
the truth-functionality of their connectives: truth value of a formula only
depends on the truth values of its subformulas. In this way we are excluding
other non-classical logics as for example probabilistic [92], possibilistic [47]
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and modal logics.
Triangular norms are the operations that are considered to fit as well as

possible the notion of conjunction. When also continuity is required to con-
nectives then the common fragment of all possible many-valued logics has
been defined by Hàjek and called Basic Fuzzy Logic in [67]: it is a propo-
sitional calculus that is sound and complete when formulas are interpreted
in the interval [0, 1], conjunction is interpreted as a continuous t-norm and
implication is the corresponding residuum (see Chapter 1).

In this thesis we shall focus on the three main many-valued logics, namely
�Lukasiewicz, Gödel and Product logic. In particular we are interested in the
truth tables of their formulas: since we suppose that the set of truth values
is the interval [0, 1], then truth tables will be functions from a suitable power
of [0, 1] into [0, 1].

In the first Chapter we shall give all the necessary definitions and nota-
tions. Many-valued logics are defined with a set of truth values in general
different from [0, 1], since in our analysis of Product logic we shall deal with
an isomorphic version taking positive real numbers as truth values.

In the second Chapter we give a characterization of truth tables of the
three main many-valued logics. Results for �Lukasiewicz are well known
in literature: McNaughton showed in [82] that truth tables of �Lukasiewicz
formulas are continuous piecewise linear functions, where each piece has
integer coefficients. For Gödel and Product logic only existed algebraic
descriptions (as in [72, 73] and [35, 36]) and the first explicit description of
truth tables for Gödel logic appeared in [52].

One of the main advantages in having a functional representation for
formulas of a given logic, is that we can try to check tautologies in a more
direct way, using analytical and geometrical instruments.

For example, using such instruments, in [86] the satisfiability problem
for �Lukasiewicz logic is shown to be NP-complete. Indeed, truth tables of
�Lukasiewicz formulas have a very peculiar shape [82] and the information
that they carry can be summarized in a finite number of points. This has
been the starting point of the analysis in [8], where it has been shown that
if we denote by #ϕ the number of binary connectives and by n the number
of variables in ϕ, a formula ϕ of �Lukasiewicz logic is a tautology of infinite-
valued logic if and only if it is a tautology in all finite-valued �Lukasiewicz
logics with a number of truth values less or equal to (#ϕ/n)n, if and only
if it is a tautology of the 2#ϕ−1 + 1-valued logic. Very recent investigations
aim to show that if ϕ is a tautology of infinite-valued �Lukasiewicz logic then
there exists m ≤ #ϕ such that ϕ is a tautology of m-valued �Lukasiewicz
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logic.
In the third Chapter we shall extend the above methods also to Gödel

and Product logics and we shall use results in the fourth Section where
sequents calculi are introduced for these logics.

�Lukasiewicz logic has been the most investigated among t-norm based
logics. This is due both to the continuity of its connectives (and then of
truth tables) and to the deep results regarding its algebraic counterpart,
MV-algebras.

Hence the rest of the thesis is mainly concerned with �Lukasiewicz logic:
in Chapter 5 we shall define Rational �Lukasiewicz logic, introducing new
unary connectives that allow rational slopes in truth tables [55]. In Chapter
6 we shall illustrate two main examples in which connectives of �Lukasiewicz
logic have a natural interpretation. These examples are used to discuss
the probability of fuzzy-events, in particular we shall analyze subjective an
conditional probability.

In the last Chapter a many-valued approach to collaborative filtering
is presented, by using Rational �Lukasiewicz logic. The main features are
proposed and a basis for future experimentation is sketched. Result of this
section have been published in [5].
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Chapter 1

Basic Definitions

1.1 Many-valued logics

We shall start giving a very general definition of propositional many valued
logic, not specifying any interpretation for connectives.

Definition 1.1.1 The language for a propositional many-valued logic is
given by a denumerable sequence X1,X2, . . . of propositional variables, a
set C of connectives and a function ν : C → N. A connective c ∈ C is n-ary
if ν(c) = n.

A many-valued propositional logic is a triple L = (S, D, F ), where

• S is a non-empty set of truth-values,

• D ⊂ S is the set of designated truth values,

• F is a (finite) non-empty set of functions such that for any c ∈ C
there exists fc ∈ F with fc : Sν(c) → S.

Also if there are interesting examples of many-valued logics in which the set
of truth values is not linearly ordered (for example, Belnap logic in [17]), we
shall focus on logics in which the set S is linearly ordered.

Functions of F give the truth tables of the connectives of the logic.

Definition 1.1.2 A triple (S,D,F ) is an infinite-valued logic if it is a many
valued logic and S is an infinite set. (S,D,F ) is a finite-valued logic if S is
a finite set.

7
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If S is infinite and SN = {s1, . . . , sN} is such that D ⊆ SN ⊆ S and
is closed with respect to all the functions in F , then the infinite-valued
logic (S,D,F ) naturally induces an N -valued logic (SN ,D, F ′) where each
function in F ′ is the restriction to SN of a function in F .

Example 1.1.3 For each integer n > 0, let Sn be the set {0, 1
n , . . . ,

n−1
n , 1}.

With the above notation,

• Boolean logic B can be written down as

B = ({0, 1}, {1}, {f∧ , f¬}),

where

f∧(x, y) = min(x, y) and f¬(x) = 1 − x.

• �Lukasiewicz infinite-valued logic is defined as

�L∞ = ([0, 1], {1}, {f⊕ , f¬}).

where
f⊕(x, y) = min(1, x+ y).

• Kleene strong three valued logic [76] is defined as

K = ({0, 1/2, 1}, {1}, {f¬ , f∨, f→k
})

where

f¬(x) = 1 − x, f∨(x, y) = max(x, y)

and

→k 0 1/2 1
0 1 1 1

1/2 1/2 1/2 1
1 0 1/2 1

• �Lukasiewicz (n+1)-valued logic is defined as

�Ln = (Sn, {1}, {f⊕, f¬}),
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• Gödel infinite-valued logic is given by

G∞ = ([0, 1], {1}, {f∧ , f¬G
, f→G

}),

where

f→G
(x, y) =

{
1 if x ≤ y
y if x > y

and f¬G
(x) = f→G

(x, 0).

• Product logic is

Π∞ = ([0, 1], {1}, {f· , f¬G
, f→Π

}),

where

f·(x, y) = xy and f→Π
(x, y) =

{
1 if x ≤ y
y/x otherwise.

Definition 1.1.4 The set Form(S, D, F ) of propositional formulas of a
logic L = (S,D,F ), is inductively defined as follows:

• Each X ∈ V is a formula.

• If ∗ ∈ C, ν(∗) = k and ϕ1, . . . , ϕk are formulas, then ∗ϕ1 · · ·ϕk is a
formula.

Definition 1.1.5 (Satisfiability and Validity) An assignment for L is
any function v : V → S. Assignments can be uniquely extended to the set
of formulas as follows:

v(∗ϕ1 · · ·ϕk) = f∗(v(ϕ1), . . . , v(ϕk)).

A formula ϕ is satisfied in L by an assignment v if v(ϕ) ∈ D. A formula
ϕ is valid in L (or a tautology, in symbols |=L ϕ) if ϕ is satisfied by all
assignments, that is, if for every v, v(ϕ) ∈ D.

Analogously, truth tables of connectives are extended to truth tables of
formulas.

Definition 1.1.6 (Truth tables) The truth table of a formula ϕ whose
variables are among X1, . . . ,Xn, is the function fϕ : [0, 1]n → [0, 1] such
that fϕ(v(X1), . . . , v(Xn)) = v(ϕ) for any assignment v.
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Proposition 1.1.7 (Function associated with a formula) Truth
tables of formulas are inductively given by

fXi(x1, . . . , xn) = xi

f∗ϕ1···ϕk
(x1, . . . , xk) = f∗(fϕ1(x1, . . . , xn), . . . , fϕk

(x1, . . . , xn)),

for any (x1, . . . , xn) ∈ Sn and f∗ ∈ F .

Assignments are canonically identified with points of Sn: if v(Xi) = xi for
all i ∈ {1, . . . , n}, then v(ϕ) = fϕ(x1, . . . , xn).

If ∗ is a binary connective then we write ϕ1∗ϕ2 to denote ∗ϕ1ϕ2. Further,
from now on, we shall use the same symbol to indicate a connective and its
associated operation.

Definition 1.1.8 (Logical Consequence) Let S be a linearly ordered lat-
tice and D be an upward closed subset of S (i.e., if x ∈ D and y ≥ x then
y ∈ D). We say that the finite set of formulas ∆ is a logical consequence of
the finite set of formulas Γ (and we write Γ |=L ∆) if

inf
γ∈Γ

v(γ) ∈ D implies sup
δ∈∆

v(δ) ∈ D

for any v assignment for L. So, Γ |=L ∆ if, whenever v is an assignment
satisfying all the formulas of Γ, then there exists at least one formula in ∆
that is satisfied by v.

Definition 1.1.9 (Subformulas) For each formula ϕ, let Sub(ϕ) be the
set of all subformulas of ϕ. If ψ ∈ Sub(ϕ) then we write ψ � ϕ. Henceforth,
different occurrences of the same subformula in ϕ shall be considered as
different subformulas. Two occurrences ϕ and ψ of formulas are disjoint if
neither ϕ � ψ nor ψ � ϕ. If ψ � ϕ and ψ 	= ϕ we write ψ ≺ ϕ.

Let L = (S,D,F ) be a logic with only unary and binary connectives.
If ϕ is a formula of L, we shall denote by var(ϕ) the set of all variables
occurring in ϕ. For each X ∈ var(ϕ), let #(X,ϕ), giving the number of
occurrences of X in ϕ, be inductively defined as follows:

- If ϕ = X then #(X,ϕ) = 1. If ϕ = Y for some variable Y 	= X, then
#(X,ϕ) = 0.

- If ∼ is a unary connective, then #(X,∼ ψ) = #(X,ψ).
- If � is a binary connective, then #(X,ψ � ϑ) = #(X,ψ) + #(X,ϑ).
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Then the total number of occurrences of variables in ϕ is given by:

#(ϕ) =
∑

X∈var(ϕ)

#(X,ϕ).

Since now we have described propositional many valued logic from a
semantical point of view, i.e., by means of truth tables.

The syntactic approach is the same as for propositional classical logic. A
set of formulas called axioms is fixed and the inference rule is modus ponens:
from ϕ and ϕ → ψ we can infer ψ.

Definition 1.1.10 (Proof and provability) If Γ is a set of formulas, Γ �
ϕ means that Γ proves ϕ (or ϕ is provable from Γ), that is there exists a
sequence of formulas γ1, . . . , γu such that γu = ϕ and every γi either is an
axiom, or belongs to Γ or is obtained from γi1 , γi2 (i1, i2 < i) by modus
ponens. ϕ is provable (� ϕ) if is provable from the emptyset.

A logic satisfies the completeness theorem if the set of provable formulas
coincides with the set of valid formulas.

1.2 Continuous t-norms and BL-algebras

In the above section we have introduced many-valued logics with truth-
functional connectives: the truth value of the compound formula ϕ ∗ ψ is
determined only by the truth values of ϕ and ψ. In this section we shall
focus our attention on many-valued logics having [0, 1] as set of truth val-
ues and where the only designated truth value is 1. Further, we shall fix
an interpretation of connectives: a good candidate for the truth table of
conjunction of two propositions should be a commutative and associative
operation. It is also natural to assume that the truth degree of the con-
junction of a proposition with a complete falsity should be completely false,
and the conjunction of a proposition with a complete truth should not have
smaller truth degree than the proposition has.

These properties are witnessed by the following operation (for an
overview, see [24]).

Definition 1.2.1 (t-norm) A t-norm is a binary operation ∗ on [0, 1] such
that
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• ∗ is commutative and associative, i.e., for all x, y, z ∈ [0, 1],

x ∗ y = y ∗ x
(x ∗ y) ∗ z = x ∗ (y ∗ z),

• ∗ is non-decreasing in both arguments

x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y,
y1 ≤ y2 implies x ∗ y1 ≤ x ∗ y2

• 1 ∗ x = x and 0 ∗ x = 0 for all x ∈ [0, 1].

Example 1.2.2 The following are example of t-norms. All are continuous
t-norms, with the exception of (iv).

(i) �Lukasiewicz t-norm: x y = max(0, x + y − 1).

(ii) Product t-norm: x · y usual product between real numbers.

(iii) Gödel t-norm: x ∧ y = min(x, y).

(iv) Drastic t-norm: x ∗D y =
{

0 if (x, y) ∈ [0, 1[2

min(x, y) otherwise.

(v) The family of Frank t-norms [51] is given by:

x ∗λF y =

⎧⎪⎪⎨⎪⎪⎩
x y if λ = 0
x · y if λ = 1
min(x, y) if λ = ∞
logλ(1 + (λx−1)(λy−1)

λ−1 ) otherwise.

An element x ∈ [0, 1] is idempotent with respect to a t-norm ∗, if x ∗x =
x. For each continuous t-norm ∗, the set E of all idempotents is a closed
subset of [0, 1] and hence its complement is a union of a set Iopen(E) of
countably many non-overlapping open intervals. Let [a, b] ∈ I(E) if and
only if (a, b) ∈ Iopen(E). For I ∈ I(E) let ∗|I the restriction of ∗ to I2.

The following theorem [77, 51] characterizes all continuous t-norms as
ordinal sums of �Lukasiewicz, Gödel and product t-norms:

Theorem 1.2.3 If ∗, E,I(E) are as above, then

(i) for each I ∈ I(E), ∗|I is isomorphic either to the Product t-norm or
to �Lukasiewicz t-norm.
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(ii) If x, y ∈ [0, 1] are such that there is no I ∈ I(E) with x, y ∈ I, then
x ∗ y = min(x, y).

When choosing a continuous t-norm as the truth table for conjunction,
the following proposition enable us to obtain a truth table for implication:

Proposition 1.2.4 (Residuum) Let ∗ be a continuous t-norm. Then, for
every x, y, z ∈ [0, 1], the operation

x →∗ y = max{z | x ∗ z ≤ y}

is the the unique operation satisfying the condition

(x ∗ z) ≤ y if and ony if x ≤ (x →∗ y)

The operation →∗ is called residuum of the t-norm ∗.

Example 1.2.5 The following are residua of the three main continuous t-
norms:

T-norm Residuum
�L x y = max(x+ y − 1, 0) x →	 y = min(1, 1 − x+ y)

P x · y usual product of reals x →· y =
{

1 if x ≤ y
y/x otherwise

G x ∧ y = min(x, y) x →∧ y =
{

1 if x ≤ y
y otherwise.

The problem of finding an appropriate axiomatization of many-valued
logics based on continuous t-norm has been approached by introducing suit-
able classes of algebraic structures. In [71], monoidal logic is introduced and
Hájek in [67] defines Basic (fuzzy) Logic. In the following we shall briefly
describe some important features of Basic Logic.

In the notation of Section 1.1, Basic Fuzzy infinite-valued Logic (BL) is
the triple ([0, 1], {1}, {f∗ , f→∗ , f0}), where f∗ is a continuous t-norm, f→∗ is
its associates residuum and f0 is the function identically equal to 0.

Truth tables of other derived connectives are defined as follows:

x ∧ y = x ∗ (x →∗ y) (1.1)
x ∨ y = ((x →∗ y) →∗ y) ∧ ((y →∗ x) →∗ x) (1.2)

¬x = x →∗ 0 (1.3)
x ≡ y = (x →∗ y) ∗ (y →∗ x) (1.4)
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From a syntactic point of view, formulas of Basic Propositional Fuzzy
Logic are built in the usual way from the connectives of conjunctions (∗),
implication (→), and from the constant 0. An axiom is a formula that can be
written in any one of the following ways, where ϕ, ψ and χ denote arbitrary
formulas:

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) (ϕ ∗ ψ) → ϕ
(A3) (ϕ ∗ ψ) → (ψ ∗ ϕ)
(A4) (ϕ ∗ (ϕ → ψ) → (ψ ∗ (ψ → ϕ))
(A5a) (ϕ → (ψ → χ)) → ((ϕ ∗ ψ) → χ)
(A5b) ((ϕ ∗ ψ) → χ) → (ϕ → (ψ → χ))
(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A7) 0 → ϕ.
In order to prove completeness, in [67] the author also introduced BL-

algebras:

Definition 1.2.6 A BL-algebra is an algebra

L = (L,∪,∩, ∗,→, 0, 1)

with four binary operations and two constants such that
(i) (L,∪,∩, 0, 1) is a lattice with largest element 1 and least element 0

(with respect to the lattice ordering ≤),
(ii) (L, ∗, 1) is a commutative semigroup with the unit element 1, i.e.,

∗ is commutative, associative, 1 ∗ x = x for all x (thus L is a residuated
lattice),

(iii) the following conditions holds:

(1) z ≤ (x → y) if and only if x ∗ z ≤ y, for all x, y, z ∈ L

(2) x ∩ y = x ∗ (x → y)

(3) x ∩ y = ((x → y) → y) ∩ ((y → x) → x)

(4) (x → y) ∩ (y → x) = 1

Example 1.2.7 The unit interval [0, 1] equipped with a continuous t-norm
and the corresponding residuum, is a BL-algebra.

At first step, Hájek showed that a propositional formula is provable in BL
if and only if it is a tautology in any linearly ordered BL-algebra. However,
the completeness theorem of BL with respect to BL-algebras, i.e., that a
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formula is provable in BL if and only if it is a tautology in [0, 1], was left
as an open problem in [67]. In [66] Hájek proved that such completeness
theorem can be obtained provided two new axioms were added to the original
axiomatic system of BL. In [33] the authors showed that these axioms are
redundant, hence the original axiomatic of BL is sound and complete with
respect to the algebraic structure induced by continuous t-norms on [0, 1].

Instead of considering a general continuous t-norm, we shall focus now on
�Lukasiewicz, Gödel and Product t-norms. In the following sections we shall
define the corresponding logics. In order to prove that axiomatizations of
these three logics exactly describe the truth tables of the corresponding
connectives in the interval [0, 1], the same argument as for BL-algebras can
be applied.

Let L denote any of �Lukasiewicz, Gödel and Product logic. Then a
variety of algebraic structures AL can be defined associated with L and the
following results can be proved (see for example [63], [67]):

• Examples of algebras in AL are the unit interval [0, 1] with truth func-
tions of connectives of L as operations and the algebra of classes of
provably equivalent formulas.

• If ϕ ∈ Form(L) is provable then ϕ = 1 is valid in all algebras of AL.

• Each algebra in AL is a subalgebra of the direct product of some
linearly ordered algebra.

• If ϕ = 1 is valid in the algebra [0, 1] then it is valid in all linearly
ordered algebras, in particular in the algebra of classes of formulas,
which means that ϕ is a provable formula.

As a consequence of completeness theorem for logic L with respect to
algebras AL we also have that the algebra of truth value of formulas of L
with n variables is the free algebra in the variety AL over n generators.

1.2.1 �Lukasiewicz logic and MV-algebras

�Lukasiewicz infinite-valued propositional logic �L∞ is the triple
([0, 1], {1}, {f	 , f→, f0}), where

f	(x, y) = max(0, x+ y − 1)
f→(x) = min(1, 1 − x+ y)

f0 = 0.
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Among infinite-valued systems, �Lukasiewicz logic is the most extensively
studied. A system of axioms for �Lukasiewicz logic is furnished by Axioms
for Basic Logic plus double negation:

¬¬ϕ → ϕ,

where negation ¬ is defined in (1.3) and is such that f¬(x) = 1 − x. Origi-
nally, in [79] �Lukasiewicz infinite-valued logic was axiomatized (using impli-
cation and negation as the basic connectives) by the following schemata:

�L1) ϕ → (ψ → ϕ)
�L2) (ϕ → ψ) → ((ψ → θ) → (ϕ → θ))
�L3) ((ϕ → ψ) → ψ) → ((ψ → ϕ) → ϕ)
�L4) (¬ϕ → ¬ψ) → (ψ → ϕ)
�L5) ((ϕ → ψ) → (ψ → ϕ)) → (ψ → ϕ).

Chang [28] and Meredith [83] proved independently that the last axiom
is derivable from the others.

From  and ¬ it is possible to define, in addition to connectives (1.1),
(1.2),(1.4), the connective

x⊕ y = ¬(¬x ¬y)

such that f⊕(x, y) = min(1, x+ y). Actually, any of the sets

{,¬}, {⊕,¬}, {→,¬}, {,→}

can be used to define all the other connectives.
In order to prove the completeness of this schemata of axioms with re-

spect to semantics of the interval [0, 1], Chang introduced MV-algebras in
[27]. In the following we shall summarize some of the main results for the
theory of MV-algebras. A standard reference is [32].

An MV-algebra is a structure A = (A,⊕,¬, 0, 1) satisfying the following
equations:

x⊕ (y ⊕ z) = (x⊕ y) ⊕ z
x⊕ y = y ⊕ x
x⊕ 0 = x
x⊕ 1 = 1
¬0 = 1
¬1 = 0
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¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.
As proved by Chang, boolean algebras coincide with MV-algebras sati-

sfying the additional equation x⊕ x = x (idempotency). Each MV-algebra
contains as a subalgebra the two-element boolean algebra {0, 1}. The set
B(A) of all idempotent elements of an MV-algebra A is the largest boolean
algebra contained in A and is called the boolean skeleton of A.

The monoids (A,⊕, 0) and (A,, 1) are isomorphic via the map

¬ : x �→ ¬x. (1.5)

Further any MV-algebra A is equipped with the order relation

x ≤ y if and only if ¬x⊕ y = 1. (1.6)

MV-algebras turn out to coincide with those BL-algebras satisfying the
equation ¬¬x = x.

Example 1.2.8 (i) The set [0, 1] equipped with operations

x⊕ y = min{1, x + y}, x y = max{0, x + y − 1}, ¬x = 1 − x.
(1.7)

is an MV-algebra.

(ii) For each k = 1, 2, . . . , the set

�Lk+1 = {0,
1
k
, . . . ,

k − 1
k

, 1}, (1.8)

equipped wit operations as in 1.7, is a linearly ordered MV-algebra
(also called MV-chain).

(iii) If X is any set and A is an MV-algebra, the set of functions f : X → A
obtained by pointwise application of operations in A is an MV-algebra.

(iv) The set of all functions from [0, 1]n into [0, 1] that are continuous and
piecewise linear, and such that each linear piece has integer coeffi-
cients, and operations are obtained as pointwise application of oper-
ation in 1.7, is an MV-algebra (actually, the free MV-algebra over n
free generators).

Chang’s Completeness Theorem states:
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Theorem 1.2.9 An equation holds in every MV-algebra if and only if it
holds in the MV-algebra [0, 1] equipped with operations x⊕y = min{1, x+y},
x y = max{0, x+ y − 1} and ¬x = 1 − x.

This theorem was proved by Chang using quantifier elimination for totally
ordered divisible abelian groups. There are several alternative proofs in
literature: the syntactic proof by Rose and Rosser [105], the algebraic proof
by Cignoli and Mundici [34] and the geometric proof by Panti [94].

Mundici in [85] constructed an equivalence functor Γ from the category of
�-groups with strong unit to the category of MV-algebras:

A lattice-ordered group (�-group for short) G = (G, 0,−,+,∧,∨) is an
abelian group (G, 0,−,+) equipped with a lattice structure (G,∧,∨) such
that, for every a, b, c ∈ G, c+(a∧ b) = (c+a)∧ (c+ b). An �-group is said to
be totally ordered if the lattice-order is total. An element u ∈ G is a strong
unit of G if for every x ∈ G there exists n ∈ N such that nu ≥ x. If G is
an �-group and u is a strong unit for G, the MV-algebra Γ(G,u) has the
form {x ∈ G | 0 ≤ x ≤ u} and operations are defined by x ⊕ y = u ∧ x+ y
and ¬x = u− x. If A is an MV-algebra we shall denote by GA the �-group
corresponding to A via Γ.

In [41] the author shows that every MV-algebra is an algebra of functions
taking values in an ultrapower of the interval [0, 1].

1.2.2 Gödel Logic and Gödel algebras

Gödel infinite-valued propositional logic G∞ is the triple
([0, 1], {1}, {f∧ , f¬G

}), where

f∧(x, y) = min(x, y)

f¬G
(x) =

{
1 if x = 0
0 otherwise.

Finite-valued Gödel propositional logics Gn were introduced in [60] to
prove that intuitionistic propositional logic cannot be viewed as a system of
finite-valued logic. In [48], Dummett proved completeness of such system.
Gödel propositional logic can be defined as the fragment of intuitionistic
logic satisfying the axiom (α → β) ∨ (β → α). Theorems of Gödel logic
are exactly those formulas which are valid in every linearly ordered Heyting
algebra, where Heyting algebras are the structure naturally associated with
intuitionistic logic. An analysis of Gödel logic can be found in [110, 14].
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In Hájek framework, Gödel logic is obtained adding to axioms of Basic Logic
the axiom

(G1) ϕ → (ϕ ∗ ϕ)

stating the idempotency of ∗. Gödel algebras are BL-algebras satisfying the
identity x ∗ x = x.

1.2.3 Product Logic and PL algebras

Product Logic Π is the triple ([0, 1], {1}, {f· , f¬G
}) where:

f·(x, y) = x · y usual product of reals

f¬G
(x) =

{
1 if x = 0
0 otherwise.

In [37] it is shown that Axioms for Product Logic can be obtained by adding

(Π1) ¬¬ϕ → ((ϕ → ϕ · ψ) → ψ · ¬¬ψ)

to Axioms of Basic Logic.
Product logic algebras, or PL-algebras for short, were introduced in [68],

where the completeness theorem for Product logic was proved. In [1] au-
thors showed that the class of product algebras is the equivalent algebraic
semantics (in the sense of [20]) of Product logic.

1.3 Notation and Geometrical definitions

In this Section we shall fix some notation and recall some basic notion of
linear algebra, Euclidean geometry and topology that will be useful in the
sequel.

By N, Z, Q and R we denote the set of natural, integer, rational and real
numbers, respectively. Q+ and R+ are the set of greater or equal to zero
rational and real numbers, respectively. Further,

Sn = {0,
1
n
, . . . ,

n− 1
n

, 1}.

�Lukasiewicz, Gödel and Product infinite-valued logic will be denoted by �L∞,
G∞ and Π, respectively. �Lukasiewicz and Gödel n + 1-valued logic will be
denoted by �Ln and Gn, respectively.

If x = (h1/k1, . . . , hn/kn) ∈ Rn
+, with 0 ≤ hi ≤ ki (ki 	= 0) inte-

gers and gcd(hi, ki) = 1, we denote by den(x) the least common multiple
lcm(k1, . . . , kn).
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Definition 1.3.1 If a1/b1 . . . an/bn are distinct positive rational numbers in
irreducible form, (i.e., gcd(ai, bi) = 1 and bi > 0), then their Farey mediant
is the rational number

a1 + . . .+ an
b1 + . . .+ bn

The Farey mediant of distinct points x1, . . . ,xn ∈ Qm
+ with m ≥ n + 1, is

obtained by coordinatewise application of the Farey mediant to components
of x1, . . . ,xn.

Note that the Farey mediant of x1, . . . ,xn is a proper (i.e., different from
each x1, . . . ,xn) convex combination of such points. Our present definition
of Farey mediant differs from other definitions in the literature (for example
the one given in [32]) since in general the point obtained by coordinatewise
application of the Farey mediant is not in irreducible form. Anyway we are
interested in the fact that for every choice of x1, . . . ,xn, there always exists
a convex combination of x1, . . . ,xn having denominator less than or equal
to the denominator of the Farey mediant of x1, . . . ,xn.

A linear function f : Rn → R is said to be homogeneous if f(0) = 0. We
say that a continuous piecewise linear function is homogeneous if and only
if every linear piece is homogeneous. By En we mean the set {e1, . . . , en} of
n-dimensional unit vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). We
shall denote by 0 the vector (0, . . . , 0) and by 1 the vector (1, . . . , 1). Given
the Euclidean space Rn, and a subset S ⊆ Rn, dim(S) denotes the dimension
of S. By definition dim(∅) = −1.

For any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn, the
scalar product x · y is, as usual, the real number x1y1 + · · · + xnyn.

The set H− of solutions x = (x1, . . . , xn) of an inequality of the form
a·x ≤ b, for a ∈ Rn, b ∈ R, is called an (affine) halfspace of Rn. The solutions
of the corresponding equation a ·x = b form the supporting hyperplane H of
H−.

A polyhedron P is the set-theoretic intersection P =
⋂
i∈I H

−
i of a finite

number of halfspaces. Each supporting hyperplane Hj (j ∈ I) such that
Hj ∩ P 	= ∅ is called a bounding hyperplane of P . Note that P =

⋂
{H−

i :
dim(Hi ∩ P ) = dim(P ) − 1}.

By a facet of P we mean any (dim(P ) − 1)-dimensional polyhedron F ,
arising as the intersection of P with one of its bounding hyperplanes. The
set of faces of a polyhedron P is defined as follows:

• ∅ and P are faces of P .

• Each facet of a face of P is a face of P .
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Set-theoretic inclusion makes the set F(P ) of faces of P into a lattice
(F(P ),⊆).
A polyhedral complex C is a set of polyhedra such that

• If A ∈ C then F(A) ⊆ C.

• If A,B ∈ C then A ∩ B is a face of both A and B, i.e., A ∩ B ∈
F(A) ∩ F(B).

Each polyhedron in C is called a cell of C. Let 0 ≤ k ≤ n be integers
such that n is the maximum dimension of cells in C. The set C(k) of all
k-dimensional cells of C is called the k-skeleton of C. Let us denote by F(C)
the set of faces of cells belonging to C.

Finally, we shall deal with topological notions. Every l-dimensional space
will be considered equipped with the topology induced by the Euclidean
metric (which is the same as the natural topology on Rl). Let F be an
l-dimensional face of a cell in a polyhedral complex. F is a closed set in
the l-dimensional space containing F . By the open l-dimensional face of a
cell we mean the biggest set contained in a face of the cell that is open with
respect to the topology of the l-dimensional space containing such face. In
other words, if F ∈ F(C) then F \

⋃
{G ∈ F(C) | G ⊆ F and G 	= F} (the

relative interior of F ) is an open face.
See [50],[74] for further references.
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Functional Representation

The aim of this section is to describe the truth tables of �Lukasiewicz, Gödel
and Product formulas. In the next chapters these results will be used to
analyze different aspects of the above logics.

In Section 2.1 we shall recall well known results for �Lukasiewicz logic
and we shall give a description of the free MV-algebra over one variable by
means of discrete functions (following [44]). In Section 2.2 we shall give a
characterization of truth tables of formulas of Gödel logic, while in Section
2.3 we shall focus attention on truth tables of formulas of Product logic.

2.1 �Lukasiewicz logic

The work on functional representation of many-valued logics began with
McNaughton [82] in 1951, who described the class of functions associated
with �Lukasiewicz logic.

Definition 2.1.1 A McNaughton function f : [0, 1]n → [0, 1] is a continu-
ous, piecewise linear function such that each piece has integer coefficients:
that is, there exist finitely many polynomials p1, . . . , pmf

each pi being of
the form pi(x1, . . . , xn) = ai1x1 + . . . + ainxn + bi, with ai1 . . . , ain, bi inte-
gers, such that, for any x ∈ [0, 1]n, there exists j ∈ {1, . . . ,mf} for which
f(x) = pj(x).

Theorem 2.1.2 (McNaughton theorem) A function f : [0, 1]n → [0, 1]
is a truth table of a �Lukasiewicz formula if and only if it is a McNaughton
function.

Mundici [89] was the first to give a constructive proof of McNaughton
Theorem 2.1.2, describing an algorithm that for each continuous piecewise

22
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linear function f finds a formula ϕ such that f is the truth table of ϕ. Since
then, different proofs have been given (see for example the ones in [3] and
in [93]).

The study of McNaughton functions gives many insights in �Lukasiewicz
logic:

- it allows a representation of �Lukasiewicz formulas in normal form, by
means of Schauder hats and unimodular triangulations corresponding tightly
to the branch of algebraic geometry known as desingularization of toric
varieties [12, 4];

- it was a source of inspiration for the geometrical proof of completeness
theorem in [94];

- it was used to show that the satisfiability problem for �Lukasiewicz logic
is NP-complete (see [86]);

- it allowed a reduction of infinite-valued �Lukasiewicz logic to finite-
valued logic [8].

Further, McNaughton Theorem gives us a concrete geometric representation
of free MV-algebras:

Theorem 2.1.3 The free MV-algebra over n generators is isomorphic to
the MV-algebra Mn obtained by the pointwise application of �Lukasiewicz
connectives to McNaughton functions.

2.1.1 A discrete free MV-algebra over one generator

Formulas of �Lukasiewicz infinite-valued propositional calculus with only one
variable, have been often investigated (see, for example, [2],[89]) for their
immediate geometrical interpretation.

In this section we construct a set of discrete functions and we equip
it with operations yielding an isomorphism with the set of McNaughton
functions of one variable. Results of this section appeared in [44].

Let M1 be the class of McNaughton functions of one variable, i.e., the
class of functions from [0, 1] in [0, 1] that are continuous, piecewise linear
where each piece has integer coefficients. Let f ∈ M1. By Definition 2.1.1
of McNaughton function, for every integer n > 0 and for i = 0, 1, . . . , n,
f(i/n) ∈ Sn.

Definition 2.1.4 A node for a McNaughton function f is a rational number
r such that f(r) is a point in which f is not differentiable. Further, 0 and
1 are nodes for every function f ∈ M1.
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Let K(f) be the set of nodes for f . By Definition 2.1.1, K(f) is a finite
set. By den(r) we denote the minimum denominator of a rational number
r. Let K(f) = {r1, . . . , rs}. If n = lcm (den(r1), . . . , den(rs)), then we set

Discr : f ∈ M1 �→ Discr(f) ∈ SSn
n

such that Discr(f) is the restriction of f to Sn. Let us denote by

D = Discr(M1) = {g | g = Discr(f) with f ∈ M1}.

The set D is strictly included in the set of all discrete functions obtained
as restrictions of McNaughton functions to a finite domain. Further, D is
disjoint from M1.

Example 2.1.5 Consider the identity function ι ∈ M1. The restrictions
ι1 = ι|S1 : x ∈ S1 → x ∈ S1 and ι2 = ι|S2 : x ∈ S2 → x ∈ S2 are such that
ι1 ∈ D and ι2 	∈ D.

For every g : Sn → Sn such that g ∈ D, the integer n will be called the
dimension of g and denoted by dim(g).
To every function g : Sn → Sn we associate a continuous function Cont(g) :
[0, 1] → [0, 1] such that:

- Cont(g)( in) = g( in);

- for every x ∈ [ in ,
i+1
n ],

Cont(g)(x) = g(
i

n
) + (nx− i)(g(

i + 1
n

) − g(
i

n
)).

Proposition 2.1.6 Let f ∈ M1 and let n > 0. Then:

i) Cont(Discr(f)) = f ;

ii) There exists g : Sn → Sn such that Discr(Cont(g)) 	= g.

iii) If g ∈ D then Discr(Cont(g)) = g.

Proof.

i) Let n be the least common multiple of the denominators of all elements
in K(f). By definition, Discr(f)(x) = f(x) for every x ∈ Sn and
in particular for every node of f . The function Cont(Discr(f)) is
formed by linear interpolation of points (x,Discr(f)(x)) = (x, f(x))
with x ∈ Sn, and so it coincides with f .
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ii) Consider, for example, ι2 : x ∈ S2 �→ x ∈ S2. Then Cont(ι2) : x ∈
[0, 1] �→ x ∈ [0, 1] and K(Cont(ι2)) = {0, 1} so that Discr(Cont(ι2)) :
x ∈ S1 �→ x ∈ S1 and Discr(Cont(ι2)) = ι1 	= ι2.

iii) If g = Discr(f), with f ∈ M1, then Cont(g) = f and Discr(Cont(g))
= g.

Description of the class D
For every function g : Sn → Sn, let

π(g) =
(
n · (g(

1
n

) − g(0)), n · (g(
2
n

) − g(
1
n

)), . . . , n · (g(1) − g(
n − 1
n

))
)

and

σ(g) =
(
g(0),

2
n

· g( 1
n

) − 1
n

· g( 2
n

)), . . . , g(
n − 1
n

) − n− 1
n

· g(1)
)
.

Then, for every i ∈ {0, . . . , n−1}, y = π(g)(i) ·x+σ(g)(i) is the equation of
the line between points

(
i
n , g(

i
n )

)
and

(
i+1
n , g( i+1

n )
)
. Note that π is always

a vector of integer numbers.

Definition 2.1.7 If g : Sn → Sn, an element r
n ∈ Sn with r 	= 0, n, will be

called a node for g, if

g(
r − 1
n

), g(
r

n
), g(

r + 1
n

)

are not collinear. Elements 0 and 1 are supposed to be nodes of every func-
tion.

As for McNaughton functions, for every function g : Sn → Sn, we will
denote by K(g) the set of nodes of g.

Definition 2.1.8 A function g : Sn → Sn is a discrete McNaughton func-
tion if:

• σ(g) is a vector of integer numbers.

• The least common multiple of nodes denominators is equal to n.

Theorem 2.1.9 The class D = Discr(M1) coincides with the class of dis-
crete McNaughton functions.
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Proof. Let g ∈ D. Then g = Discr(f) where f is a McNaughton function.
Note that K(g) = K(f) and so each linear piece of f is expressed by equation
y = π(g)(i)x + σ(g)(i), so that both π(g) and σ(g) are integer vectors.
Further, since Cont(g) = Cont(Discr(f)) = f , by definition n is equal to
the least common multiple of denominators of its nodes.

Vice-versa let g : Sn → Sn be a discrete McNaughton function. Then
Cont(g) is a McNaughton function such that n is the least common multiple
of nodes denominators and so g ∈ D.

Let us denote by QD the set of discrete functions g : Sn → Sn such that:

• σ(g) is a vector of integer numbers.

• The least common multiple of nodes denominators is less or equal to
n.

Clearly D ⊂ QD. We will denote by fitt the “fitter” function

fitt : g ∈ QD → fitt(g) ∈ D

such that fitt(g) is the restriction of g : Sn → Sn to Sh, where h is the
least common multiple of nodes denominators and hence h divides n and
Sh ⊆ Sn.

In other words, if g ∈ D then fitt(g) = g and if g : Sn → Sn and the
least common multiple of nodes denominators is h < n, then fitt(g) : x ∈
Sh → g(x) ∈ Sh.

If k is a multiple of m, say k = lm, we can transform a vector u ∈ Zm into
a vector enl(u, k) ∈ Zk in the following way. For every i = 1, . . . , k we set
enl(u, k)(i) = u(h + 1) if hl < i ≤ (h + 1)l, where h = 0, . . . ,m − 1. For
example, if u = (1, 2, 3) ∈ Z3 and k = 12, then

enl(u, 12) = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3).

We will now introduce an operation between discrete McNaughton functions.
Given fn, gm ∈ D, let k = lcm(n,m). Let

π = enl(π(fn), k) + enl(π(gm), k) ∈ Zk

and denote by h the least common multiple of absolute value of elements of
π. Further, set l = lcm(h, k).
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For each element i
l ∈ Sl, we denote by rn( il ) the greatest element of Sn

less or equal to i
l , and by ln( il ) the least element of Sn greater or equal to

i
l . Let f ln be the extension of fn to elements in Sl, that is:

f ln(
i

l
) =

{
fn( jn) if i

l = j
n

n ·
[
fn(ln( il )) − fn(rn( il ))

]
· ( il − rn( il )) + fn(rn( il )) otherwise

Analogously we can define glm. Then we set

fn � gm = fitt(f ln ⊕ glm) (2.1)

where the operation ⊕ is the operation in the finite MV-algebra Sl. Note that
the dimension of fn�gm is less or equal to l. Further let 01 : x ∈ {0, 1} �→ 0.

Example 2.1.10 Let

f2 :

⎧⎨⎩
0 �→ 1
1/2 �→ 1
1 �→ 0

and g3 :

⎧⎪⎪⎨⎪⎪⎩
0 �→ 1
1/3 �→ 0
2/3 �→ 1
1 �→ 1

We have π(f2) = (0,−2), σ(f2) = (1, 2), π(g3) = (−3, 3, 0), σ(g3) =
(1,−1, 1), lcm(K(f2)) = 2 and lcm(K(g3)) = 3 so f2 and g3 are in D.
Then k = 6 and since

enl(π(f2), 6) = (0, 0, 0,−2,−2,−2)
enl(π(g3), 6) = (−3,−3, 3, 3, 0, 0),

π = (−3,−3, 3, 1,−2,−2) and so l = 6. It is easy to verify that,

f6
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 �→ 1
1/6 �→ 1
1/3 �→ 1
1/2 �→ 1
2/3 �→ 2/3
5/6 �→ 1/3
1 �→ 0

and g6
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 �→ 1
1/6 �→ 1/2
1/3 �→ 0
1/2 �→ 1/2
2/3 �→ 1
5/6 �→ 1
1 �→ 1

Then f6
2 ⊕ g6

3(x) = 1 for every x ∈ S6 and so f2 � g3 : x ∈ {0, 1} �→ 1.

Corollary 2.1.11 If f, g ∈ M1 then

(i) Discr(f) �Discr(g) = Discr(f ⊕ g);
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(ii) ¬(Discr(f)) = Discr(¬f);

(iii) Discr(0) = 01.

Proof.

(i) In the definition of �, we enlarge the domain of Discr(f) and Discr(g)
to Sl. What we have to show is that such l is a multiple of denomina-
tors of new nodes arising in the sum. Let n = dim(f) and m = dim(g),
and let Discr(f) �Discr(g) = fitt(Discr(f)l ⊕Discr(g)l) where, as
defined in the construction above, l = lcm(n,m, π(1), . . . , π(k)). If
k = lcm(n,m), we have that f(x) + g(x) = 1 if and only if(
enl(π(fn), k)x+enl(σ(fn), k)

)
+
(
enl(π(gm), k)x+enl(σ(gm), k)

)
= 1

if and only if

x =
1 − (enl(σ(fn), k) + enl(σ(gm), k))
enl(π(fn), k) + enl(π(gm), k)

.

Since K(f ⊕ g) = K(f) ∪ K(g) ∪ {x ∈ [0, 1] | f(x) + g(x) = 1},
the denominator of every node of f ⊕ g divides l. The function fitt
restricts Discr(f)l ⊕Discr(g)l to exactly the least common multiple
of its nodes denominators and so the dimension of Discr(f)�Discr(g)
is exactly the least common multiple of nodes denominators of f ⊕ g.

• (ii),(iii) Note that the negation does not change any denominator of
nodes of a function. The claims follow by definition of Discr.

Theorem 2.1.12 The MV-algebra (M1,⊕,¬,0) is isomorphic with (D, �,
¬, 01).

Proof. By Corollary 2.1.11 we know that Discr is an homomorphism
of MV-algebras. By Proposition 2.1.6, the function Cont′ : f ∈ D →
Cont(f) ∈ M1 is the inverse of Discr so Discr is an isomorphism.
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2.2 Gödel logic

Linearly ordered Heyting algebras have been called L-algebras by Horn in
[72], where free L-algebras have been examined and described. In this section
we shall describe truth tables of Gödel formulas, thus giving a functional
description of free L-algebras. Results of this section have been published
in [52].

Let us start with an example: let ϕ = ¬Y ∨ (X ∧ Y ). The truth table
fϕ(x, y) of ϕ is given by Figure 2.1, and is equal to 1 when y = 0, is equal
to x when x ≤ y and y > 0 and it is equal to y when 0 < y ≤ x.

We hence introduce a subdivision of [0, 1]n taking into account the pos-
sible orders between components of each point x ∈ [0, 1]n.

Let Permn
1 denote the set of permutations of {1, . . . , n}. For every

j ∈ {1, . . . , n} and σ ∈ Permn
1 we consider the set

Cσj =
{

x = (x1, . . . , xn) ∈ [0, 1]n
∣∣∣∣ xσ(1) = 0, . . . , xσ(j) = 0

0 < xσ(j+1) ≤ 1, . . . , 0 < xσ(n) ≤ 1

}
Further let, for every σ ∈ Permn

1 ,

Cσ0 = C0 = {x = (x1, . . . , xn) ∈ [0, 1]n |0 < x1 ≤ 1, . . . , 0 < xn ≤ 1}

The (non disjoint) union of all Cσj when j = 0, . . . , n and σ is a permu-
tation of {1, . . . , n}, is the hypercube [0, 1]n.

Example 2.2.1 If n = 2 there are only two permutations, so that the square
[0, 1]2 is partitioned as follows:

C0 = {(x, y) | x > 0 and y > 0}
C

(12)
1 = {(x, y) | x = 0 and y > 0}

C
(21)
1 = {(x, y) | y = 0 and x > 0}

C
(12)
2 = C

(21)
2 = {(0, 0)}

The different possible strict orders between xσ(j+1), . . . , xσ(n) and the
number of identical variables determine a further partition of each Cσj .

Let σ′ be a permutation of {σ(j+1), . . . , σ(n)} and let k ∈ {j+1, . . . , n−
1} and i ∈ {1, . . . , n − k}. Consider subsets of Cσj defined by

Cσj (σ′) =
n⋃

h=j+1

⎧⎨⎩x = (x1, . . . , xn) ∈ [0, 1]n

∣∣∣∣∣∣
xσ(1) = . . . = xσ(j) = 0
0 < xσ′σ(j+1) < . . . <

xσ′σ(h) = . . . = xσ′σ(n) = 1

⎫⎬⎭
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x

y

z

x

Figure 2.1: Truth table of the Gödel formula ϕ = ¬Y ∨ (X ∧ Y )

and

Dσ
j (σ′, k, i) =

n⋃
h=j+1

⎧⎪⎪⎨⎪⎪⎩x ∈ [0, 1]

∣∣∣∣∣∣∣∣
xσ(1) = . . . = xσ(j) = 0

0 < xσ′σ(j+1) < . . . < xσ′σ(k) =
. . . = xσ′σ(k+i) < . . . <

< xσ′σ(h) = . . . = xσ′σ(n) = 1

⎫⎪⎪⎬⎪⎪⎭ .

We have

Cσj =
⋃

σ′∈Permσ(n)
σ(j+1)

⎛⎝Cσj (σ′) ∪
n−1⋃
k=j+1

n−k⋃
i=1

Dσ
j (σ′, k, i)

⎞⎠
and ⋂

σ′∈Permσ(n)
σ(j+1)

Cσj (σ′) ∩
⋃

σ′∈Permσ(n)
σ(j+1)

k∈{j+1,... ,n−1},
i∈{1,... ,n−k}

Dσ
j (σ′, i, k) = yσj ∈ {0, 1}n

where yσj = (y1, . . . , yn) is such that

yσ(1) = . . . = yσ(j) = 0,
yσ(j+1) = . . . = yσ(n) = 1.

(2.2)

Example 2.2.2 In case n = 3 consider the set

C
(213)
1 = {(x, y, z) | y = 0, 0 < x ≤ 1, 0 < z ≤ 1}.



CHAPTER 2. FUNCTIONAL REPRESENTATION 31

C
(213)
1 is covered by the following subsets:

C
(213)
1 (13) = {(x, 0, z) | 0 < x < z < 1} ∪ {(x, 0, 1) | 0 < x < 1} ∪ {(1, 0, 1)}

C
(213)
1 (31) = {(x, 0, z) | 0 < z < x < 1} ∪ {(1, 0, z) | 0 < z < 1} ∪ {(1, 0, 1)}

D
(213)
1 ((13), 2, 1) = {(x, 0, z) | 0 < x = z < 1} ∪ {(1, 0, 1)}

D
(213)
1 ((31), 2, 1) = D

(213)
1 ((13), 2, 1).

In case n = 7 we have for example,

Dσ
2 (σ′, 5, 1) =

⎧⎨⎩(x1, . . . , x7) |
xσ(1) = xσ(2) = 0

0 < xσ′σ(3) < xσ′σ(4) <

xσ′σ(5) = xσ′σ(6) < xσ′σ(7) = 1

⎫⎬⎭ .

Let Cσj = {Cσj (σ′),Dσ
j (σ′, k, i) | σ′ ∈ Perm

σ(n)
σ(j+1)

, k = j + 1, . . . , n, i =
0, . . . , n− k} and

C =
⋃

σ∈Permn
1

j=1,... ,n

Cσj . (2.3)

Recall that the projection over the i-th variable is a function πi : [0, 1]n →
[0, 1] such that for every x = (x1, . . . , xn) ∈ [0, 1]2, πi(x) = xi.

Theorem 2.2.3 The restriction of fϕ on every C ∈ C is either equal to 0
or to 1 or is a projection.

Proof. First note that if fϕ is linear over a region C then in that region fϕ
must be identically equal either to 0 or to 1 or to a projection, for there are
not arithmetical operations. The proof follows by induction.

• The case ϕ = Xi is trivial.

• If ϕ = ¬ψ then by induction hypothesis fψ over every C ∈ C is either
equal to 0 or to 1 or to a projection and for every x ∈ [0, 1]n

fϕ(x) =
{

1 if fψ(x) = 0
0 if fψ(x) > 1

.

If C ∈ C then there exists Cσj such that C ⊆ Cσj . Then for every
x = (x1, . . . , xn) ∈ C

xσ(1) = 0, . . . , xσ(j) = 0
0 < xσ(j+1) ≤ 1, . . . , 0 < xσ(n) ≤ 1
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and so the restriction of fψ to C is either identically equal to 0 or
is always different from 0, so that the restriction of fϕ to C is either
identically equal to 0 or is identically equal to 1.

• If ϕ = ψ1 ∧ ψ2, trivial.

• If ϕ = ψ1 → ψ2 then

fϕ(x) =
{

1 if fψ1(x) ≤ fψ2(x)
fψ2(x) otherwise.

and fψ1, fψ2 are 0, 1 or projections on every C ∈ C. Different cases are
possible, depending on whether restrictions of fψ1, fψ2 to C ∈ C are
identically equal to 0 or to 1 or are projections. In any case, for every
x ∈ C, for every C ∈ C, only one condition between (fψ1(x) ≤ fψ2(x))
or (fψ1(x) > fψ2(x) or fψ1(x) = fψ2(x) = 1) is verified and the claim
holds.

We shall now prove the inverse of the previous theorem, namely that if
f is a function such that, restricted to an element of C is either equal to 0
or to 1 or to a projection, then there exists a Gödel formula ϕ such that f
is the truth table of ϕ.

For every Cσj with j > 0, the Gödel formula

ϑσj = ¬Xσ(1) ∧ . . . ∧ ¬Xσ(j) ∧ ¬¬(Xσ(j+1) ∧ . . . ∧Xσ(n))

is such that fϑσ
j

is the characteristic function of Cσj and

ϑ0 = ¬¬(X1 ∧ . . . ∧Xn)

is such that fϑ0 is the characteristic function of C0.
Hence we can independently find formulas ψσj associated with the re-

striction of f to the different Cσj and then merge them by

f(x) =
∨
j,σ

(
fψσ

j
∧ fϑσ

j

)
. (2.4)

In general it is not possible to find a formula whose truth table is the
characteristic function of Cσj (σ′) or Dσ

j (σ′, k, i). In order to cope with this
fact we will introduce a kind of weakly characteristic function of such regions.
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Let

ϕJi =
∧
j∈J

(Xj → Xi) → Xj (2.5)

and
δJ =

∧
i,j∈J
i
=j

(Xi → Xj).

Let fϕJ
i

be the function associated to ϕJi . Then fϕJ
i
(x) is equal to 1 if

and only if x = (x1, . . . , xn) is such that xi is strictly less than xj for all
j ∈ J or xi = xj = 1 for every j ∈ J . Indeed

(xj → xi) → xj =
{

1 if xi < xj
xj otherwise.

Let fδJ be the function associated to δJ . Then fδJ (x) is equal to 1 if
and only if x = (x1, . . . , xn) is such that xi = xj for all i, j ∈ J . Indeed, for
every i and j

(xi → xj) ∧ (xj → xi) =

⎧⎨⎩
1 if xi = xj
xi if xi < xj
xj if xj < xi.

Functions associated to ϕJi and δJ are very similar to characteristic func-
tions of the following sets:

AJi = {x ∈ [0, 1] | xi < xj for every j ∈ J} ∪
{x ∈ [0, 1] | xi = xj = 1 for every j ∈ J}

and
BJ = {x ∈ [0, 1] | xi = xj for every i, j ∈ J}

respectively, since, for every x = (x1, . . . , xn) ∈ [0, 1]n,

fϕJ
i
(x) =

{
1 if x ∈ AJi
min{xt}t∈J otherwise

fδJ (x) =
{

1 if x ∈ BJ

min{xt}t∈J otherwise.
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We associate with the region Cσj (σ′) the formula

χCσ
j (σ′) = ϕ

Ij+1

σ′σ(j+1) ∧ . . . ∧ ϕIn−1

σ′σ(n−1) (2.6)

where for every h = j + 1, . . . , n − 1, Ih = {σ′σ(h + 1), . . . , σ′σ(n)}. By
(2.5),

• if x ∈ Cσj (σ′) then fχCσ
j

(σ′)(x) = 1;

• if x ∈ Cσj \ Cσj (σ′) then there exists i > j + 1 such that

– xσ(1) = . . . = xσ(j) = 0

– 0 < xσ′σ(j+1) < . . . < xσ′σ(i−1)

– the other components have an order different from the order of
components of elements of Cσj (σ′), that is, there exists σ′′ permu-
tation of σ′σ(i), . . . σ′σ(n) (different from the identity) such that
xσ′′σ′σ(i) ≤ . . . ≤ xσ′′σ′σ(n).

Then fχCσ
j

(σ′)(x) = xσ′′σ′σ(i).

With the region Dσ
j (σ′, k, i) is associated the formula

χDσ
j (σ′,k,i) = ϕ

Ij+1

σ′σ(j+1) ∧ . . . ∧ ϕIk+i

σ′σ(k)∧
∧δ{σ′σ(k),... ,σ′σ(k+i)}∧
ϕ
Ik+i

σ′σ(k+i) ∧ . . . ∧ ϕIn−1

σ′σ(n−1)

where Ii = {σ′σ(i + 1), . . . , σ′σ(n)}. Analogously, fχ takes value 1 over
Dσ
j (σ′σ, k, i) and otherwise is equal to xσ′′σ′σ(i) where σ′′ is a permutation

of σ′σ(i), . . . σ′σ(n) (different from the identity) such that xσ′′σ′σ(i) ≤ . . . ≤
xσ′′σ′σ(n).

Example 2.2.4 Consider, for n = 3, the set C0(123) of points (x1, x2, x3)
such that 0 < x1 < x2 < x3 < 1 or 0 < x1 < x2 < x3 = 1 or 0 < x1 < x2 =
x3 = 1 or 0 < x1 = x2 = x3 = 1. Then

χC0(123) = (X2 → X1) → X2 ∧ (X3 → X1) → X3

∧ (X3 → X2) → X3.

If x = (x1, x2, x3) ∈ C0(132) is such that 0 < x1 < x3 < x2 (and so x 	∈
C0(123)), then fχC0(123)

(x) = x3. Note that C0(123)∩C0(132) = {(x1, 1, 1) |
0 < x1 ≤ 1}.
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Lemma 2.2.5 Let f : [0, 1]n → [0, 1] be a function such that for every
C ∈ C

f |C = 0 or
f |C = 1 or
f |C = xh

with h ∈ {1 . . . , n}. Let yσj as in Equation (2.2). Then, for every σ ∈
Permn

1 and j = 1, . . . , n, the function fψσ
j

where ψσj is defined by

ψσj =
∨
C∈Cσ

j

(χC ∧ f |C) (2.7)

if f(yσj ) = 1, and by 0 if f(yσj ) = 0, is such that fψσ
j
(x) = f(x) for every

x ∈ Cσj .

Proof. If f(yσJ) = 0 then f |Cσ
j

= 0 and so the claim is true.
Otherwise, let f(yσj ) = 1. Then for every C ∈ Cσj , f |C > 0. In this

case, for every σ′ ∈ Perm
σ(n)
σ(j+1), k = j + 1, . . . , n and i = 0, . . . , n − k the

restriction of f to Cσj (σ′) and Dσ
j (σ′, k, i) cannot be equal to 0, otherwise

the function f would not be well defined.
Let x = (x1, . . . , xn) such that xσ(1) = . . . = xσ(j) = 0. As an interme-

diate step we shall prove that, if x ∈ Cσj (σ′),

f |Cσ
j (σ′)(x) ≥

∨
C∈Cσ

j

C 
=Cσ
j (σ′)

fχC
(x) ∧ f |C(x).

Indeed, suppose by contradiction that there exists C 	= Cσj (σ′) such that,
for x ∈ Cσj (σ′),

f |Cσ
j (σ′)(x) < fχC

(x) ∧ f |C(x) ≤ 1.

• If fχC
(x) > f |C(x), then let fχC

= xσ′′σ′σ(i). By definition of χC ,
xσ′′σ′σ(i) is the smallest component of x that does not respect the order
of components of elements of C. Since fχC

(x) > f |C(x) > 0, then
xσ′′σ′σ(i) > xσ′σ(j) and the intersection C∩Cσj (σ′) contains all points of
the form (0, . . . , 0, xσ′σ(j+1), . . . , xσ′σ(i−1), 1, . . . , 1). Restrictions f |C
and f |Cσ

j (σ′) must coincide over C ∩ Cσj (σ′), and are different from 0
and 1. So both are equal to one variable among xσ′σ(j+1), . . . , xσ′σ(i−1).
This is a contradiction.

• If fχC
(x) ≤ f |C(x), then fχC

(x) ∧ f |C(x) = fχC
(x) and so fχC

(x) >
f |Cσ

j (σ′) > 0. Reasoning as above, we again get a contradiction.
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Figure 2.2: Truth table of the Gödel formula ϕ in Example 2.2.7

The same happens for Dσ
j (σ′, k, i), namely

f |Dσ
j (σ′,k,i)(x) ≥

∨
C∈Cσ

j

C 
=Dσ
j (σ′,k,i)

fχC
(x) ∧ f |C(x).

So f(x) =
∨
C∈Cσ

j
fχC

(x) ∧ f |C(x) for every x ∈ Cσj and hence f = fψσ
j
.

Theorem 2.2.6 The algebra F of functions f : [0, 1]n → [0, 1] such that for
every C ∈ C

f |C = 0 or
f |C = 1 or
f |C = xh with h ∈ {1 . . . , n}.

equipped with the pointwise operations of ∧, ∨ and → is the free L-algebra
over n generators.

Proof. By Lemma 2.2.5 and equations (2.4),(2.6),(2.2), for every function
f ∈ F , there exists a formula ϕ such that f ≡ fϕ. That is equivalent
to saying that F is the L-algebra generated by the projection functions
πi : x ∈ [0, 1]n → xi ∈ [0, 1]. In [73] it is proved that the variety of L-
algebras is generated by [0, 1]. Then, from a result of universal algebra (see
[38]) it follows that F is the free algebra generated by the n projections.
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Example 2.2.7 For n = 2 consider the function in Figure 2.2. In order
to find the formula ϕ having such truth table, we can consider the following
regions

C0(12) = {(x, y) | 0 < x < y ≤ 1} ∪ {(1, 1)}
C0(21) = {(x, y) | 0 < y < x ≤ 1} ∪ {(1, 1)}

D0 = {(x, x) | x > 0}
C1 = {(x, y) | y = 0}

whose weakly characteristic functions are respectively given by:

ϕ1 = (Y → X) → Y ϕ2 = (X → Y ) → X
δ = (X → Y ) ∧ (Y → X) θ = ¬Y.

Then
ϕ = (ϕ1 ∧X) ∨ (ϕ2 ∧ Y ) ∨ δ ∨ (θ ∧X)

and this is equivalent to ((X → Y ) ∧ (Y → X)) ∨ (¬Y ∧X).

2.2.1 Extending Gödel logic

Consider now the logic G + ∆, obtained adding to Gödel logic the unary
operator ∆ interpreted by

v(∆(ϕ)) =
{

1 if v(ϕ) = 1
0 otherwise.

The connective ∆ was axiomatized in [14]. Functions associated with for-
mulas of G + ∆ are much easier to describe than functions associated with
formulas of Gödel logic. For the sake of notation, we shall consider here only
the case of n = 2.

Consider the following regions, where i, j = 1, 2 and i 	= j:

Aij = {(x1, x2) | xi = 0 0 < xj < 1}
Bij = {(x1, x2) | xi = 0 xj = 1}
Cij = {(x1, x2) | 0 < xi < xj < 1}
D = {(x1, x2) | 0 < x1 = x2 < 1},

0 = {(0, 0)}, I = {(1, 1)}.
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Truth tables of the following formulas are characteristic functions of the
above regions:

αij = ¬xi ∧ ¬∆xj ∧ ¬¬xj
βij = ¬xi ∧ ∆xj
γij = ∆((xj → xi) → xj)) ∧ ¬¬xi ∧ ¬∆xj
δ = ∆((x1 → x2) ∧ (x2 → x1)) ∧ ¬∆x1 ∧ ¬¬x1 ∧ ¬∆x2 ∧ ¬¬x2

ω = ¬x1 ∧ ¬x2 and ι = ∆x1 ∧ ∆x2

Then truth tables of formulas of G+ ∆ precisely coincide with all functions
such that on every Aij , Bij, Cij , D, O and I are either equal to 0 or to 1 or
to a projection.
This result can be easily extended to higher dimensions.

2.3 Product Logic

In order to deal with product logic by means of piecewise linear functions,
we shall introduce an infinite-valued logic Σ whose domain of interpretation
is the set of real positive numbers plus a distinct symbol for infinity, and
connectives are interpreted as sum and difference.

In this section we shall define the following objects, that are needed both
to describe truth tables of product formulas and to prove reducibility results
in the next Chapter:

• Indexes for regions in which the truth tables are linear,

• Regions of linearity,

• Restriction of truth tables functions to regions of linearity (cases of
the functions),

• Equations for boundaries of regions of linearity.

2.3.1 Some Preliminaries

Let Σ = (R∗
+, {0}, {+,→Σ,¬Σ}) denote a logic in which

• R∗
+ = [0,∞] is the set of positive real numbers plus a distinct symbol

∞ (for infinity) such that for every x ∈ R+, x < ∞;

• x+ y is the usual sum of real numbers;
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• x →Σ y =
{

0 if x ≥ y
y − x otherwise,

where ∞ − x = ∞ if x ∈ R+;

• ¬Σx = x →Σ ∞ =
{

0, if x = ∞
∞, otherwise.

Each formula of the Product logic Π∞ can be translated in a formula of
Σ and the map

ι : x ∈ [0, 1] →
{

log(x−1), if x > 0
∞ otherwise.

(where logarithms are taken to the base e) is such that ϕ is a tautology of
Π∞ if and only if ι(ϕ) is a tautology of Σ. Hence in the rest of this Section
and in the following Chapter we shall investigate Σ instead if Π∞.

If ϕ is a formula we shall denote by nϕ the formula ϕ+ . . .+ ϕ︸ ︷︷ ︸
n times

.

In the Figure 2.3 truth tables of formulas (X → Y 2) · (Y → X3) and
(X →Σ 2Y ) + (Y →Σ 3X) are represented. Note that in the first graph
there is a discontinuity in the point (0, 0) and that in the second graph the
values at points having components equal to ∞ are omitted.

x

y

z

x x

y

z

x

Figure 2.3: Truth table of (X → Y 2) · (Y → X3) and (X →Σ 2Y ) + (Y →Σ

3X)

In the rest of this section, we shall omit the indexes Σ and we shall
simply write ¬ and →.

Definition 2.3.1 (Indexes) For every formula ϕ, the set of indexes J(ϕ)
associated with ϕ is the set of strings over the two-element alphabet {A,B}
given by the following inductive stipulation:
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- J(Xi) = {ε} for every variable Xi of ϕ (where ε denotes the empty
string).

- J(¬ϕ) = J(ϕ).

- J(ϕ+ ψ) = {σ1σ2 | σ1 ∈ J(ϕ), σ2 ∈ J(ψ)}.

- J(ϕ → ψ) = {σ1σ2A,σ1σ2B | σ1 ∈ J(ϕ), σ2 ∈ J(ψ)}.

Definition 2.3.2 (Regions of linearity) For every σ ∈ J(ϕ) we induc-
tively define the subset cellϕ(σ) of (R∗

+)n as follows:

- cellXi(ε) = (R∗
+)n.

- cell¬ϕ(σ) = cellϕ(σ).

- cellϕ+ψ(σ1σ2) = cellϕ(σ1) ∩ cellψ(σ2).

- cellϕ→ψ(σ1σ2A) = cellϕ(σ1) ∩ cellψ(σ2) ∩ {x | fϕ(x) − fψ(x) ≥ 0},

- cellϕ→ψ(σ1σ2B) = cellϕ(σ1) ∩ cellψ(σ2) ∩ {x | fϕ(x) − fψ(x) ≤ 0}.

The set C(n)(ϕ) is defined by

C(n)(ϕ) = {cellϕ(σ) | σ ∈ J(ϕ), dim(cellϕ(σ)) = n}. (2.8)

We shall denote by I(ϕ) the subset of J(ϕ) whose elements are indexes of
cells in C(n)(ϕ).

We further let C(ϕ) be the set of polyhedra obtained by adding to C(n)(ϕ)
all the faces of polyhedra in C(n)(ϕ), in symbols,

P ∈ C(ϕ) if and only if there exists A ∈ C(n)(ϕ) such that P ∈ F(A).

Since (R∗
+)n is a closed hypercube with faces given by{

x = (x1, . . . , xn) ∈ (R∗
+)n | xi1 = 0, xi2 = ∞ with i1 ∈ J1, i2 ∈ J2,

J1, J2 ⊆ {1, . . . , n} and J1 ∪ J2 	= ∅} ,

then every open face F of a cell of C(n)(ϕ) is either contained in Rn
+, or is

contained in a hyperplane of equation xi = ∞.
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Figure 2.4: Regions of linearity and truth table of ϕ in Example 2.3.4

Definition 2.3.3 (Cases of functions) For each σ ∈ I(ϕ), the restric-
tion of fϕ to cellϕ(σ) is called the case of fϕ on cellϕ(σ) and is denoted by
cϕ(σ).

Example 2.3.4 Consider the formula ϕ = (X → 2Y ) + (Y → 3X). Then,

J(X) = J(Y ) = {ε}
J(2X) = J(3Y ) = {ε}

J(X → 2Y ) = {A,B}
J(Y → 3X) = {A,B}

J((X → 2Y ) + (Y → 3X)) = {AA,AB,BA,BB}

The regions of linearity of Definition 2.3.2 are (see Figure 2.4)

cellX→2Y (A) = {(x, y) | x ≥ 2y}
cellX→2Y (B) = {(x, y) | x ≤ 2y}
cellY→3X(A) = {(x, y) | y ≥ 3x}
cellY→3X(B) = {(x, y) | y ≤ 3x}

cellϕ(AA) = ∅
cellϕ(AB) = {(x, y) | x ≥ 2y}
cellϕ(BA) = {(x, y) | y ≥ 3x}
cellϕ(BB) = {(x, y) | x/2 ≤ y ≤ 3x}

Cases of function fϕ are
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cϕ(AB)(x, y) = 3x− y

cϕ(BB)(x, y) = 2x+ y

cϕ(BA)(x, y) = 2y − x

See also Example 3.3.2.

Lemma 2.3.5 For each k ∈ {1, . . . , n} and for each open k-dimensional
face F of elements of C(ϕ), fϕ is linear over F .

Proof. The proof proceeds by induction on the complexity of (= number
of occurrences of connectives in) ϕ, as follows:

If ϕ = Xi then we are done.
If ϕ = ¬ψ, let F be any open face of cellϕ(σ) = cellψ(σ) ∈ C(n)(ϕ). By

definition, for every x ∈ F , we can write

cϕ(σ)(x) =
{

0 if cψ(σ)(x) = ∞,
∞ if cψ(σ)(x) ≤ ∞.

By induction hypothesis, cψ(σ) is linear over F . If cψ(σ) is constant over
F , say cψ(σ)(x) = c for all x ∈ F , then either c = ∞ or c 	= ∞ and, in any
case, cϕ(σ) is linear. Otherwise, the function cψ(σ) is a non-constant linear
function over F and the set {cψ(σ)(x) | x ∈ F} is an open set of (R∗

+)n,
whence it does not contain the extremal point ∞. In this case we can write
cϕ(σ)(x) = ∞ for all x ∈ F . By induction hypothesis, cϕ(σ) is a linear
function over F .

If ϕ = ψ1 + ψ2, then let σ = σ1σ2 and F be an open face of cellϕ(σ) =
cellψ1(σ1)∩cellψ2(σ2). Then F is contained in the open faces of cellψ1(σ1) and
cellψ2(σ2). Precisely one of the identities cϕ(σ)(x) = g
1(cψ1(σ1), cψ2(σ2))(x)
and cϕ(σ)(x) = g
2(cψ1(σ1), cψ2(σ2))(x) holds true for all x ∈ F . By induc-
tion hypothesis cϕ(σ) is linear.

If ϕ = ψ1 → ψ2, then let σ = σ1σ2A. Then

cϕ(σ1σ2A)(x) = 0

and the claim is trivial.
If σ = σ1σ2B then

cϕ(σ1σ2B)(x) = cψ2(σ2)(x) − cψ1(σ1)(x)

By induction hypothesis, cϕ(σ1σ2B) is linear over every open face of cellϕ(σ).
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2.3.2 Description of functions

For each function fϕ : (R∗
+)n → R∗

+ associated with a formula ϕ of Σ logic,
we shall study separately its restriction to facets of cells wholly contained in
Rn

+ and its restriction to facets of cells with a non-empty intersection with
(R∗

+)n \ (R+)n.
Note that if ϕ = ψ1�ψ2 (with � any binary connective) and if σ = σ′σ′′C

with C ∈ {ε,A,B}, σ′ ∈ I(ψ1) and σ′′ ∈ I(ψ2), then cellψ1(σ′) ⊇ cellϕ(σ)
and cellψ2(σ′′) ⊇ cellϕ(σ) and so any open face F of cellϕ(σ) is jointly
contained in an open face of cellψ1(σ′) and in an open face of cellψ2(σ′′).

Proposition 2.3.6 Let σ ∈ I(ϕ) and let F be an open face of cellϕ(σ) such
that F ⊆ Rn

+. Then we have:

(i) either for every x ∈ F , cϕ(σ)(x) is equal to ∞,

(ii) or the restriction of cϕ(σ) to F is a linear and homogeneous function,
with integer coefficients, taking values in R+.

Proof. The proof easily proceeds by induction on the complexity of ϕ.

Lemma 2.3.7 The restriction of the function fϕ to Rn
+ is either identically

equal to ∞, or is continuous with respect to the natural topology of R+.

Proof. Again by induction on the complexity of ϕ.

- If ϕ = Xi the claim is trivial, since fϕ(x) = xi.

- If ϕ = ¬Σψ then, for all x ∈ Rn
+,

fϕ(x) =
{

0 iffψ(x) = ∞
∞ iffψ(x) < ∞.

By induction hypothesis, either for all x ∈ Rn
+, fψ(x) = ∞ and then

fϕ(x) = 0, or fψ is continuous in Rn
+ and then fψ(x) < ∞ and fϕ(x) =

∞.

- If ϕ = ψ1 +ψ2. The claim easily follows by induction hypothesis, since
fϕ = fψ1 + fψ2.

- If ϕ = ψ1 →Σ ψ2 then, for every x ∈ Rn
+,

fϕ(x) =
{

0 if fψ2(x) − fψ1(x) ≤ 0
fψ2(x) − fψ1(x) otherwise.

The claim follows by induction hypothesis.
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In the following Lemma we shall examine the behavior of functions at
points having some component equal to ∞.

Lemma 2.3.8 Let F be an open face of (R∗
+)n such that F ⊆ {x | xi =

∞} ⊆ (R∗
+)n \ (R+)n. Then

(i) either for every x ∈ F , fϕ(x) = ∞ or fϕ(x) = 0,

(ii) or there exists a formula ϑ such that for every x = (x1, . . . , xn) ∈ F ,

fϕ(x) = fϑ(x1, . . . , xi−1, xi+1, . . . , xn)

where var(ϑ) ⊆ var(ϕ) \ {Xi} and #(ϑ) ≤ #(ϕ).

Proof. Let F ⊆ {x | xi = ∞} and if x = (x1, . . . , xn) ∈ F , let xi =
(x1, . . . , xi−1, xi+1, . . . , xn) ∈ (R∗

+)n−1. The proof proceeds by induction on
the complexity of ϕ. Let us consider the case ϕ = ψ1 →Σ ψ2. Since for
every x ∈ F ,

fϕ(x) =
{
fψ2(x) − fψ1(x) if fψ1(x) ≤ fψ2(x)
0 otherwise,

it is sufficient to consider only the case in which fψ1(x) ≤ fψ2(x). Then

• If fψ1(x) = 0, then fϕ(x) = fψ2(x) and by induction hypothesis the
claim is settled.

• If fψ2(x) = ∞ then if fψ1(x) = ∞, fϕ(x) = 0 otherwise fϕ(x) = ∞.

• If fψ1(x) = fϑ1(xi) and fψ2(x) = fϑ2(xi), with var(ϑ1) ⊆ var(ψ1) \
{Xi}, var(ϑ2) ⊆ var(ψ2) \ {Xi}, #(ϑ1) ≤ #(ψ1) and #(ϑ2) ≤ #(ψ2),
then fϕ(x) = fϑ1→Σϑ2(xi) with

var(ϑ1 →Σ ϑ2) ⊆ (var(ψ1) ∪ var(ψ2)) \ {Xi} = var(ϕ) \ {Xi}

and #(ϑ1 →Σ ϑ2) ≤ #(ϕ).

The other cases are similar.

Iterated applications of the above theorem yields
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Proposition 2.3.9 Let F be an open face of (R∗
+)n such that every x ∈ F

has exactly 1 ≤ k ≤ n infinite components, say, xi1 , . . . , xik = ∞. Then
either fϕ(x) = ∞, or else there exists a formula ϑ satisfying the following
two conditions:

• var(ϑ) = var(ϕ) \ {Xi1 , . . . ,Xik} and #(ϑ) ≤ #(ϕ),

• for every x ∈ F , letting xi1,... ,ik denote the element of Rn−k
+ obtained

by deleting from x all the i1th,. . . , ikth components, then fϕ(x) =
fϑ(xi1,... ,ik) < ∞.

2.3.3 Characterization of functions

Description of truth tables of Product formulas is given by the following

Theorem 2.3.10 Let f : (R∗
+)n → R∗

+ be a function such that

(i) The restriction of f to Rn
+ is either identically equal to ∞, or is contin-

uous with respect to the natural topology of R+, homogeneous piecewise
linear and such that each linear piece has integer coefficients.

(ii) The restriction of f to each open subset F of (R∗
+)n \ (R+)n is ei-

ther equal to ∞, or, for every x ∈ F , we have the identity f(x) =
g(xi1 , . . . , xik), where xi1 , . . . , xik are exactly the components of x dif-
ferent from ∞ and g : (R+)k → R+ is a continuous, homogeneous,
piecewise linear function such that each linear piece has integer coeffi-
cients.

Then there exists a formula ϕ of Σ logic such that f is the truth table of ϕ.

In order to prove Theorem 2.3.10 we shall adapt to our context the same
machinery used in [93] to prove McNaughton Theorem. For more details see
[93] and [52].

We need some preliminary results. For the sake of simplicity, let us call
product function any continuous, homogeneous, piecewise linear function
with integer coefficients. Regions D in which a product function is linear
are union of polyhedral cones, i.e., without loss of generality they can be
expressed as

D = {x ∈ Rn
+ | A · x ≤ 0}

where A is an integer (m× n) matrix and ≤ is defined componentwise.
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Consider the restriction to Rn
+: firstly we shall describe formulas having

homogeneous linear functions as truth tables, then we examine how to glue
different linear functions together.
Fact 1. For every x = (x1, . . . , xn) ∈ Rn

+, consider the function

g(x1, . . . , xn) = a1x1 + . . .+ anxn ∨ 0

with ai ∈ Z. Let us suppose, without loss of generality, that ai1 , . . . , air are
positive numbers and air+1, . . . , ain are negative. Then the formula

λ = ((−air+1)Xir+1 + . . .+ (−ain)Xin) → (ai1Xi1 + . . . + airXir)

is such that fλ(x) = g(x) for every x ∈ Rn
+.

Fact 2. Suppose that polyhedral cones D1,D2 ⊆ Rn
+ and product functions

g1 and g2 are such that D1 = {x | g1(x) = 0} and D2 = {x | g2(x) = 0}.
Let f : Rn

+ → R+ be such that both restrictions f |D1 and f |D2 coincide
respectively on D1 and D2 with product functions h1 and h2. For every p
and q, let

hp,q(x) = (pg1(x) → h1(x)) ∨ (qg2(x) → h2(x)). (2.9)

Clearly hp,q is a product function. We want to prove that there exist p and
q such that the restriction f |D1 ∪D2 is equal to hp,q on D1 ∪D2.

Since g1, g2, h1, h2 are product functions, it is possible to find regions
P1, . . . , Pm such that for every i = 1, . . . ,m each of g1, g2, h1, h2 is linear on
Pi: it is enough to intersect regions of linearity of each product function.

Let us consider the inequality

((h1(x) − pig1(x)) ∨ 0) − h2(x) ≤ 0. (2.10)

If x ∈ Pi ∩ D2 then pi can be chosen (depending on x) so large that the
inequality (2.10) holds true. The dependence on x can be eliminated by
considering that the function ((h1(x) − pig1(x)) ∨ 0) − h2(x) is linear on
Pi ∩D2.

Let p = max1≤i≤m pi where pi satisfy (2.10). Then, for every x ∈ D2,

p g1(x) → h1(x) ≤ h2(x)

and hence, for every natural number q and x ∈ D2,

hp,q(x) = ((pg1(x) → h1(x)) ∨ (qg2(x) → h2(x)) =
= ((pg1(x) → h1(x)) ∨ h2(x) = h2(x) = f(x).
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Analogously, there exists q such that for any x ∈ D1, hp,q(x) = f(x). Then
the restriction f |D1 ∪D2 of f to D1 ∪D2 is a product function.
Fact 3. Let D = {x ∈ Rn

+ | A · x ≤ 0} and a1, . . . ,am be rows of A. By
Fact 1, for every expression ai · x there is a formula π(i,x) such that the
truth table of π(i,x) is 0 ∨ (ai · x). Then the formula

ϕD = π(1,x) ∧ . . . ∧ π(m,x) (2.11)

is such that D = {x | fϕD
(x) = 0}.

We have now all the necessary tools for proving Theorem 2.3.10:

Proof. Let f : (R∗
+)n → R∗

+ be a function satisfying (i) and (ii) of Theorem
2.3.10. Just as for Gödel formulas in Section 2.2, for every region I ⊆
(R∗

+)n \ Rn
+ such that

I =
{

(x1, . . . , xn) | xi1 = ∞, . . . , xij = ∞
xij+1 < ∞, . . . , xn < ∞

}
,

the formula

ϑI = ¬Xi1 ∨ . . . ∨ ¬Xij ∨ ¬¬(Xij+1 ∨ . . . ∨Xin)

is such that fϑI (x) = 0 for every x ∈ I and fϑI (x) = ∞ for x 	∈ I. Further,
the formula

δ = ¬¬(X1 ∨ . . . ∨Xn)

is such that fδ(x) = 0 for x ∈ Rn
+ and fδ(x) = ∞ otherwise.

This fact allows us to find independently formulas αI associated with
the restriction of f to the different I and to find the formula β associated
to the restriction of f to Rn

+, and then to merge them in the following way:

f(x) =
∧
I

(fϑI ∨ fαI ) ∧ (fβ ∨ fδ). (2.12)

In this way the problem is reduced to finding the formula β corresponding
to the restriction of f to Rn

+.
If f |Rn

+ is equal to ∞ then we can set for example β = X1 ∨ ¬X1 and
the claim is settled.

If f |Rn
+ is a product function then there exist polyhedral cones Di = {x |

Ai · x ≤ 0} for i = 1, . . . , u, such that f is linear and homogeneous on each
Di. By Fact 3 there exist formulas ϕDi as in Equation (2.11). Applying
several times Fact 2 we get the conclusion.
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Example 2.3.11 Consider regions

D1 = {(x, y) | 2y − x ≤ 0} D2 = {(x, y) | x− 2y ≤ 0}
I1 = {(x, y) | x < ∞, y = ∞} I2 = {(x, y) | x = ∞, y < ∞}
I3 = {(x, y) | x = ∞, y = ∞}

and the function f : (R∗
+)2 → R∗

+ defined by

f |D1 = 2x− 2y f |D2 = x
f |I1 = ∞ f |I2 = y
f |I3 = ∞.

Then
ϑI1 = ¬X ∧ ¬¬Y ϑI2 = ¬Y ∧ ¬¬X
ϑI3 = ¬X ∧ ¬Y δ = ¬¬(X ∨ Y ).

Let ϕD1 = X → 2Y and ϕD2 = 2Y → X: the restrictions of f to D1 and
D2 are expressed by formulas χ1 = 2Y → 2X and χ2 = X. Then Equation
(2.9) becomes

χp,q = (pϕD1 → χ1) ∨ (qϕD2 → χ2)

and by direct calculation formula χ1,2 turns out to satisfy fχ1,2(x, y) =
f(x, y), for every (x, y) ∈ D1 ∪D2 = R2

+. Then the formula

ϕ = (ϑI1 ∨X ∨ ¬X) ∧ (ϑI2 ∨ Y ) ∧ (ϑI3 ∨X ∨ ¬X) ∧ (δ ∨ χ1,2)

has f as truth table.

Recall that Σ is isomorphic to Product Logic via the transformation

ι : x ∈ [0, 1] →
{

log(x−1), if x > 0
∞ otherwise.

Then description of truth tables of Product logic can be obtained by applying
the inverse of ι to functions described in Theorem 2.3.10.



Chapter 3

Finite-valued reductions

The satisfiability problem of infinite-valued �Lukasiewicz logic was proved
to be NP-complete by Mundici in [86]. In that paper, the author showed
that the decision problem of infinite-valued propositional �Lukasiewicz logic
�L∞ can be reduced to the decision problem of a suitable set of finite-valued
�Lukasiewicz logics. More precisely, a formula ϕ is valid in �L∞ if and only
if, for each i ∈ {1, . . . , 2(2#(ϕ))2}, ϕ is valid in (i+ 1)-valued logic �Li. Here,
#(ϕ) denotes the total number of occurrences of variables in ϕ.

Strengthening this result, in [8] the authors showed that the tautolo-
gousness of ϕ in �L∞ can be checked in exactly one (m+ 1)-valued logic �Lm,
for m = 2#(ϕ)−1.

In this Chapter we extend the methods and results of [8] to Gödel and
Product logic, as well as to logics obtained by a combination of Gödel and
�Lukasiewicz connectives (resp., Gödel and Product connectives). While re-
sults for Gödel logic are already known (see [67]), our method is fresh and
the reduction of formulas of Product Logic to finite-valued logics is new
here. As an application, we shall define in Chapter 4 a calculus for all these
infinite-valued logics. The results of this chapter have appeared in [10, 11].

3.1 Introduction

Recall that in Definition 1.1.1 a many-valued propositional logic is defined
as a triple L = (S, D, F ), where

• S is a non-empty set of truth-values,

• D ⊂ S is the set of designated truth values,

49
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• F is a (finite) non-empty set of functions such that for any f ∈ F and
for any integer ν(f) > 0, f : Sν(f) → S and for every c ∈ C there
exists fc ∈ F .

Definition 3.1.1 (Critical points) If ϕ is a formula of the logic
(S,D,F ), a set of critical points for the function fϕ is a subset C ⊆ Sn

(where n = |var(ϕ)|) such that

fϕ(Sn) ⊆ D if and only if fϕ(C) ⊆ D.

Definition 3.1.2 (Denominator upper bound) A function bL :
Form(L) → N is a denominator upper bound for the logic L, if for every
formula ϕ, there exists a set {x1, . . . ,xn} of critical points for fϕ such that

max den(xi) ≤ bL(ϕ).

Our general construction leading to a sequent calculus for a given logic
L has several steps as follows:

• Find a formulation of L where the function fϕ determined by any
formula ϕ is piecewise linear with integer coefficients.

• By induction on the complexity of ϕ, define indexes to keep track of the
building process of ϕ from its subformulas; and correspondingly keep
track of all functions, polyhedral complexes, and bounding hyperplanes
given by these subformulas.

• Given a formula ϕ, find a finite set of critical points for ϕ.

• From the relationship between bounding hyperplanes and subformulas,
obtain an upper bound on the denominator of critical points, only
depending on the length and on the number of variables of ϕ.

• Use continuity arguments, and their generalizations, to reduce the
problem whether ϕ is a tautology in L to the corresponding problem
for ϕ in a unique, effectively determined, finite-valued logic.

• Use this finite-valued reduction to construct a sequent calculus for the
infinite-valued logic L.

In this section we recall the main ideas of the method given in [8] to
reduce the tautology problem in infinite-valued �Lukasiewicz logic to its finite-
valued counterpart.
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For each McNaughton function (Definition 2.1.1) f : [0, 1]n → [0, 1] there
is a polyhedral complex C(f) such that f is linear over each cell of C(f),⋃
C(f) = [0, 1]n, and each vertex (0-cell) of C(f) is a point of ([0, 1] ∩ Q)n.
If ϕ is not a tautology of �L∞ and |var(ϕ)| = n, then there exists a point

x ∈ [0, 1]n such that fϕ(x) < 1. By linearity it follows that there is a vertex
v of C(fϕ) such that fϕ(v) < 1, and we have that ϕ is not a tautology of
�Lden(v).

Note that we can obtain v as the solution of a system Mv = b of linear
equations. The rows of the system are the equations of the hyperplanes
whose intersection is v.

We can build the polyhedral complex C(ϕ) = C(fϕ) by inductively com-
bining the complexes associated with subformulas of ϕ. With any variable
Xi of ϕ we associate the complex C(fXi) containing [0, 1]n together with all
its faces. Since negation ¬ does not introduce new subdivisions, we must
only consider the disjunctive connective ⊕. It turns out that the only new
bounding hyperplanes of full-dimensional cells that can be introduced in
the complex associated to a subformula ψ ⊕ ϑ of ϕ, have equations of the
form g1(x) + g2(x) = 1, where g1 and g2 are linear polynomials coinciding
respectively with fψ and fϑ on suitably determined cells c1 ∈ C(fψ) and
c2 ∈ C(fϑ).

Thus, all the entries in the system matrix M are integers, whence
den(v) ≤ |det(M)|. We are now in a position to give an upper bound
to |det(M)|.

The analysis in [8] of subformulas of ϕ yields a matrix M ′ such that
|det(M ′)| = |det(M)| and the sum of the absolute values of the entries in
M ′ does not exceed the total number of occurrences of variables in ϕ. A
straightforward computation now yields the desired upper bound on den(v),
namely b�L = (#(ϕ)/n)n, where n is the number of variables of ϕ. Therefore,

|=�L∞ ϕ if and only if |=�Lm ϕ for each m ∈ {1, . . . , b�L}.

One further application of the continuity and differentiability properties of
the function associated to ϕ yields the equivalence

|=�L∞ ϕ if and only if |=�L
2#(ϕ)−1

ϕ.

As a final step, it can be shown that the smallest basis s such that b�L < s#(ϕ)

is e1/e where e = 2.71828 . . . is the basis of natural logarithms.
Since McNaughton functions are continuous, the set of critical points for

ϕ coincides with the set of vertices of C(fϕ). As we shall see, the continuity
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assumption can be weakened without essential prejudice to the applicability
of our method.

Our method depends on the existence of nice relations between the case
functions cϕ(σ) and the elements of D(ϕ, σ). In the following sections, we
shall show what these nice relations are for Gödel logic and for Product
logic.

3.2 Gödel Logic

The results proved in this section are already known and can be proved
straightforwardly as is done, for instance, in [67]. Since functions associ-
ated with Gödel formulas are geometrically simple, we use Gödel logic to
exemplify our method.

Let ϕ be a formula of Gödel logic, such that |var(ϕ)| = n. Then the
truth table fϕ of ϕ is a (piecewise linear) function from [0, 1]n into [0, 1]
described by Lemma 2.2.5. In Section 2.2, the set of regions of linearity
is denoted by C (Equation (2.3)) and elements of C are subspaces of [0, 1]n

limited by hyperplanes of equations xi = xj or xi = 0 or xi = 1.
Hence, vertexes of elements of C are vertexes of the hypercube [0, 1]n.

Corollary 3.2.1 The function fϕ is identically equal to 1 if and only if

(i) fϕ(x) = 1 for every vertex x of [0, 1]n, and

(ii) fϕ(x) = 1 for at least one point x in every element of C.

Proof. By Lemma 2.2.5 the function fϕ is linear over every element of C.
Conditions (i) and (ii) imply that fϕ is equal to 1 on every C ∈ C and hence
identically over [0, 1]n.

The following theorem is a well known consequence of a result in [60].
We give here an alternative proof.

Theorem 3.2.2 For every formula ϕ of Gödel logic,

|=G∞ ϕ if and only if |=Gn+1 ϕ

where n = |var(ϕ)|.

Proof. By Corollary 3.2.1 the minimal set of critical points for a formula ϕ
of Gödel logic, consists of vertices of C (i.e., vertices of the hypercube [0, 1]n)
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and of one point in each element of C. A point in an n-dimensional element
of C can be obtained as the Farey mediant (Definition 1.3.1) of vertices of
such cell, and hence in this case it has denominator equal to n+ 1. Suppose
that C is an element of C with dimension less than n. Then points in C
either have some of their coordinates equal to 0 or to 1, or have two or
more of their coordinates one equal to another. Let us denote by J0, J1 the
subsets of {1, . . . , n} such that, for every x = (x1, . . . , xn) ∈ C,

• xj0 = 0, for every j0 ∈ J0;

• xj1 = 1, for every j1 ∈ J1.

Further, denote by J1
2 , . . . , J

t
2 subsets of {1, . . . , n} such that, if r ∈

{1, . . . , t},

• xj2 = xj′2, for every j2, j′2 ∈ Jr2 and j2 	= j′2.

Since dim(C) < n then J0 ∪ J1 ∪
⋃t
r=1 J

r
2 	= ∅.

For every point p ∈ F , let p′ = (p′1, . . . , p′n) ∈ F ′ be defined in the following
way:

• for every j0 ∈ J0, j1 ∈ J1, we set p′j0 = 0, p′j1 = 1.

• for every r = 1, . . . , t choose a component pr in each {pi | i ∈ Jr2}.
Then set, for every j2, j′2 ∈ Jr2 , p′j2 = p′j′2 = pr.

• in all the other cases set p′i = pi.

The denominator of point p′ divides den(p).
So, in every open face there is a point of denominator dividing n + 1, and
hence fϕ ≡ 1 if and only if the restriction of fϕ to Sn+1 is identically equal
to 1.

3.3 Product Logic

Things for Product Logic are a slight more complicate. Firstly, truth tables
involve more objects in their definition than Gödel formulas do. Further,
no finite subset of [0, 1], other than {0, 1} and its subsets, is closed under
the product operation, hence there are not finite-valued Product Logics. We
will show that for every formula ϕ of product logic Π, one can always define
a finite-valued logic Σn = Σn(#(ϕ), |var(ϕ)|) such that ϕ is a tautology in
Π if and only if a suitably transformed formula ϕ̃ is a tautology in Σn.
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We shall then use the description of truth tables of Theorem 2.3.10,
and the relationship between boundary elements and cases of functions as
defined in Definition 2.3.3. We shall then provide an upper bound for the de-
nominator of critical points. Using a new unary connective that transforms
sums into truncated sums we shall finally give finite-valued approximations
for the tautology problem of formulas in product logic.

The denominator den(p) of a rational point p ∈ (R∗
+)n having i many

components equal to ∞, is defined as the denominator of the projection of
p into (R+)n−i along those components. In other words, ∞ is considered as
having denominator equal to 1.

The work in the following subsections is organized as follows:

• In Section 3.3.1 we investigate the relations between boundaries and
subformulas of ϕ. Further we show that, in each cell of C(ϕ) the
polynomial associated with ϕ can be described in terms of polynomials
associated with subformulas of ϕ.

• In Section 3.3.2 critical points are examined. A critical point of ϕ
arises as the solution of a system where the rows are given by suitable
subformulas of ϕ. Using Lemmas of Section 3.3.1 we can appropri-
ately manipulate such rows in order to obtain an upper bound on the
denominator of critical points.

• In Section 3.3.3 we reduce the problem of tautologousness to a class
of finite-valued logics.

3.3.1 Subformulas and cell boundaries

Proposition 2.3.9 allows us to reduce the study of the behavior of functions
in faces of the form {x ∈ (R∗

+)n | xi1 = . . . = xit = ∞} to the study
of functions defined over Rn−t

+ . Then we can safely limit ourselves to the
study of piecewise linear functions defined over Rn

+ and we can accordingly
consider cells as polyhedral subsets of Rn

+.

Definition 3.3.1 For every linear polynomial q(x) = ax+c, we shall denote
by π(q) the vector a. Further, if fϕ(x) = ∞ for every x ∈ Rn

+, we set
π(cϕ(σ)) = 0 for each σ ∈ I(ϕ).

Example 3.3.2 The Product formula (X → Y ) · (X → Z) becomes the Σ
formula ϕ = (X →Σ Y ) + (X →Σ Z). The index set of ϕ is

I(ϕ) = {AA,AB,BA,BB},
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and the corresponding cells are

cellAA(ϕ) = {(x, y, z) ∈ R3
+ | x ≥ y, x ≥ z}

cellAB(ϕ) = {(x, y, z) ∈ R3
+ | x ≥ y, x ≤ z}

cellBA(ϕ) = {(x, y, z) ∈ R3
+ | x ≤ y, x ≥ z}

cellBB(ϕ) = {(x, y, z) ∈ R3
+ | x ≤ y, x ≤ z}

Further cases of functions are given by

cϕ(AA)(x, y, z) = 0 and π(cϕ(AA)) = (0, 0, 0)
cϕ(AB)(x, y, z) = y − x and π(cϕ(AB)) = (−1, 1, 0)
cϕ(BA)(x, y, z) = z − x and π(cϕ(BA)) = (−1, 0, 1)

cϕ(BB)(x, y, z) = y − 2x+ z and π(cϕ(BB)) = (−2, 1, 1).

Note also that

if x = ∞ then fϕ(x, y, z) = 0
if y = ∞ and x 	= ∞ then fϕ(x, y, z) = ∞
if z = ∞ and z 	= ∞ then fϕ(x, y, z) = ∞.

Notation. Recall that we have denoted by I(ϕ) the subset of J(ϕ) whose
elements are indexes of full dimensional cells in C(ϕ) (see Definition 2.3.1).
Let further:

IC(ϕ) =

⎧⎨⎩
{σ1σ2A ∈ I(ϕ) | σ1 ∈ I(ψ1), σ2 ∈ I(ψ2)} if ϕ = ψ1 →Σ ψ2

{σ1σ2 | σ1 ∈ IC(ψ1), σ2 ∈ IC(ψ2)} if ϕ = ψ1 + ψ2

IC(ψ) if ϕ = ¬ψ
IC(ϕ) = I(ϕ) \ IC(ϕ).

The set IC(ϕ) is the set of indexes of regions in which the function fϕ is
a constant function. For instance, in the above Example we have IC(ϕ) =
{AA}.

Definition 3.3.3 (Boundaries) For each σ ∈ I(ϕ) we inductively define
the set D(ϕ, σ) ⊆ Zn+1 as follows:

- D(Xi, ε) = ±(En × {0, 1}).

- If ϕ = ¬ψ and σ ∈ I(ψ), then D(¬ϕ, σ) = D(ϕ, σ).

- If ϕ = ψ1 + ψ2 and σ = σ1σ2, then D(ψ1 + ψ2, σ1σ2) = D(ψ1, σ1) ∪
D(ψ2, σ2).
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- If ϕ = ψ1 → ψ2 and σ = σ1σ2C (C ∈ {A,B}) let Dσ1σ2 defined as
follows:

If dim(cellψ1(σ1) ∩ cellψ2(σ2)) < n then Dσ1σ2 = ∅; otherwise Dσ1σ2 is
the set of all the elements (a, c) such that

– gcd(a, c) = gcd(a1, . . . , an, c) = 1, where a = (a1, . . . , an);

– for every x ∈ cellψ1(σ1) ∩ cellψ2(σ2),

cψ1(σ1)(x) − cψ2(σ2)(x) = 0 if and only if a · x = c.

Then D(ψ1 → ψ2, σ1σ2A) = D(ψ1 → ψ2, σ1σ2B) = D(ψ1, σ1) ∪
D(ψ2, σ2) ∪Dσ1σ2 .

Given σ ∈ I(ϕ), suppose that the vector (a, c) satisfies gcd(a, c) = 1; in
addition suppose that the set {x : a·x = c} contains a facet of cellϕ(σ). Then
(a, c) belongs to the set D(ϕ, σ). Accordingly, by a slight abuse of language,
each element of D(ϕ, σ) will be called a boundary element of cellϕ(σ).

Each element of D(ϕ, σ) represents the equation of a bounding hyper-
plane of cellϕ(σ). If we consider the formula ϕ as inductively built up from
its subformulas then every element of D(ϕ, σ) must be “introduced” by
a subformula of ϕ. The next Lemma estabilishes some relations between
boundaries and subformulas of ϕ.

Lemma 3.3.4 Let σ ∈ I(ϕ). If (a, c) ∈ D(ϕ, σ) \ ±(En × {0, 1}), then

- c = 0;

- there exists a subformula ϑ = ϑ1 →Σ ϑ2 of ϕ and τ = τ1τ2C ∈ I(ϑ)
(where C ∈ {A,B}) such that cellϕ(σ) ⊆ cellϑ(τ) and there exists
d ∈ Z such that da = π(cϑ(τ1τ2B)).

Proof.
Let (a, c) ∈ D(ϕ, σ). We shall proceed by induction on the complexity

of ϕ.

• In case ϕ = Xi, the proof is immediate.

• If ϕ = ¬Σψ or ϕ = ψ1 +ψ2 the result follows from Definition 3.3.3 and
from induction.
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• If ϕ = ψ1 →Σ ψ2 and σ = σ1σ2A then either (a, c) ∈ D(ψ1, σ1) ∪
D(ψ2, σ2) and then the desired result immediately follows by induc-
tion, or else, for every x ∈ cellψ1(σ1) ∩ cellψ2(σ2), we have

a · x = c if and only if cψ2(σ2)(x) − cψ1(σ1)(x) = 0.

Since cψ1→Σψ2(σ1σ2B) = cψ2(σ2) − cψ1(σ1), then

a · x = c if and only if cψ1→Σψ2(σ1σ2B)(x) = 0.

By Propositions 2.3.6 and 2.3.9, c = 0. Since a = (a1, . . . , an) satisfies
the identity gcd(a1, . . . , an) = 1, then there exists an integer d such
that da = π(cψ1→Σψ2(σ1σ2B)).

• If ϕ = ψ1 →Σ ψ2 and σ = σ1σ2B then one similarly gets da =
π(cψ1→Σψ2(σ1σ2B)).

Example 3.3.5 Consider the formula ϕ of Example 3.3.2 and let σ = BA ∈
I(ϕ). Then

D(ϕ,BA) = D(X →Σ Y,B) ∪D(X →Σ Z,A) =
= ±(En × {0, 1}) ∪ {(−1, 1, 0, 0)} ∪ {(−1, 0, 1, 0)}.

Choose (a, c) = (−1, 0, 1, 0). We have A ∈ I(X →Σ Z), cellϕ(BA) ⊆
cellX→ΣZ(A) = {(x, y, z) | x ≥ z} and cX→ΣZ(B) = z − x. Further,
π(cX→ΣZ(B)) = (−1, 0, 1).

In the following Lemma we shall show how, upon arbitrarily fixing an
index σ ∈ I(ϕ) and a subformula ψ of ϕ, it is always possible to decompose
π(cϕ(σ)) in terms of ψ and of others pairwise disjoint occurrences ϑ1, . . . , ϑh
of subformulas of ϕ.

Lemma 3.3.6 Let ψ � ϕ and σ ∈ I(ϕ). Then there exists τ ∈ I(ψ) with
cellϕ(σ) ⊆ cellψ(τ), together with a (possibly empty) set {ϑ1, . . . , ϑt} of
pairwise disjoint occurrences of subformulas of ϕ also disjoint from ψ, such
that

(i) π(cϕ(σ)) = δπ(cψ(τ)) +
∑t

i=1 ±π(cϑk
(ρk)), where δ is in {−1, 0, 1},

ρk ∈ IC(ϑk) is such that cellϕ(σ) ⊆ cellϑk
(ρk);
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(ii) whenever α is a subformula of ϕ such that there exists k with ϑk ≺ α,
then also ψ ≺ α.

Proof. By structural induction on the complexity of ϕ.

• If ϕ = Xi and σ = ε the claims are trivial.

• If ϕ = ¬Σψ, then for every x ∈ cellϕ(σ), we either have cϕ(σ)(x) = 0
or cϕ(σ)(x) = ∞ and in both cases π(cϕ(σ)) = 0. Condition (ii)
trivially holds.

• If ϕ = ψ + ϑ and σ = σ1σ2, with σ1 ∈ I(ψ) and σ2 ∈ I(ϑ), then
π(cϕ(σ)) = π(cψ(σ1)) + π(cϑ(σ2)). The case ϑ+ ψ is similar.

• If ϕ = α1 + α2 with σ = σ1σ2, σ1 ∈ I(α1) and σ2 ∈ I(α2), then
π(cσ(ϕ)) = π(cα1(σ1)) + π(cα2(σ2)). Since ψ is a subformula of either
α1 or α2, then the claim holds by applying the induction hypothesis
to the one among α1 and α2 where ψ occurs.

• If ϕ = α1 →Σ α2 and σ = σ1σ2A then cϕ(σ) = 0 and the claim trivially
follows.

• If ϕ = ψ →Σ ϑ and σ = σ1σ2B with σ1 ∈ I(ψ) and σ2 ∈ I(ϑ), then
π(cϕ(σ)) = π(cϑ(σ2)) − π(cψ(σ1)). The case ϕ = ϑ →Σ ψ is similar.

• If ϕ = α1 →Σ α2 and σ = σ1σ2B several different cases are possible.

– If ψ � α1 and cα1(σ1) > 0 then arguing by induction we have

π(cα1(σ1)) = δπ(cψ(τ)) +
∑

±π(cϑj
(ρj))

for suitable τ, {ϑj}j , {ρj}j . If there exists α subformula of ϕ and
k with ϑk ≺ α then we also have ψ ≺ α. If cα2(σ2) > 0

π(cϕ(σ)) = π(cα2(σ2)) −
(
δπ(cψ(τ)) +

∑
±π(cϑj

(ρj))
)
.

Otherwise,

π(cϕ(σ)) = −δπ(cψ(τ)) −
∑

±π(cϑj
(ρj)).

One argues similarly for ψ � α2 and cα2(σ2) > 0.

– If ψ � α1 and cα1(σ1) = 0 then cϕ(σ) = cα2(σ2). ψ does not
occur in the decomposition and then δ = 0.
The case ψ � α2 and cα2(σ2) = 0 is similar.
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The following Lemma is a generalization of the previous one to n disjoint
occurrences ψ1, . . . , ψn of subformulas of ϕ.

Lemma 3.3.7 Let ψ1, . . . , ψm be pairwise disjoint occurrences of subformu-
las of ϕ and let σ ∈ I(ϕ). Then there exists J ⊆ {1, . . . ,m} and a unique
τi ∈ IC(ψi) for every i ∈ J such that cellϕ(σ) ⊆ cellψi

(τi) and

π(cϕ(σ)) =
∑
i∈J

±π(cψi
(τi)) +

∑
k∈K

±π(cϑk
(ρk)),

where

• K = {1, . . . , t} is a (possibly empty) finite set,

• for every k, k′ ∈ K, ϑk, ϑk′ are pairwise disjoint occurrences of sub-
formulas of ϕ also disjoint from each ψ1, . . . , ψm,

• ρk ∈ IC(ϑk) are such that cellϕ(σ) ⊆ cellϑk
(ρk).

Proof. Lemma 3.3.6 yields τ1 ∈ I(ψ1), {ϑ1,i}i pairwise disjoint occurrences
of subformulas of ϕ and {ρ1,i ∈ I(ϑ1,i)}i such that

π(cϕ(σ)) = δ1π(cψ1(τ1)) +
∑
i

±π(cϑ1,i
(ρ1,i)),

where δ1 ∈ {−1, 0, 1} and whenever α is a subformula of ϕ and k satisfies
ϑ1,k ≺ α, then also ψ1 ≺ α.

Since ψ2 is disjoint from ψ1, then ψ1 	� ψ2 and so there exists j such
that ψ2 � ϑ1j . Arguing in the same way for π(cϑ1,j

(ρ1j)), we get

π(cϕ(σ)) =
δ1π(cψ1(τ1)) + δ2π(cψ2(τ2)) +

∑
±π(cϑ2,i

(ρ2,i)) +
∑

i
=j ±π(cϑ1,i
(ρ1,i)).

By similarly handling ψ3, . . . , ψm, one obtains the desired conclusion.

Example 3.3.8 Consider ϕ = (X →Σ Y ) + (X →Σ Z) as in Example 3.3.2
and 3.3.5. Let ψ be the occurrence of X in X →Σ Y and let σ = BB ∈ I(ϕ).
Then

π(cϕ)(BB) = (−2, 1, 1) = −(1, 0, 0) + (0, 1, 0) + (−1, 0, 1)
= −π(cX(ε)) + π(cY (ε)) + π(cX→ΣZ(B)).
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3.3.2 Upper bounds for denominators of critical points

By Lemma 2.3.8, the restriction of fϕ to any open face F ⊆ (R∗
+)n \ (R+)n

contained in a hyperplane of equation xi = ∞ is either equal to 0, or is equal
to ∞, or is equal to a function, defined on (R∗

+)n−1, associated with a formula
ϑ of length less or equal to #(ϕ), having the additional property that the
variable Xi does not occur in ϑ. If the restriction of fϕ to F is 0 or ∞, then
a set C of critical points can be constructed in such a way that C contains
just one point of F . On the other hand, if for every x ∈ F , fϕ(x) = fϑ(xi)
and C ′ is a set of critical points for fϑ, then a set C of critical points can be
constructed in such a way that C∩F = {x ∈ (R∗

+)n | xi ∈ C ′ and xi = ∞}.

Suppose now that the function fϕ associated with the formula ϕ is not
identically equal to ∞ over Rn

+. Then by Lemma 2.3.7, the restriction of
fϕ to Rn

+ is continuous with respect to the natural topology on R+; by
Proposition 2.3.6 and Lemma 3.3.4, the restriction of fϕ to Rn

+ consists of
homogeneous pieces with homogeneous boundaries. In order to test whether
fϕ is identically equal to 0, it is enough to check that each linear piece l of
fϕ (defined over an open set) is equal to 0 at just one point xl in the interior
of the cell other than the origin 0. Let Cl be the cell in which fϕ is equal
to l and let k be such that the intersection between Cl and {x | xk = 1} is
non-empty. Since each linear piece l is homogeneous, we can choose xl to
be the intersection of (n− 1) many boundaries of Cl and the hyperplane of
equation xk = 1. Hence, xl is the solution of a system Mx = b where M is
an (n×n)-matrix of integer numbers, where we can safely suppose that the
first row is equal to ek and the other rows li are such that (li, 0) ∈ D(ϕ, σ),
and where b = e1.

We want to determine an upper bound for the denominator of the solu-
tion of such a system.

By Proposition 2.3.6, if the function fϕ is not identically equal to ∞ over
Rn

+, then for every σ ∈ I(ϕ) and every open face F of cellϕ(σ) contained in
Rn

+, the restriction cϕ(σ) of fϕ to F is a linear function. For every x ∈ F and

v ∈ ±(En) one can now consider the directional derivative
dfϕ
dv

(x). Indeed,
dfϕ
dv

(x) exists for all x ∈ Rn
+, with trivial modifications when x lies on the

border of Rn
+.

Lemma 3.3.9 For each formula ϕ in the variables X1, . . . ,Xn and each
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point x ∈ Rn
+, if v ∈ {ei,−ei} is such that

dfϕ
dv

(x) exists then∣∣∣∣dfϕdv (x)
∣∣∣∣ ≤ #(Xi, ϕ).

Proof. We can safely assume that the function fϕ is not equal to ∞ on Rn
+

(for otherwise, since the function is constant, we have |dfϕ/dv(x)| = 0 and
we are done).

For x ∈ Rn
+, there exists σ ∈ I(ϕ) such that fϕ(x) = cϕ(σ)(x) = aσ,1x1+

. . . + aσ,nxn and ε > 0 such that {x + λv | 0 ≤ λ < ε} ⊆ cellϕ(σ). By
induction on the complexity of ϕ we have |aσ,i| ≤ #(Xi, ϕ). It follows that∣∣∣∣dfϕdv (x)

∣∣∣∣ = |aσ,i| ≤ #(Xi, ϕ).

Theorem 3.3.10 Let p be a vertex of an n-dimensional cell of C(n)(ϕ) ∩
[0, 1]n. Then there exists an (n − 1) × (n − 1) matrix Mp whose entries
ai,j are integers, satisfying the inequalities

∑n−1
i,j=1 | ai,j |≤ #(ϕ) − 1 and

den(p) ≤ |det(Mp)|.

Proof. Observe that p is the solution of a system Mx = b with M an n×n
integer matrix. We can safely suppose that the first row is equal to ek and
b = (1, 0, . . . , 0) = e1, and the remaining rows l2, . . . , ln of M satisfy the
condition (l2, 0), . . . , (ln, 0) ∈ D(ϕ, σ) for suitable σ ∈ I(ϕ). Hence

p = M−1b =
1

det(M)
M̃b,

where each entry of M̃ is an integer. Then den(p) ≤ |det(M)|.
Since (li, 0) ∈ D(ϕ, σ) for each i ≥ 2, then, by Lemma 3.3.4, we either

have li ∈ ±En or there exists ψi = ψi1 →Σ ψi2 � ϕ, τ ′i1τ
′
i2
C ∈ I(ψi),

(C ∈ {A,B}) with cellϕ(σ) ⊆ cellψi
(τ ′i1τ

′
i2
C) and di ∈ Z such that dili =

π(cψi
(τ ′i1τ

′
i2
B)). We shall now define a matrix Mp with the same determinant

as M , in such a way to relate this determinant with the length of the formulas
corresponding to the rows ofMp. For our current purpose of finding an upper
bound of den(p), we may safely assume that each di is equal to ±1.

In case there do not exist in M two distinct rows lr, ls such that ψr � ψs
and there is no row li = ±et (for any et ∈ En), then we let Mp = (a′ij) be the
(n−1)×(n−1)-matrix obtained from M = (aij)i,j=1,... ,n by deleting the first
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row and the k-th column. Since ψi for i = 2, . . . , n are disjoint occurrences of

subformulas of ϕ, then
n∑
i=2

#(ψi) ≤ #(ϕ). Further, |det(Mp)| = |det(M)|

and, since |aij | ≤ #(Xj , ψi) by Lemma 3.3.9, then

n−1∑
i,j=1

|a′ij | =
n∑

i=2,j=1,j 
=k
|aij | ≤

n−1∑
i=2

(#(ψi) − #(Xk, ψi)) ≤ #(ϕ) − 1.

Otherwise, if the subformulas ψi are not pairwise disjoint or there is a row
li = ±et, we let P ⊆ {2, . . . , n} be such that

p ∈ P if and only if lp /∈ ±En.

Let further h ∈ P be such that there is no h′ with ψh � ψh′ . Let ψk1 , . . . , ψku

be such that, for every i ∈ {1, . . . , u},

- ki ∈ P ;

- ψki
� ψh;

- there is no other formula ψk′ (k′ ∈ P ) such that ψki
� ψk′ � ψh.

Applying Lemma 3.3.7 to ψh, ψk1 , . . . , ψku and τh ∈ I(ψh), there exists
J ⊆ {k1, . . . , ku} such that for each ki ∈ J there exists a unique ωi ∈ IC(ψki

)
with cellψh

(τh) ⊆ cellψki
(ωi) and

π(cψh
(τh)) =

∑
kj∈J

±π(cψki
(ωi)) +

s∑
i=1

±π(cϑi
(ρi))

where ϑ1, . . . , ϑs are pairwise disjoint occurrences of subformulas of ψh also
disjoint from each of the occurrences ψk1 , . . . , ψku , and ρi ∈ IC(ϑi) with
cellψh

(τh) ⊆ cellϑi
(ρi) for every i = 1, . . . , s.

By the elementary properties of determinants, replacing in M the row
lh by

∑s
j=1 ±π(cϑj

(ρj)) we obtain a matrix M ′ such that |det(M ′)| =
|det(M)|.

Repeating the above procedure finitely many times, we obtain an n× n
matrix Mp such that each row li (i ∈ P ) of Mp has the form∑

h∈Hi

±π(cϑi
h
(ρih))
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and, for any two distinct rows li, lj ∈ Mp (i, j ∈ P ) we have ϑihi
	� ϑjkj

for
every hi ∈ H i and kj ∈ Hj .

Consider now any row li ∈ Mp (with li 	= l1) such that li = ±et ∈ ±En.
Then, by subtracting suitable multiples of li from the remaining rows, we
get a matrix M ′

p such that all entries in its t-th column are 0, except for the
(i, t)th entry which is ±1, while all the other columns and the determinant
are left unchanged. Repeating this procedure for all rows li ∈ ±En except
for the first one, we finally obtain a matrix M ′

p = {mij ∈ Z : 1 ≤ i, j ≤ n}
with the following property: there exist indexes j1, . . . , jt such that in every
row (mij)nj=1, elements of columns indexed by j1, . . . , jt coincide respectively
with the j1th,. . . jtth elements of the vector

∑
h∈Hi ±π(cϑi

h
(ρih)) where for

every h ∈ H i and i = 1, . . . , n, the occurrences ϑih are pairwise disjoint
subformulas of ϕ. Further, mij = 0 for j 	= j1, . . . , jt.

Let Mp = (a′′ij) be the (n − 1) × (n − 1) matrix obtained from M ′
p by

deleting the first row and the kth column.
Then det(Mp) = det(M) and since |mi,j | ≤

∑
h∈Hi #(Xj, ϑ

i
h),

n−1∑
i,j=1

|a′′ij | ≤
n−1∑
i=2

∑
h∈Hi

(
#(ϑih) − #(Xk, ϑ

i
h)
)
≤ #(ϕ) − 1.

Theorem 3.3.11 Let ϕ be a formula in the variables X1, . . . ,Xn (with n ≥
2) and let p be a vertex of an n-dimensional cell of C(n)(ϕ) ∩ [0, 1]n. Then

den(p) ≤
(

#(ϕ) − 1
n− 1

)n−1

.

If n = 1 then den(p) = 1.

Proof.
Let Mp = (li) be the (n − 1) × (n − 1) matrix defined in Theorem

3.3.10, with li = (ai1, . . . , ai(n−1)) such that
∑n−1

i,j=1 |aij | ≤ #(ϕ) − 1 and
den(p) ≤ |det(Mp)|. By Hadamard’s inequality, |det(Mp)| ≤

∏n−1
i=1 ||li||,

where ||li|| =
√
a2
i1 + . . .+ a2

i(n−1) ≤ |ai1| + . . .+ |ai(n−1)|. Hence,

den(p) ≤
n−1∏
i=1

n−1∑
j=1

|aij| ≤
n−1∏
i=1

#(ϕ) − 1
n− 1

=
(

#(ϕ) − 1
n− 1

)n−1

.
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Note that(
#(ϕ) − 1
n− 1

)n−1

= 2(n−1) log((#(ϕ)−1)/(n−1)) < 2#(ϕ)−1.

As in the case of �Lukasiewicz logic, the smallest basis s such that ((#(ϕ) −
1)/(n − 1))n−1 < s#(ϕ)−1 is e1/e.
Remark. The function fϕ is homogeneous. So, in our investigation of
denominator upper bounds of fϕ, we can equivalently restrict our attention
to ([0, 1] ∪ {∞})n or to any ([0, a] ∪ {∞})n with a > 1. In the last case, the
bound could be smaller, but the cardinality of the set of critical points (and
then the number of values of the logic which we want to reduce to) remains
the same.

Theorem 3.3.12 If q ∈ (R∗
+)n is such that fϕ(q) > 0, then there exists

p ∈ (([0, 1] ∩ Q) ∪ {∞})n such that fϕ(p) > 0 and den(p) divides 2#(ϕ)−1.

Proof. Skipping all trivialities, we can safely suppose that the function fϕ is
not identically equal to ∞ over Rn

+. Thus fϕ is continuous over Rn
+. Suppose

that there exists a point q ∈ Rn
+ at which fϕ assumes a value strictly greater

than 0. Since fϕ consists of linear homogeneous pieces, we can safely suppose
that q is a vertex of C(n)(ϕ) ∩ [0, 1]n ⊆ Qn. Let qk be the component of q
equal to 1. Among all points of the form x = (x1/2#(ϕ)−1, . . . , xn/2#(ϕ)−1),
let p = (p1 . . . , pn) be the one closest to q (with respect to Euclidean dis-
tance) such that pk = 1. By way of contradiction, suppose that fϕ(p) = 0.
Since fϕ(q) ≥ 1/den(q), by Lemma 3.3.11, we get

fϕ(q) − fϕ(p) ≥
(

n− 1
#(ϕ) − 1

)n−1

.

On the other hand, since p is the closest point to q among all points with
denominator equal to 2#(ϕ)−1, then

|pi − qi| ≤
1

2 · 2#(ϕ)−1
,

where pi and qi are the ith coordinates of p and q, respectively. Since
pk = qk = 1, an application of Lemma 3.3.9 yields

fϕ(q) − fϕ(p) ≤
n∑
i=1

(|pi − qi|#(Xi, ϕ)) =
n∑

i=1,i
=k
(|pi − qi|#(Xi, ϕ)),
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and then(
n− 1

#(ϕ) − 1

)n−1

≤
n∑

i=1,i
=k

(
1
2

1
2#(ϕ)−1

#(Xi, ϕ)
)

≤ 1
2#(ϕ)−1

#(ϕ) − 1
2

,

whence

#(ϕ) − 1
2

(
#(ϕ) − 1
n− 1

)n−1

≥ 2#(ϕ)−1. (3.1)

The desired conclusion now follows by noting that such inequality is never
satisfied for #(ϕ), n = 2, 3, . . . . Indeed, letting g = (#(ϕ) − 1)/(n − 1), we
have

#(ϕ) − 1
2

g(#(ϕ)−1)/g ≥ 2#(ϕ)−1

if and only if
log2(#(ϕ) − 1) − 1

#(ϕ) − 1
≥ g − log2 g

g
.

Let log x denote the logarithm of x to the base e. The real-valued function
f1(x) = (log2 x − 1)/x reaches its maximum value 1/(2e log 2) for x = 2e.
The function f2(x) = (x− log2 x)/x attains its minimum value 1− 1/(e ln 2)
for x = e.

Noticing that 1/(2e log 2) < 1 − 1/(e log 2) we have obtained a contra-
diction, and the proof is complete (compare with [8]).

There remains to consider the case when the function fϕ vanishes over
Rn

+ and is > 0 over (R∗
+)n\Rn

+. Suppose that F is an open face of (R∗
+)n\Rn

+

contained in the hyperplane xi = ∞ and that there exists q ∈ F such that
fϕ(q) > 0. For simplicity, suppose that f is not contained in any hyperplane
xj = ∞ with j 	= i. By Lemma 2.3.8, for every x ∈ F , fϕ(x) = fϑ(xi),
where var(ϑ) ⊆ var(ϕ) \ {Xi} and #(ϑ) ≤ #(ϕ). Hence fϑ(qi) > 0. Since
qi ∈ Rn−1

+ , we can now apply to ϑ the result of the first part of this proof. We
obtain a point p = (p1, . . . , pn−1) ∈ Rn−1

+ such that fϑ(p) > 0 and den(p)
divides 2#(ϑ)−1. The point p′ = (p1, . . . , pi−1,∞, pi, . . . , pn−1) ∈ (R∗

+)n is
such that den(p′) divides 2#(ϑ)−1, whence 2#(ϕ)−1 and, further,

fϕ(p′) = fϑ(p) > 0.
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3.3.3 Finite-valued approximations of Product Logic

As already remarked, it is not possible to define a finite-valued Product Logic
by restricting the set of truth values to a finite subset of [0, 1]. However,
once a specific function fϕ is considered, one can conceivably define a (finite)
set of critical points for fϕ having the desired closure properties. To this
purpose, we first introduce a new unary operator as follows.

Let R∗
+ = [0,∞] and

S∗
k = Sk ∪ {∞} =

{
0,

1
k
, . . . ,

k − 1
k

, 1,∞
}
.

Let ϕ be a formula of Σ and let m, l > 0 be integer numbers.

Definition 3.3.13 For every x ∈ R∗
+ we define the unary operator �lm :

R∗
+ → R∗

+ such that, for all x < ∞

�lm(x) =
�lx�
lm

and �lm(∞) = ∞.

Let us consider the logic S lm = (S∗
lm, {0}, {⊕,¬Σ,→Σ, �}), where ¬Σ

and →Σ are obtained by restricting to S∗
lm the operations given by the

connectives in Σ. Assume further that, for every x, y ∈ S∗
lm,

• x⊕y is the truncated sum min(1, x+y) in case x, y < ∞, and x⊕∞ =
∞ ⊕ y = ∞ ⊕ ∞ = ∞;

• �x = �lm(x).

For every subformula ψ of ϕ we shall denote by ψ̃ the formula obtained
by replacing every occurrence of a variable Xi in ψ by �Xi and replacing
every occurrence of + by ⊕. Obviously, ψ̃ is a formula of S lm.

For our current purposes it is convenient to separately study the restriction
of f�ϕ to (Slm)n and to (S∗

lm)n \ (Slm)n.
For every variable Xi ∈ var(ϕ) and (x1, . . . , xn) ∈ (Slm)n we have

f�Xi(x1, . . . , xn) =
�lxi�
lm

≤ 1
m
.

For any formula ϕ, we let m ≥ #(ϕ); then it is easy to see that, if ϕ is
such that the restriction of fϕ to (R+)n is different from ∞, then m ≥
maxx∈[0,1]n fϕ(x).
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Further, if ψ1, ψ2 � ϕ, and ψ̃1 and ψ̃2 are the corresponding formulas of
S lm, then, whenever m ≥ #(ϕ) ≥ #(ψ1) + #(ψ2), we have

f�ψ1
(x1, . . . , xn) ≤

n∑
i=1

#(Xi, ψ1) · �lxi�
lm

≤
n∑
i=1

#(Xi, ψ1) · 1
m

=
#(ψ1)
m

f�ψ2
(x1, . . . , xn) ≤

n∑
i=1

#(Xi, ψ2) · �lxi�
lm

≤
n∑
i=1

#(Xi, ψ2) · 1
m

=
#(ψ2)
m

and so
f�ψ1+ψ2

= f�ψ1⊕�ψ2
≤ #(ψ1) + #(ψ2)

m
≤ 1

hence

f�ψ1+ψ2
= f�ψ1

+ f�ψ2
. (3.2)

Trivially,

f�ψ1→ψ2
= f�ψ1

→ f�ψ2
. (3.3)

Lemma 3.3.14 For every x ∈ (Sl)n, m ≥ #(ϕ) and ε ∈ {0, 1/(lm),
2/(lm), . . . , (m− 1)/(lm) }n such that x + ε ≤ 1,

f�ϕ(x + ε) =
1
m
fϕ(x)

Proof. If the restriction of fϕ to (R+)n is equal to ∞ the Lemma trivially
holds. Otherwise, we proceed by induction on the complexity of ϕ. Let
x = h/l with h ∈ {0, . . . , l}n.

• Let ϕ = Xi. Then ϕ̃ = �Xi and

f�Xi(
h
l

+ ε) =
�l

(
hi
l + ε

)
�

lm
=

hi
lm

=
1
m
fXi(

h
l

).

• Let ϕ = ψ1 + ψ2. Then, by (3.2),

f�ψ1+ψ2
(
h
l

+ ε) = f�ψ1
(
h
l

+ ε) + f�ψ2
(
h
l

+ ε) =
1
m
fψ1+ψ2(

h
l

).

• Let ϕ = ψ1 → ψ2. Then, by (3.3),

f�ψ1→ψ2
(
h
l

+ ε) = f�ψ2
(
h
l

+ ε) − f�ψ1
(
h
l

+ ε) =
1
m
fψ1→ψ2(

h
l

).
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The above Lemma can be easily generalized to x ∈ (S∗
l )n. As a matter

of fact, by Proposition 2.3.9, the restriction of fϕ to (R∗
+)n is either equal to

∞, or it coincides with the function associated with a formula ϑ such that
all the variables taking ∞ do not occur in ϑ.

Corollary 3.3.15 For every x ∈ (S∗
l )n and ε ∈ {0, 1/(lm), 2/(lm), . . . ,

(m− 1)/(lm) }n such that x + ε ∈ (S∗
lm)n, we have fϕ(x) = 0 if and only if

f�ϕ(x + ε) = 0.

In agreement with our presentation of the logics Ln andGn, we will introduce
the following map from S∗

n = Sn ∪ {∞} to Sn ∪ {⊥}:

̂ : x ∈ Sn ∪ {∞} �→
{

1 − x if x ∈ Sn
⊥ if x = ∞,

where ⊥ is a new symbol for a distinguished element strictly less than
all other elements of Sn. The map ̂ induces an isomorphism between
S lm = (S∗

lm, {0}, {⊕,¬Σ,→Σ, �}) and Sl
m = (Slm∪{⊥}, {1}, {,¬�,→�, �}),

where

x y =
{

max{0, x + y − 1} if x, y > ⊥
⊥ otherwise

x →� y =

⎧⎨⎩
min{1, 1 + y − x} if x, y > ⊥
⊥ if y = ⊥ and x 	= ⊥
1 if x = ⊥.

¬�x = x →Σ ⊥ =
{

1 if x = ⊥
⊥ if x > ⊥.

�x = 1 − �l(1 − x)�
lm

.

The operations  and →� coincide with suitable extensions to ⊥ of
�Lukasiewicz conjunction and implication, respectively. A formula ϑ is a
tautology of Sl

m if and only if fϑ(x) = 1 for every x ∈ (Slm ∪ {⊥})n.
In the following we will consider ϕ̂ as the syntactic translation of a

formula ϕ of Σ (or, equivalently, of Product logic), obtained by substituting
each occurrence of a variable Xi with �Xi, each occurrence of + with , each
occurrence of →Σ with →� and each occurrence of ¬Σ with ¬�. Further,
if x = (x1, . . . , xn) ∈ (S∗

lm)n we shall denote by x̂ the vector (x̂1, . . . , x̂n).
From the isomorphism between logics S lm and Sl

m and from Corollary 3.3.15
it follows that
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Corollary 3.3.16 Assume m ≥ #(ϕ). Then for every x ∈ (S∗
l )n and

ε ∈ {0, 1/(lm), 2/(lm), . . . , (m− 1)/(lm)}n such that x̂ − ε ∈ (Slm ∪ {⊥})n,
we have fΣ

ϕ (x) = 0 if and only if f��ϕ (x̂ − ε) = 1.

Theorem 3.3.17 For every formula ϕ of Product logic we have

|=Π∞ ϕ if and only if |=�l
m
ϕ̂,

where m = #(ϕ) and l = 2m−1.

Proof. By Theorem 3.3.12, ϕ is a tautology of Product logic if and only if
for every x ∈ (S∗

l )n, fΣ
ϕ (x) = 0. By Corollary 3.3.16 this is equivalent to

saying that f�ϕ(x̂−ε) = 1, for every ε such that x̂−ε ∈ (Slm∪{⊥})n. Since for
every y ∈ (Slm ∪ {⊥})n there exists x̂ ∈ (Sl ∪ {⊥})n and ε ≤ (m− 1)/(lm)
such that y = x̂ − ε, then f�ϕ(x̂ − ε) = 1 holds if and only if, for every
y ∈ (Slm ∪ {⊥})n, f�ϕ(y) = 1. This yields the desired conclusion.

3.4 Logical consequence in Gödel and Product

Logic

When dealing with the lattice connectives ∧ and ∨, some extra care must
be taken, since both #(ϕ ∧ ψ) and #(ϕ ∨ ψ) are in general strictly greater
than #(ϕ) + #(ψ). Since, on the other hand, these two connectives play an
important role in the treatment of logical consequence, we are interested in
adding them as primitive connectives, without increasing the denominator
upper bound of the logic. That this is indeed feasible follows from the
observation that the function associated with ∨ is given by

f∨(x, y) =
{
x if y ≤ x
y if x < y

in all logics considered in this paper, since their sets of truth values are
linearly ordered. Since f∨ has the same boundary polynomial (x−y) as f→Σ

and since f∨ does not introduce new polynomials, we can safely incorporate
∨ among the primitive connectives of our logics. The same applies to ∧.

The method used to reduce the infinite-valued tautology problem to its
finite-valued counterparts, cannot in general be extended to the problem of
logical consequence. Indeed, in order to prove that a formula of C (with
C ∈ {G,Σ}) is not a tautology we have used a continuity argument to
find a point where the associated formula takes a value not belonging to
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the set of designated values D(C). On the other hand, for Γ |=C ∆ to be
falsified, one must typically exhibit a point p such that f�Γ(p) ∈ D(C) and
f�∆(p) 	∈ D(C). Suppose that for any other q 	= p, f�Γ(q) 	∈ D(C). In
this case, the only finite logic that can be used must have as denominator
the denominator of p, because continuity arguments yield nothing here. As
expected, the methods of the previous sections cannot in general be applied
to reduce infinite-valued consequence to its finite-valued counterpart.

Still, our geometrical analysis and our estimates on denominators of
critical points yield the following:

Lemma 3.4.1 Let Γ and ∆ be two finite sets of Gödel formulas and let n
be the cardinality of var(Γ ∪ ∆). Then we have:

Γ |=G∞ ∆ if and only if Γ |=Gm+1 ∆ for all integers 1 ≤ m ≤ n.

Proof. Let ϕ =
∧

Γ and ψ =
∨

∆. Since, as remarked above, we can-
not directly reduce to a unique finite-valued logic, we shall examine the
denominator of all points arising as intersections of boundaries of cells. The
polyhedral complexes C(ϕ) and C(ψ) can be jointly refined by

C(ϕ,ψ) = {A ∩B | A ∈ C(ϕ), B ∈ C(ψ)}.

Vertices of C(ϕ,ψ) are solutions of systems

⎛⎜⎝ a1
...

an

⎞⎟⎠x = b, where every

ai either belongs to D(ϕ, σ1) or to D(ψ, σ2). Thus, in order to calculate
denominators of vertices, we can use the same computations as for formulas
ϕ∗ψ, where ∗ is any arbitrary binary connective. Theorem 3.2.2 now yields
the desired conclusion.

Since, as is well known, the Deduction Theorem holds in Gödel logic (see
[67]), we have

Theorem 3.4.2 Let Γ and ∆ be two finite sets of Gödel formulas and let
n be the cardinality of var(Γ ∪ ∆). Then

Γ |=G∞ ∆ if and only if |=G∞

∧
Γ →

∨
∆

if and only if |=Gn+1

∧
Γ →

∨
∆

if and only if Γ |=Gn+1 ∆.
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Geometrically, the above result states that, if p is a point such that
f�Γ(p) = 1, then there exists a rational point q with den(q) a divisor of
n + 1, such that f�Γ(q) = 1. Indeed, if p belongs to the relative interior
K of some cell of dimension k ≤ n and f�Γ(p) = 1 then, by Corollary 5.4,
f�Γ(p) = 1 for every point p ∈ K, whence in particular, for some point
whose denominator divides n+ 1.

We now turn to Product logic. If Γ = {γ1, . . . , γk} is a set of formulas of
Product logic, let us denote by Γ̂ the set {γ̂1, . . . , γ̂k}.

Theorem 3.4.3 Let Γ and ∆ be two finite sets of formulas of Σ and let n
be the cardinality of var(Γ ∪ ∆). Then we have:

Γ |=Π∞ ∆ if and only if Γ̂ |=�l
m

∆̂

for all l ≤
(

#(ϕ)+#(ψ)−1
n−1

)n−1
and m = #(∆) + #(Γ).

Proof. We argue as in the proof of Lemma 3.4.1, with some extra care
needed to repeat the “normalization” argument therein, in order to get a
finite-valued logic. To this purpose, let ϕ =

∧
Γ and ψ =

∨
∆. Suppose

Γ 	|=Π∞ ∆. Then there exists a point p such that fϕ(p) = 0 and fψ(p) > 0.
We can safely suppose that p is a vertex of C(ϕ,ψ) and so, by Lemma 3.3.11,

den(p) <
(

#(ϕ) + #(ψ) − 1
n− 1

)n−1

.

By Corollary 3.3.16, there exists l = den(p) such that in the logic Sl
m,

f�ϕ(p) = 1 and f �ψ(p) < 1, whence Γ̂ 	|=�l
m

∆̂.

Conversely, let us suppose that there exists l ≤
(

#(ϕ)+#(ψ)−1
n−1

)n−1
such

that Γ̂ 	|=�l
m

∆̂. Then there exists a point p such that den(p) = lm and
f�ϕ(p) = 1 and f �ψ(p) < 1. Since p = q/l− ε for some q ∈ {0, ..., l}n and ε ∈
{0, 1

lm , . . . ,
m−1
lm }n, then by Corollary 3.3.16, fϕ(q/l) = 0 and fψ(q/l) > 0.

In conclusion, Γ 	|=Π∞ ∆ as desired.

3.5 Logics combining Product, Gödel and �Luka-

siewicz connectives

The methods of the previous sections can be generalized to find upper
bounds for denominators of critical points in logics obtained by combin-
ing Product, Gödel and �Lukasiewicz connectives, as sketched below. In the
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following we shall denote by n the number of variables of a generic formula
ϕ.

• We let Π+G = ([0, 1], {1}, {·,¬G ,→Π,→G}) denote the logic obtained
by combining the connectives of Product and of Gödel Logic. Let us
consider the logic Σ + G = ([0,∞], {0}, {+,¬Σ ,→Σ,→ΣG}), where
→ΣG is defined by

x →ΣG y =
{

0 if x ≥ y
y otherwise.

Σ + G and Π + G are clearly isomorphic. Moreover Σ + G satisfies
all the piecewise linear requirements needed to apply our method as
introduced in Section 4.

The construction of the polyhedral complex CΣG(ϕ) associated in
Σ + G with a formula ϕ as defined in Section 4, proceeds as for
the construction of the polyhedral complex CΣ(ϕ) associated with ϕ
in Σ, with the only additional stipulation that CΣG(ψ1 →ΣG ψ2) =
CΣG(ψ1 →Σ ψ2). Since f→ΣG

has the same boundary polynomial as
f→Σ

, Propositions and Lemmas of Sections 6.1 and 6.2 can be repeated
to describe the function associated with ϕ, with the only exception of
Lemma 2.3.7. Indeed fϕ is in general not continuous, but is linear
and homogeneous over every open face of any cell of CΣG(ϕ). Repeat-
ing the argument done for Product Logic, we get that this function
must be tested also in the relative interior of each cell. For any for-
mula ϕ with n variables, a denominator upper bound is hence given

by n ·
(

#(ϕ)−1
n−1

)n−1
. This is so because a point in the relative interior

of any given cell can be chosen as the Farey mediant of vertices of
simplexes of CΣG(ϕ)∩ [0, 1]n . Then one can apply the same trick used
to reduce Product Logic to a finite-valued logic.

• We let �L+G = ([0, 1], {1}, {⊕,→�L ,¬�L,¬G,→G}) denote the logic ob-
tained by combining the connectives of �Lukasiewicz and Gödel Logic.
Analogously to the logic Σ+G, since f→G

has the same boundary poly-
nomial as f→�L, the construction of the polyhedral complex C�LG(ϕ)
associated in �L+G with a formula ϕ, proceeds as for the construction
of the polyhedral complex C�L(ϕ) associated with ϕ in �L, with the only
additional stipulation that C�LG(ψ1 →G ψ2) = C�LG(ψ1 →�L ψ2).

The functions associated with formulas are (possibly discontinuous)
piecewise linear with integer coefficients. These functions must be
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tested also in the relative interior of each cell. A denominator upper
bound is (n+ 1) ·

(
#(ϕ)
n

)n
.

• We let G+ ∆ = ([0, 1], {1}, {∧,¬G ,→G,∆}) denote the logic obtained
by adding to connectives of Gödel Logic the connective ∆ interpreted
by the function ∆(x) = 1 if only if x = 1 and ∆(x) = 0 otherwise
(axiomatized in [14]). Even if the class of functions associated with
G + ∆ strictly contains the class of functions associated with G (see
[52]), Corollary 3.2.1 and Theorem 3.2.2 can be repeated exactly as
for Gödel logic. Hence n+ 1 is a denominator upper bound.

• When �Lukasiewicz connectives are combined with Product connec-
tives, piecewise linearity is lost and our present approach is inadequate.



Chapter 4

Calculi

In this section we will extend to Gödel and Product Logics methods and
results of [8] and [9]. We refer to [112] for further background on proof
theory.

In the literature one can find deductive systems for a multitude of finite-
valued logics ([109, 25, 58]). In particular in [64] a signed tableaux system is
presented, where signs are sets of values. The calculi for finite-valued logics
presented in this section, are in a sense a translation of signed tableau: we
shall present them in a form that makes it easy to extend them to calculi
for infinite-valued logics. Indeed, also if some calculi have been defined for
infinite-valued �Lukasiewicz logic, they present some drawback, as giving no
hints for proof search ([108, 100]) and involving geometrical and algebraic
computations that shed no light on the real logical structure of formulas
[65]. For an overview see for example [30].

In [8] a calculus for infinite-valued �Lukasiewicz logic is described, based
on the fact that the decidability of a �Lukasiewicz infinite-valued formula ϕ
can be reduced to deciding ϕ in a suitable finite-valued �Lukasiewicz logic.

Our calculi depend on the rules reducing the infinite-valued tautology
problem to its finite-valued counterpart. As an example, we shall provide
sequent calculi building on the proof-theoretic machinery of [9]. As in [8],
our calculi in this chapter will stem from very simple operations, such as
doubling the places in a sequent, shifting formulas from one place to another,
and similar “typographical” operations. We shall obtain elementary calculi
whose rules are easy to apply. Since the operations needed to build one
premise of a rule of our calculi only take constant time, as an immediate
consequence we shall give new proofs that the tautology problem for Gödel
and Product logics is in co-NP. In the case of Product logic such proof is

74
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alternative to the one in [15].
For the sake of simplicity in our exposition, sometimes the definition of

our rules will involve arithmetical operations. However, in all cases it will
always be possible to rewrite such rules without resorting to any arithmetical
operations.

4.1 Preliminaries

If Ln ∈ {�Ln, Gn,Sl
m( with lm = n−1)} is an (n+1)-valued logic, we denote

by LCn a sequent calculus in which every sequent consists of n parts. More
precisely, sequents Υ of LCn have the form

Γ1 � ∆1 | . . . | Γn � ∆n,

where, for every i = 1, . . . , n, Γi and ∆i are finite sets of formulas of Ln.
Γi � ∆i is called the ith component of Υ. Γi is the premise of the component
Γi � ∆i, ∆i is the conclusion (of the component Γi � ∆i).

We shall adopt the following notation. [Γ � ∆]ni denotes the n-
component sequent whose ith component is Γ � ∆, and the remaining ones
are empty. Whenever the number of components of a sequent is clear from
the context, we write [Γ � ∆]i. For instance, [� ϕ]11 denotes the sequent � ϕ.

Sequents are to be interpreted in the following way:

Definition 4.1.1 A sequent Γ1 � ∆1 |Γ2 � ∆2 | . . . |Γn � ∆n is valid in Ln
if for all interpretations v for Ln, there exists h ∈ {1, . . . , n} such that

v
( ∧
γ∈Γh

γ
)

≤ n− h

n
or v

( ∨
δ∈∆h

δ
)

≥ n− h+ 1
n

. (4.1)

Clearly, Γ |=Ln ∆ if and only if [Γ � ∆]n1 is valid in Ln. Intuitively, the
position of a formula in the i-th sequent is a statement about its possible
truth values, in accordance with (4.1). Namely, we represent the boolean
statement ”the value of ϕ is ≥ n−i+1

n ” by putting ϕ in the conclusion of the
i-th component of the n-part sequent. Analogously, the boolean statement
”the value of ϕ is ≤ n−i

n ” is represented by an occurrence of ϕ in the premise
of the i-th component of the n-part sequent.

Notation: As usual in sequent calculi notation, we shall always write Γ, ϕ
for Γ ∪ {ϕ}.

Further, given m-component sequents Υ1,Υ2, . . . ,Υh we let [Υ1 Υ2 · · ·
Υh ] denote the m-component sequent Υ obtained by the componentwise
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merging of Υ1, . . . , Υh: that is, for any i ∈ {1, . . . ,m}, the ith component
of Υ will contain as premise the union of premises of ith components of all
Υj and as conclusion the union of conclusions of ith components of all Υj,
for each j ∈ {1, . . . , h}.

During the construction of a proof, the set of possible truth values for ϕ
(in our notation, the position of ϕ) is modified in accordance with a set of
rules that we will introduce later on.

Any (instance of a) rule is determined by a set of sequents called premises
of the rule and a sequent called conclusion of the rule. For every connective
there are n rules, each rule dealing with a fixed component of the sequent.
As in standard sequent calculi, each rule comes in a left and in a right
version, according as the rule modifies the left, or the right hand side of the
sequent. Rules can be logical or structural. Structural rules are divided into
weakening rules and migration rules. A rule is valid when the validity of all
the premises implies the validity of the conclusion. A valid rule is bivalid
when the validity of the conclusion implies the validity of all the premises.

Take a generic sequent Υ = Γ1 � ∆1 | . . . |Γn � ∆n. Suppose we are
applying a rule of the calculus to an occurrence of the formula ϕ in the
premise Γi (resp., conclusion ∆i) of the i-th sequent Γi � ∆i. Then this
occurrence of ϕ is called the active (occurrence of ) formula, and we call
context sequent the sequent Υ′ obtained from Υ by replacing the i-th com-
ponent with Γi \ {ϕ} � ∆i (resp., Γi � ∆i \ {ϕ}). By using componentwise
merging notation introduced above, we can write down Υ as

Υ = [Υ′[ϕ �]i]
(

resp., Υ = [Υ′[� ϕ]i]
)
.

In this way we can easily formulate the context part in any sequent under
consideration. Suppose that for instance Θ contains the active formula.
Then a generic sequent containing Θ can be written down as [ΘΥ], where
Υ is a generic context sequent.

For the sake of readability, we shall define rules for LCn calculi in a
uniform way for every finite-valued logic. For each integer m > 0 the sequent
calculus LCm is given by:

Axioms. For every 0 < j ≤ m,

[ϕ � ϕ]j .
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Structural Rules. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . ,m − 1} and for
every context sequent Υ,

(w, l)i =
Υ

[ Υ [ϕ � ]i ]
(w, r)i =

Υ
[ Υ [� ϕ]i ]

(m, l)j =
[ Υ [ϕ �]j+1 ]

[ Υ [ϕ �]j ]
(m, r)j =

[ Υ [� ϕ]j ]
[ Υ [� ϕ]j+1 ]

.

Cut Rules. For each i, j ∈ {1, . . . ,m} such that i ≤ j and for every
context sequent Υ,

(cut)ij =
[ Υ [� ϕ]i ] [ Υ [ϕ �]j ]

Υ
.

We are now in a position to define logical rules for several finite-valued
logics.

As usual, a sequent Γ is said to be provable in the LCm calculus, if there
is a tree of sequents, rooted in Γ, such that every leaf is an axiom and every
inner node is obtained from its parent nodes by an application of a rule.
Such proof tree is said to be closed.

Lemma 4.1.2 If LCn is a sequent calculus for an (n + 1)-valued logic Ln
such that every logical rule is bivalid, then every sequent valid in Ln is
provable in LCn without using the cut rule.

Proof. Let Υ be a sequent valid in Ln. Starting from Υ we construct a tree
by applying logical rules of LCn in the inverse direction. Since each premise
of a logical rule contains fewer connectives than the conclusion, the process
must terminate. After a finite number of steps we obtain a tree whose
leaves only contain sequents where every formula is a variable. Since, by
hypothesis, all the logical rules are bivalid, all these leaves must be valid in
Ln. It is easy to see that a sequent whose components contain only variables
is valid in Ln if and only if it has the form [Υ′ [X �]j[� X]k ] for some j, k
such that 0 < j ≤ k < n. Thus, using the weakening and the migration
rules we get a proof of Υ in LCn.

For all logics Gn, �Ln and Sl
m (with n = lm) we have the following rules

for ∨ and ∧, where the sequents are supposed to have n components and Υ
is a context sequent:

(∨, l)i =
[ Υ [ϕ �]i ] [ Υ [ψ �]i ]

[ Υ [ϕ ∨ ψ �]i ]
(∨, r)i =

[ Υ [� ϕ,ψ]i ]
[ Υ [� ϕ ∨ ψ]i ]
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(∧, l)i =
[ Υ [ϕ,ψ �]i ]

[ Υ [ϕ ∧ ψ �]i ]
(∧, r)i =

[ Υ [� ϕ]i ] [ Υ [� ψ]i ]
[ Υ [� ϕ ∧ ψ]i ]

.

4.2 Logical rules for Gödel Logics Gn

The logical rules of GCn for the connective ∧ are as above. The others are
as follows, where all sequents must be considered as having n components
and Υ is, as usual, a context sequent.

(¬G, r)i =
[Υ [ϕ �]n]

[Υ [� ¬Gϕ]i]
(¬G, l)i =

[Υ [� ϕ]n]
[Υ [¬Gϕ �]i]

(→G, r)i =
{[Υ [ϕ � ψ]j ] : j = i, . . . , n}

[Υ [� ϕ →G ψ]i]

(→G, l)i =
[Υ [� ϕ]n] [Υ [ψ �]i] {[Υ [� ϕ]j [ψ �]j+1] : j = i, . . . , n− 1}

[Υ [ϕ →G ψ �]i]
.

Remark. Consider the rule

(→G, r)′1 =
[Υ[ϕ � ψ]1]

[Υ[� ϕ → ψ]1]
.

From the Deduction theorem it follows that, when Υ = ∅ (i.e., when the
context is empty), this rule holds. Indeed we are going to show that if a
closed proof tree for [ϕ � ψ]1 exists, then there exist closed proof trees of
[ϕ � ψ]i, for every i = 1, . . . , n.

As a matter of fact, let us suppose that there exists a proof tree P for
[ϕ � ψ]1 such that every leaf is an axiom and every internal node is obtained
from its parent nodes by an application of a rule. For every [ϕ � ψ]i we shall
construct a proof tree Pi in the following way:

Let ρ1 be the first rule applied to [ϕ � ψ]1 in P . We apply ρi to each of
[ϕ � ψ]i in such a way that

• if either ρ = (∧, r) or ρ = (∧, l) then we add the corresponding sequents
in position i in the proof tree Pi;

• if either ρ = (¬, r) or ρ = (¬, l) then we add the corresponding sequents
in position n in the proof tree Pi;

• if either ρ = (→, r) or ρ = (→, l) then we add the corresponding
sequents in position i, i+ 1, . . . , n in the proof tree Pi.
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This completes the description of the first step in our proof. In the
second step we apply the second rule of P with obvious modifications, and
so on. In each of the proof trees Pi thus obtained, none of the sequents is in
position j < i. The leaves of Pi are axioms. Indeed, every Pi is a copy of P ,
with the possible exception given by branches occurring in P and missing in
Pi, because the rules for implication applied in Pi generally introduce less
sequents than the corresponding rules when applied in P .

So, when Υ = ∅ the rule (→, r)′1 can be applied instead of (→, r)1. On
the other hand, if the context Υ is non-empty, the rule (→, r)′1 is no longer
sound and hence the rule (→, r) must be considered. For example, consider
the formula (X → Y )∨ (X ∨¬Y ). This is not a tautology in 4-valued Gödel
logic G3. A proof tree for (X → Y ) ∨ (X ∨ ¬Y ) is

X � X| � | �
X � Y,X | � |Y �
X � Y,X,¬Y | � | �

� X |X � Y |Y �
� X,¬Y |X � Y | �

� | � |Y � Y
� X| � |X,Y � Y
� X,¬Y | � |X � Y

(→, r)1� (X → Y ),X,¬Y | � | �
� (X → Y ) ∨ (X ∨ ¬Y )| � | �

and this is not closed. On the other hand, if we used the rule (→, r)′1 we
would get

X � X | � | �
X � Y,X | � |Y �
X � Y,X,¬Y | � | �

(→, r)′1� (X → Y ),X,¬Y | � | �
� (X → Y ) ∨ (X ∨ ¬Y )| � | �

and this is closed.

Lemma 4.2.1 For each integer n > 0, all logical rules of GCn are bivalid.

Proof. By direct inspection, as an immediate consequence of the definition
of validity for the sequents under consideration.

The following theorem is a consequence of Lemma 4.2.1.

Theorem 4.2.2 A sequent is valid in Gn if and only if it is provable in
GCn.
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4.3 Logical rules for Sl
m Logics

In order to write rules for Sl
m, where ml = n, first of all let us label by

the symbol ⊥ the (n+ 1)th position in any sequent. Thus the sequent Γ1 �
∆1 |Γ2 � ∆2 | . . . |Γn � ∆n |Γ⊥ � ∆⊥ is valid in Sl

m if for all interpretations
v, either there exists h ∈ {1, . . . , n} such that (4.1) holds, or else

v

⎛⎝ ∧
γ∈Γ⊥

γ

⎞⎠ = ⊥ or v

⎛⎝ ∨
δ∈∆⊥

δ

⎞⎠ ≥ 0.

The logical rules of ΠCn are as follows, where all sequents are considered
as having n components and Υ is intended as the context sequent:

(, r)⊥ =
[Υ [� ϕ]⊥] [Υ [� ψ]⊥]

[Υ [� ϕ ψ]⊥]
(, l)⊥ =

[Υ [ϕ,ψ �]⊥]
[Υ [ϕ ψ �]⊥]

(, r)i =
[Υ [� ϕ]i] [Υ [� ψ]i] {[Υ [� ϕ]j [� ψ]k ] : j + k = i}

[Υ [� ϕ ψ]i]

(, l)i =
{[Υ [ϕ �]j [ψ �]k ] : j + k = i+ 1}

[Υ [ϕ ψ �]i]

(→Σ, r)⊥ =
[Υ [ϕ � ψ]⊥]

[Υ [� ϕ →Σ ψ]⊥]
(→Σ, l)⊥ =

[Υ [� ϕ]⊥] [Υ [ψ �]⊥]
[Υ [ϕ →Σ ψ �]⊥]

(→Σ, r)i =
{[Υ [ϕ �]j [� ψ]k ] : k − j = i− 1} [Υ [ϕ � ψ]⊥]

[Υ [� ϕ →Σ ψ]i]

(→Σ, l)i =

[Υ[� ϕ]⊥] [Υ[ψ �]i]
{[Υ[� ϕ]j [ψ �]k ] : k − j = i} [Υ[� ϕ]n−i+1 [ψ �]⊥ ]

[Υ[ϕ →Σ ψ �]i]

(¬Σ, r)i =
[Υ [ϕ �]⊥]

[Υ [� ¬Σϕ]i]
(¬Σ, l)i =

[Υ [� ϕ]⊥]
[Υ [¬Σϕ �]i]

also for i = ⊥.

(�, r)⊥ =
[Υ [� ϕ]⊥]
[Υ [� �ϕ]⊥]

(�, l)⊥ =
[Υ [ϕ �]⊥]
[Υ [�ϕ �]⊥]

(�, r)i≤l =
[Υ [� ϕ]mi]
[Υ [� �ϕ]i]

(�, l)i≤l =
[Υ [ϕ �]mi]
[Υ [�ϕ �]i]

(�, r)i≥l+1 =
[Υ [� ϕ]⊥]
[Υ [� �ϕ]i]

(�, l)i≥l+1 =
[Υ [ϕ �]⊥]
[Υ [�ϕ �]i]

Lemma 4.3.1 For each integer n > 0, all logical rules of ΠCn are bivalid.
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Proof. By direct inspection, as an immediate consequence of the definition
of validity for the sequents under consideration.

Theorem 4.3.2 A sequent is valid in Sl
m if and only if it is provable in

ΠClm.

4.4 Calculi for infinite-valued logics

Using the results of Sections 3.2 and 3.3 one can transform every formula
ϕ of the infinite-valued calculus of L∞ ∈ {G∞,Π∞}, into a formula ϕ̂ of a
suitable finite-valued logic L′

n, such that |=L∞ ϕ if and only if |=L′
n
ϕ̂, and

then check the tautologousness of ϕ working on ϕ̂ in L′
n.

We must still provide rules enabling us to automatically associate to the
formula ϕ the integer n such that |=L∞ ϕ if and only if |=L′

n
ϕ̂.

To this purpose we consider labelled sequents of the form

(Σ) : Υm

where Υ is a sequent of the LCm calculus, for some integer m > 0, and Σ is
a (possibly empty) finite set or multiset of formulas of L∞ called label. The
empty label is denoted by ε.

We shall first define a “partial” calculus LT∞, that will only find use
in proving that a formula is a tautology. We shall then give the rules for
a sequent calculus LC∞, taking into account the fact that infinite-valued
logical consequence cannot generally be reduced to a single finite-valued logic
(Theorem 3.4.3). Rules are divided into sequent and label rules. Axioms and
sequent rules are the same as for LCm calculi, for every m, with the proviso
that the label ε is added to every sequent. As an example, for every integer
m > 0 and 0 < j ≤ m, our axioms are given by

(ε) : [A � A]mj .

Label rules of LT∞ are used to find, for every formula ϕ, the integer
n allowing us to apply to ϕ a calculus for LCn. Accordingly, using the
abbreviations bG(ϕ) = |var(ϕ)| + 1 and by bΠ(ϕ) = 2#(ϕ)−1#(ϕ), the label
rules of GT∞ must transform the initial sequent � ϕ into a sequent having
bG(ϕ) components, and the label rules of ΠT∞ must transform the initial
sequent � ϕ into a sequent having bΠ(ϕ) components. On the other hand,
the label rules of GC∞ (respectively, the label rules of ΠC∞) must reduce
the calculus for Γ |= ∆ to its counterpart for all m-valued logics, where
m ≤ bG(

∧
Γ ∨

∨
∆) (respectively, m ≤ bΠ(

∧
Γ ∨

∨
∆) ).



CHAPTER 4. CALCULI 82

4.4.1 Gödel label rules

Labels are pairs whose first component is a multiset (which is used to dis-
assemble the formula) and whose second component is a set (used to count
variables). More precisely, for any set Ω of formulas, multiset Θ of formulas
and connective � ∈ {∧,→G}, the label rules of GT∞ are given by

((Θ, ϕ, ψ),Ω) : [Γ � ∆]m1
((Θ, ϕ � ψ),Ω) : [Γ � ∆]m1

((Θ, ψ),Ω) : [Γ � ∆]m1
((Θ,¬Gψ),Ω) : [Γ � ∆]m1

((Θ),Ω ∪ {X}) : [Γ � ∆]m1
((Θ,X),Ω) : [Γ � ∆]m1

((ε),Ω \ {X}) : [Γ � ∆]m+1
1

((ε),Ω ∪ {X}) : [Γ � ∆]m1
where X is a variable. Label rules are devised to keep track of the number of
different variables occurring in the sequent to be proved. It is clear that, if
ϕ is a formula of Gödel logic, starting from ((ϕ), ∅) :� ϕ and applying Gödel
label rules in the inverse direction, we obtain the sequent (ε) : [� ϕ]n+1

1 where
n = |var(ϕ)|. In particular, the multiset Θ will contain the subformulas of ϕ,
while the set Ω will eventually coincide with the set var(ϕ). For each element
of Ω we increase by one the number of components of sequents in the proof.
We can then apply sequent rules GCn+1 for the finite (n+ 2)-valued Gödel
logic.

Definition 4.4.1 A formula ϕ is provable in GT∞ if there is a tree of la-
belled sequents, rooted in ((ϕ), ∅) :� ϕ, such that every leaf is an axiom and
every internal node is obtained from its parent nodes by an application of a
rule.

Theorem 4.4.2 A formula is a tautology in G∞ if and only if it is provable
in GT∞.

Proof. If ϕ is a tautology of G∞ then ϕ is a tautology of GbG where
bG = |var(ϕ)| + 1. By Theorem 4.2.2, the sequent [� ϕ]bG1 is provable in
GCbG . It follows that each leaf of the tree rooted in ((ϕ), ∅) :� ϕ such that
every internal node is obtained from its parent nodes by an application of a
rule of GT∞, must be an axiom.

Vice-versa, if ϕ is provable in GT∞, then all the sequents in the proof
tree with the empty label are a proof of ϕ in GCbG , and so, by Theorem
4.2.2, ϕ is a tautology in GbG whence it is a tautology in G∞.
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Since the deduction theorem holds for Gödel logic, from the remark
before Theorem 4.2.2, we see that the calculus GT∞ can be also considered
a calculus for G∞

Theorem 4.4.3 Let Γ and ∆ be finite sets of formulas of G∞. Then Γ |=G∞
∆ if and only if the sequent ((Γ ∪ ∆), ∅) : Γ � ∆ is provable in GT∞.

4.4.2 Product label rules

For each formula ϕ of Π∞ let ϕ̂ be the formula obtained by substituting every
occurrence of · with , every occurrence of →Π with →′

Σ, every occurrence
of ¬Π with ¬Σ and every variable Xi with �Xi. Let us agree to say that ϕ̂
is the translation of ϕ. Let Γ and ∆ be sets of translated formulas, Θ be a
multiset of translated formulas and � ∈ {,→′

Σ}. Our labels shall consist
of two distinct parts: the first one will be used to disassemble the formula
ϕ, the second one will count the number of binary connectives. They are
defined by:

((Θ, ψ̂, ϑ̂), 2j) : [Γ � ∆]i+1
1

((Θ, ψ̂ � ϑ̂), j) : [Γ � ∆]i1

((Θ, ψ̂), j) : [Γ � ∆]i1
((Θ,¬Σψ̂), j) : [Γ � ∆]i1

((Θ), j) : [Γ � ∆]i1
((Θ, �X), j) : [Γ � ∆]i1

[Γ � ∆]ij1
((ε), j) : [Γ � ∆]i1.

For every formula ϕ of Product logic, starting from ((ϕ̂), 1) :� ϕ̂ and
applying Product label rules in the inverse direction, we obtain the sequent
[� ϕ̂]#(ϕ)2#(ϕ)−1

1 Then, we can apply rules of Σm
l to this sequent.

Definition 4.4.4 A formula ϕ is provable in the ΠT∞ calculus if there is
a tree of labelled sequents, rooted in ((ϕ̂), 1) :� ϕ̂, such that every leaf
is an axiom and every internal node is obtained from its parent nodes by
application either of a product label rule, or of a Σm

l rule.

Theorem 4.4.5 A formula is a tautology in Π∞ if and only if it is provable
in ΠT∞.

Proof. Similar to the Proof of Theorem 4.4.2.

By slightly modifying the ΠT∞ calculus in the light of Theorem 3.4.3 we
obtain a calculus ΠC∞ for Π∞ as follows.
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Axioms and rules are those of ΠT∞. Let Γ̂ and ∆̂ be sets of translated
formulas, Θ be any multiset of such formulas and � ∈ {,→′

Σ}. Then:

((Θ, ψ̂), j) : [Γ̂ � ∆̂]m1
((Θ,¬Σψ̂), j) : [Γ̂ � ∆̂]m1

((Θ), j) : [Γ̂ � ∆̂]m1
((Θ, �X), j) : [Γ̂ � ∆̂]m1

((Θ, ψ̂, ϑ̂), 2j − 1) : [Γ̂ � ∆̂]i+1
1 ((Θ, ψ̂, ϑ̂), 2j) : [Γ̂ � ∆̂]i+1

1

((Θ, ψ̂ � ϑ̂), j) : [Γ̂ � ∆̂]i1

[Γ̂ � ∆̂]ij1
(ε, j) : [Γ̂ � ∆̂]i1

A sequent Υ = (Θ, k) : Γ̂ � ∆̂ is said to be provable in the ΠC∞ calculus
if there is a tree of labelled sequents, rooted in Υ, such that every leaf is
an axiom and every internal node is obtained from its parent nodes by an
application of a rule.

Theorem 4.4.6 Let Γ and ∆ be finite sets of formulas of Π∞. Then Γ |=Π∞
∆ if and only if the sequent ((

∧
Γ̂,

∨
∆̂), 1) : Γ̂ � ∆̂ is provable in ΠC∞.

Proof. An easy induction on k shows that ((
∧

Γ̂,
∨

∆̂), 1) : Γ̂ � ∆̂ is
provable in ΠC∞ if and only if all the sequents [Γ̂ � ∆̂]lm1 are provable in
Σm
k , for m = #(Γ) + #(∆) and for every 1 ≤ l ≤ 2#(Γ)+#(∆)−1. Now apply

Theorems 4.3.2 and 3.4.3.

Similar calculi can be described for all logics considered in Section 3.5.

Theorem 4.4.7 The tautology problem for logics Π +G, �L +G and G+ ∆
is in co-NP.

Proof. Let us consider a branch of a proof tree for ϕ. It consists of
polynomially many occurrences of subformulas of ϕ. Its length is linearly
bounded by #(ϕ). Checking whether any two adjacent sequents Υi,Υi+1 in
the branch are such that Υi is a premise of a rule yielding Υi+1 just takes
constant time in the length of Υi and Υi+1. By keeping track only of the po-
sitions of nonempty components of sequents in the branch, we immediately
get the desired conclusion.



Chapter 5

Rational �Lukasiewicz Logic
and DMV-algebras

By McNaughton theorem [82], the functions associated with formulas of �Lu-
kasiewicz logic are the totality of continuous, piecewise linear functions in
which every piece has integer coefficients: it seems natural to weaken the
restriction of integer coefficients, and consider instead rational coefficients.

To this purpose different approaches have been proposed in the litera-
ture. The authors of [13] introduced �Lukasiewicz propositional logic with
one quantified propositional variable ∃�L. In [45] Riesz MV-algebras are de-
fined as a special class of MV-algebras with a family of unary operators,
and are shown to be the MV-algebraic counterpart of vector lattices over
real numbers. In [71] root (in fact, division) operators are introduced and
in [16] �Lukasiewicz logic plus root operators is shown to correspond to con-
tinuous piecewise linear functions with rational coefficients and to have the
interpolation property.

In [55] we collected all these results and we gave an equational defini-
tion of root operators, defining the variety of DMV-algebras (divisible MV-
algebras). Such structures maintain some basic properties of MV-algebras,
and are intervals of lattice-ordered vector spaces over the rationals just as
MV-algebras are intervals of lattice-ordered abelian groups [32].

In this chapter we extend to DMV-algebras some results holding for
MV-algebras, like the representation theorem and the correspondence with
divisible �-groups. We further give a direct proof that the variety of DMV-
algebras is generated by [0, 1]. Rational �Lukasiewicz logic is then introduced
and is shown to be an extension of Rational Pavelka logic: the tautology
problem for Rational �Lukasiewicz logic is shown to be co-NP-complete.

85
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The last section is devoted to the introduction of rational numbers into
MV-algebras, via the construction of weakly divisible hulls.

5.1 DMV-algebras

In Section 1.2.1 we cited some results on MV-algebras. It turns out that
both the completeness theorem in [29] and the representation theorem in [41]
are based on results for the theory of �-groups. In particular the authors
use the result that every totally ordered group can be embedded in a totally
ordered divisible group, and that quantifier elimination holds for totally
ordered divisible groups. We shall study here algebraic structures that are
more directly connected with divisible groups.

Notation: If A is an MV-algebra, x ∈ A and n ∈ N we denote by n.x
the element of A inductively defined by 0.x = 0, (n−1).x = n.x⊕x. Further,
we denote by nx the element of GA defined by 0x = 0 and (n−1)x = nx+x.
If u is a strong unit of GA such that Γ(G,u) = A, it follows that n.x = nx∧u.

Definition 5.1.1 (Mundici) A DMV-algebra A = (A,⊕,¬, {δn}n∈N , 0, 1)
is an algebraic structure such that A∗ = (A,⊕,¬, 0, 1) is an MV-algebra and
the following hold for every x ∈ A and n ∈ N:

(D1n) n.δnx = x

(D2n) δnx (n− 1).δnx = 0

The MV-algebra A∗ is the MV-reduct of the DMV-algebra A. If A is a
DMV-algebra, then the �-group G with strong unit u such that A∗ = Γ(G,u)
satisfies the condition of divisibility, i.e., for every n ∈ N and for every x ∈ G
there exists y ∈ G such that ny = x.

Example 5.1.2 For each k = 1, 2, . . . , the set

�Lk+1 = {0,
1
k
, . . . ,

k − 1
k

, 1},

equipped with the operations

x⊕ y = min{1, x + y}, x y = max{0, x + y − 1}, ¬x = 1 − x

is a linearly ordered MV-algebra (also called MV-chain), but cannot be en-
riched to a DMV-algebra. The set of all rationals between 0 and 1 where
each δn is interpreted as division by n, is a DMV-algebra that we shall de-
note by (Γ(Q, 1), δn). In this case, Axioms (D1n) and (D2n) state that the
sum of n copies of x/n coincides with x.
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Proposition 5.1.3 Let A be a DMV-algebra, let A∗ be its MV-reduct and
let (G,u) be the unique �-group with strong unit u such that Γ(G,u) = A∗.
Then, for every x ∈ A,

(i) mδmx = x

(ii) δmx is the unique element of A satisfying axioms (D1) and (D2).

Proof.

(i) If x ∈ A, equations (D1) and (D2) become

mδmx ∧ u = x (5.1)
(δmx+ ((m− 1)δmx ∧ u) − u) ∨ 0 = 0 (5.2)

whence δmx + ((m − 1)δmx ∧ u) ≤ u and, by definition of �-group,
mδmx ∧ (u+ δmx) ≤ u. Since δnx ≥ 0, then u+ δnx ≥ u and

mδmx ∧ u ≤ mδmx ∧ (u+ δmx) ≤ u

and hence, from (5.1), mδmx = x.

(ii) For every y ∈ A ⊆ G satisfying (D1) and (D2), my ∧ u = x and
(y + ((m − 1)y ∧ u) − u) ∨ 0 = 0. Repeating the same argument as
above, my = x = mδmx and then y = δmx.

Chang’s distance function d : A×A → A is defined by

d(x, y) = (x ¬y) ⊕ (y  ¬x).

Proposition 5.1.4 Let A be a DMV-algebra and let x, y ∈ A.

(i) If x y = 0 then δn(x⊕ y) = δnx⊕ δny

(ii) δnd(x, y) = d(δnx, δny)

Proof. We shall give the proof for the case n = 2. This can be generalized
to every n > 0.
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(i) If x, y ∈ A,

(δ2x⊕ δ2y) ⊕ (δ2x⊕ δ2y) = (δ2x⊕ δ2x) ⊕ (δ2y ⊕ δ2y) = x⊕ y.

Further note that in every MV-algebra, if a  b = 0, a  a = 0 and
b  b = 0 then (a ⊕ b)  (a ⊕ b) = (a ⊕ a)  (b ⊕ b). Thus, since
δ2x δ2y ≤ x y = 0,

(δ2x⊕ δ2y)  (δ2x⊕ δ2y) = x y = 0.

Therefore, δ2(x⊕ y) = δ2x⊕ δ2y

(ii) Let a, b elements of [0, 1] such that ab = 0. In [0, 1] we have d(a, b) =
|a− b| and hence

d(a, b)  d(a, b) = |a− b|  |a− b| = 2|a− b| − 1 ∨ 0.

If a ≤ b then 2|a − b| − 1 ∨ 0 = 2(a − b) − 1 ∨ 0 = 2a − 2b − 1 ∨ 0
and since 2a− 1 = 0 then d(a, b)  d(a, b) = 0. Analogously the same
conclusion can be drawn in case a ≥ b.

By the Chang representation theorem it follows that if δ2x δ2x = 0,

d(δ2x, δ2y)  d(δ2x, δ2y) = 0.

Further,

d(δ2x, δ2y) ⊕ d(δ2x, δ2y) = d(2δ2x, 2δ2y) = d(x, y)

whence the claim follows.

Note that by Condition (ii) of Proposition 5.1.4 and using notation and
results of [84] and [93], we can say that δn operators fit �Lukasiewicz equiv-
alence.

Definition 5.1.5 If A and B are DMV-algebras, a function f : A → B is
a homomorphism of DMV-algebras if f is a MV-homomorphism from A∗ to
B∗ and for every x ∈ A,

f(δnx) = δnf(x)

Definition 5.1.6 A subset J of a DMV-algebra A is said to be a DMV-ideal
of A if it is an ideal of the MV-reduct A∗, that is:
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• 0 ∈ J

• For every x ∈ J and y ≤ x then y ∈ J

• If x, y ∈ J then x⊕ y ∈ J

Note that if J is an ideal and x ∈ J then also δnx ∈ J for every n. A
DMV-ideal J is a prime ideal iff it is not trivial and for every x, y ∈ A, either
x ¬y ∈ J or y  ¬x ∈ J .

Proposition 5.1.7 Let I be an ideal of A. The binary relation ≡I on A
defined by x ≡I y if and only if d(x, y) ∈ I is a congruence relation.

Proof. Indeed ≡I is a congruence on the MV-reduct A∗. Further, if x, y ∈ A
and x ≡I y then, by Proposition 5.1.4, d(δnx, δny) = δnd(x, y) ≤ d(x, y),
hence d(δnx, δny) ∈ I and δnx = δny.

Let I be a DMV-ideal of A and let π : x ∈ A �→ [x]I ∈ A/I. Then
Ker(π) = {x ∈ A | [x]I = [0]I} = {x ∈ A | d(x, 0) ∈ I} = I. Vice-versa,
if f is a DMV-homomorphism, then Ker(f) = {x ∈ A | f(x) = 0} is a
DMV-ideal. We get

Proposition 5.1.8 I is a DMV-ideal of A if and only if there exists a
DMV-homomorphism f such that I = Ker(f).

By Proposition 5.1.7, if I is an DMV-ideal of A, then setting

• [x]I ⊕ [y]I = [x⊕ y]I

• ¬[x]I = [¬x]I

• δn[x]I = [δnx]I ,

the structure (A/I,⊕,¬, {δn}, [0]I ) is a DMV-algebra. Further, the quotient
A/I is totally ordered iff I is a prime ideal. The proof of the following
Proposition is the same as for MV-algebras:

Proposition 5.1.9 Let A be a DMV-algebra and I an ideal of A. If z 	∈ I
then there exists a prime ideal P of A such that I ⊆ P and z 	∈ P .

Then we can extend to DMV-algebras the Chang Representation theo-
rem.

Theorem 5.1.10 Every DMV-algebra is the subdirect product of linear
DMV-algebras.
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The functor Γ induces a correspondence between DMV-algebras and
divisible �-groups:

Definition 5.1.11 ([85]) A good sequence of a DMV-algebra A is a se-
quence (a1, . . . , an) of elements of A such that for every i = 1, . . . , n − 1,
ai ⊕ ai+1 = ai.

If A is linear then every good sequence has the form (1p, a) = (1, . . . , 1︸ ︷︷ ︸
p times

, a)

with a ∈ A. Further, if (a1, . . . , an) is a good sequence of A then also
(a1, . . . , an, 0) is a good sequence.

Proposition 5.1.12 Let A be a totally ordered DMV-algebra. Then there
exists a totally ordered divisible group G together with a strong unit u such
that A = {x ∈ G | 0 ≤ x ≤ u}.

Proof. If A is a totally ordered DMV-algebra, then the MV-reduct A∗ is a
MV-chain and A∗ is isomorphic with Γ(GA∗ , (1, 0)) (see [85]). Let u = (1, 0).
For every n ∈ N and for every x ∈ [0, u] there exists y ∈ [0, u] such that
ny = x. Since u is a strong unit and G is linear, for every x ∈ G there exists
an integer number nx such that nxu ≤ x < (nx + 1)u. Let x′ = x − nxu ∈
[0, u]. Then let y′ such that ny′ = x′ and let u′ such that nu′ = u. Then the
element nxu′ + y′ is such that n(nxu′ + y′) = x, hence the totally ordered
group GA∗ is divisible.

Theorem 5.1.13 Let A be a DMV-algebra. Then there exists a unique
divisible �-group G together with a strong unit u for G such that A = {x ∈
G | 0 ≤ x ≤ u}.

Proof. By Theorem 5.1.10, A is a subdirect product of totally ordered
DMV-algebras (Ai)i∈I and every Ai is equal to Γ(Gi, ui) with Gi totally
ordered divisible group (Proposition 5.1.12), hence

A ⊆
∏
j∈J

Aj ⊆
∏
j∈J

Gj . (5.3)

Let u = (uj)j∈J . By [85], if G is the group generated by A in
∏
j∈J Gj and

if
G+ = {a1 + . . .+ an | (a1, . . . , an) good sequence of A}

then G = G+−G+, u is a strong unit of G and Γ(G,u) = A∗. There remains
to show that G is divisible, i.e. if m ∈ N, for every x ∈ G there exists y ∈ G
such that my = x. It is enough to restrict to x ∈ G+.
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Let a1, . . . , ar be a good sequence of A (ar 	= 0) and x = a1 + . . .+ ar ∈
G+. Then δnai ∈ A ⊆ G for every i = 1, . . . , r. Let

y = δna1 + . . .+ δnar ∈ G.

By Proposition 5.1.3(i) we have ny = x.

Since for divisible, totally ordered abelian groups the quantifier elimina-
tion theorem holds, then a universal sentence χ is satisfied by every divisible
totally ordered abelian group if and only if it is satisfied by Q.

Definition 5.1.14 A DMV-equation in the variables X1, . . . ,Xn is an ex-
pression τ = σ, where τ and σ are terms over the alphabet {⊕,¬, 0, 1} ∪
{δn}n∈� with variables among X1, . . . ,Xn (DMV-terms). A DMV-equation
τ = σ is satisfied by a DMV-algebra A if, for every n-tuple (a1, . . . , an) ∈
An, τ(a1, . . . , an) = σ(a1, . . . , an), where τ(a1, . . . , an) and σ(a1, . . . , an)
are elements of A obtained by substituting X1, . . . ,Xn by a1, . . . , an in τ
and σ.

Repeating the same argument as for MV-algebras ([29]), we have

Theorem 5.1.15 A DMV-equation is satisfied by every MV-algebra if and
only if it is satisfied by the DMV-algebra (Γ(Q, 1), δn).

5.1.1 Varieties and quasi-varieties of DMV-algebras

Since DMV-algebras have an equational definition, the class of all DMV-
algebras is a variety. By Theorem 5.1.15 we have

Theorem 5.1.16 The variety of DMV-algebras is generated by [0, 1] ∩ Q.

It is possible to give an alternative proof of this theorem, by translating
any equation of DMV-algebras in a quasi-equation of MV-algebras.

Indeed, suppose that τ = 1 is a DMV-equation and let T be the parsing
tree of τ , that is, T is a tree which nodes are subformulas of τ and such
that each node has as children its direct subformulas. Leaves of T are all
the occurrences of variables occurring in τ .

Let us display the occurrences of variables x1, . . . , xn in any formula ϕ
by writing ϕ(x1, . . . , xn). Suppose that δi1τi1 , . . . , δimτim is an enumeration
of all nodes of T that begin with a symbol δ. Each of these nodes δijτij has
a unique child τij . Let us introduce m new variables in order to eliminate
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the occurrences of δ: if τ = τ(x1, . . . , xn), let τ∗(x1, . . . , xn, z1, . . . , zm) be
the formula obtained by substituting every subformula δijτij by zj .

If τij is disjoint from any other subformula in {τi1 , . . . , τim} \ {τij} then
we denote by σ1(zj) the MV-equation {ij .zj = τij} and by σ2(zj) the
MV-equation {zj  (ij − 1)zj = 0}. Otherwise, suppose that there ex-
ists h1, . . . , hl ∈ {i1, . . . , im} such that τh1, . . . , τhn are subformulas of τij .
By induction, let τ∗ij be obtained by substituting each τhk

by zhk
and let

σ1(τij ) be the MV-equation {ij .zij = τ∗ij} and σ2(τij ) be the MV-equation
{zij  (ij − 1).zij = 0}.

The equation τ = 1 holds in a DMV-algebra A if and only if the quasi-
equation

IF
σ1τi1= 1 AND σ2τi1= 1

...
AND σ1τim= 1 AND σ2τim= 1

⎫⎪⎬⎪⎭ THEN τ∗ = 1 (5.4)

holds in the MV-reduct A∗. Since the quasi-varieties of MV-algebras is
generated by Q ∩ [0, 1], quasi-equation (5.4) fails in an MV-algebra if and
only if it fails in Q ∩ [0, 1].

In [41] it is shown that every MV-algebra is an algebra of functions over
an ultrapower of [0, 1]. This is equivalent to saying that the quasi-variety
generated by [0, 1] is the whole variety of MV-algebras. The proof of this
theorem can be adapted to DMV-algebras in the following way:

Let A be a DMV-algebra. Then A is a subdirect product of totally
ordered DMV-algebras Ai = Γ(Gi, ui). Since each Gi is a totally ordered
divisible group, then it is elementarly equivalent to the additive group R of
real numbers with natural order. Then Γ(Gi, ui) is elementarly equivalent
to the MV-algebra [0, 1] and hence, by Frayne’s theorem (see for example
[26]), it is elementarly embeddable in a suitable ultrapower [0, 1]∗i of [0, 1].
Therefore, since

A ⊆
∏
j∈J

Aj ⊆
∏
j∈J

Γ(Gj , uj) ⊆
∏
j∈J

[0, 1]∗j

and applying the joint embedding property of first-order logic, there exists
an ultrapower of [0, 1]∗ of [0, 1] only depending on A such that A ⊆ [0, 1]∗.

5.2 Rational �Lukasiewicz logic

Formulas of Rational �Lukasiewicz calculus are built from the connectives of
negation (¬), implication (→), and division (δn) in the usual way. An axiom
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is a formula that can be written in any one of the following ways, where ϕ,
ψ and γ denote arbitrary formulas:

A1) ϕ → (ψ → ϕ)

A2) (ϕ → ψ) → ((ψ → γ) → (ϕ → γ))

A3) ((ϕ → ψ) → ψ) → ((ψ → ϕ) → ϕ)

A4) (¬ϕ → ¬ψ) → (ψ → ϕ)

plus, writing ϕ⊕ ψ as an abbreviation of ¬ϕ → ψ,

A5) δnϕ⊕ . . .⊕ δnϕ︸ ︷︷ ︸
n times

→ ϕ

A6) ϕ → δnϕ⊕ . . . ⊕ δnϕ︸ ︷︷ ︸
n times

A7) ¬δnϕ⊕ ¬ (δnϕ⊕ . . .⊕ δnϕ)︸ ︷︷ ︸
n−1 times

.

We shall denote by 1 the formula X → (X → X) where the variable X is
fixed once and for all. Proofs and provability are as usual; if Γ is a set of
formulas, Γ � ϕ means that Γ proves ϕ (or ϕ is provable from Γ), that is
there exists a sequence of formulas γ1, . . . , γu such that γu = ϕ and every
γi either is an axiom of rational �Lukasiewicz logic, or belongs to Γ or is
obtained from γi1 , γi2 (i1, i2 < i) by modus ponens. ϕ is provable (� ϕ) if is
provable from the emptyset.

Let Form be the set of Rational �Lukasiewicz formulas and let ≡ be the
binary relation over Form defined by ϕ ≡ ψ if and only if ϕ → ψ and ψ → ϕ
are provable. Then ≡ is an equivalence relation and if ϕ and ψ are provable
formulas then ϕ ≡ ψ.

Proposition 5.2.1 (Lindenbaum algebra) The set L = Form/ ≡
equipped with the operations

¬[ϕ]≡ = [¬ϕ]≡; [ϕ]≡ ⊕ [ψ]≡ = [ϕ⊕ ψ]≡; δn[ϕ]≡ = [δnϕ]≡

is a DMV-algebra where 1 = {[ϕ]≡ | ϕ is provable} = [1]≡.

Proof. Since a similar result holds for �Lukasiewicz logic, we have to prove
that L satisfies D1n and D2n. Indeed for every [ϕ]≡ ∈ L, by Axioms A5
and A6,

n.δn[ϕ]≡ = [n.δnϕ]≡ = [ϕ]≡
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and by Axiom A7,

δn[ϕ]≡  (n− 1).δn[ϕ]≡ = ¬(¬δn[ϕ]≡ ⊕ ¬(n− 1).δn[ϕ]≡) =
¬[¬δnϕ⊕ ¬(n− 1)δnϕ]≡ = ¬1.

Interpretation of connectives of Rational �Lukasiewicz logic is given by

Definition 5.2.2 An assignment is a function v : Form → [0, 1] such that

• v(¬ϕ) = 1 − v(ϕ)

• v(ϕ → ψ) = min(1 − v(ϕ) + v(ψ), 1)

• v(δnϕ) = v(ϕ)
n .

Every function ι from the set of variables to [0, 1] is uniquely extendible to
an assignment vι. For each point x = (x1, . . . , xn) ∈ [0, 1]n let ιx be the
function mapping each variable Xj into xj . Fix n. Then each formula ϕ
with |var(ϕ)| ≤ n is associated with the function

fϕ : x ∈ [0, 1]n �→ vιx(ϕ) ∈ [0, 1]

by means of the following stipulations:

• fXi(x1, . . . , xn) = xi = the ith projection.

• f¬ϕ = 1 − fϕ.

• f(ϕ→ψ) = min(1, 1 − fϕ + fψ)

• f(δnϕ) = fϕ

n .

A formula ϕ with |var(ϕ)| < n is satisfiable iff there exists x ∈ [0, 1]n

such that fϕ(x) = 1. ϕ is a tautology iff for every x ∈ [0, 1]n, fϕ(x) = 1. An
assignment v is a model of a set of formulas Γ if for every τ ∈ Γ, v(τ) = 1.

Theorem 5.2.3 (Completeness) ϕ is a tautology of Rational �Lukasiewicz
calculus if and only if ϕ is provable.

Proof. Axioms A1-A7 are tautolgies and modus ponens preserves tauto-
logicity, so every provable formula is a tautology.

Suppose that ϕ is not provable. Then the equation ϕ = 1 is not true in
the Lindenbaum DMV-algebra L of Proposition 5.2.1, and so by Theorem
5.1.15, ϕ 	= 1 in (Γ(Q, 1), δn). This means that there exists y ∈ [0, 1]n such
that fϕ(y) < 1, hence ϕ is not a tautology.

Then, ϕ ≡ ψ if and only if � ψ → ϕ and � ϕ → ψ, if and only if, for
every assignment v, v(ϕ) = v(ψ), if and only if fϕ = fψ.
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5.2.1 Free DMV-algebras

The Lindenbaum algebra of Proposition 5.2.1 is the free DMV-algebra Freeω
over a denumerable set of generators. In this section we shall describe the
free DMV-algebra over a finite number of generators in terms of continuous
piecewise linear functions.

A direct inspection shows that every function fϕ is a continuous piecewise
linear function, where each piece has rational coefficients.

McNaughton theorem ([82] and [89] for a constructive proof) states that
a function is associated with a �Lukasiewicz formula if and only if it is a con-
tinuous piecewise linear function, each piece having integer coefficients. In
[16], the authors showed that for every continuous piecewise linear function
f with rational coefficients there exists a �Lukasiewicz formula τ with division
operators such that f = fτ . The proof can be summarized as follows:

Let f : [0, 1]n → [0, 1] be a continuous piecewise linear function, such
that each piece has rational coefficients. Further, let s be an integer such
that s · f : x ∈ [0, 1]n �→ s · f(x) ∈ [0, s] is a continuous function with integer
coefficients (for example s is the least common multiple of the denominators
of the coefficients of pieces of f).

For every i = 0, . . . , s − 1, let

fi : x ∈ [0, 1]n �→ ((s · f(x) − i) ∧ 1) ∨ 0 ∈ [0, 1].

For every x ∈ [0, 1]n such that f(x) ∈ [i, i+ 1], we have s · f(x) = i+ fi(x).
Since fi are continuous functions with integer coefficients there exist MV-
terms ψi such that fi = fψi

. If g : [0, 1]n → [0, 1] is any function, let us
define

Supp(g) = {x ∈ [0, 1]n | g(x) > 0}
Supp<1(g) = {x ∈ [0, 1]n | 0 < g(x) < 1}.

We have, for every i = 1, . . . , s− 1,

Supp<1(fi) ⊆ Supp(fi) ⊆ Supp(fi−1).

Indeed

Supp(fi) = {x ∈ [0, 1]n | s · f(x) > i} ⊆ {x ∈ [0, 1]n | s · f(x) > i− 1}.

Further, for any i 	= j, Supp<1(fi) ∩ Supp<1(fj) = ∅.
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Proposition 5.2.4 In accordance with the previous notation, if f :
[0, 1]n → [0, 1] is a continuous piecewise linear function with rational co-
efficients, then for every x ∈ [0, 1]n,

f(x) = fϕ(x) where ϕ =
s−1⊕
i=1

δsψi.

Proof. Suppose that x ∈ [0, 1]n and f(x) = 0. Then for every i = 0, . . . , s,
fi(x) = 0 whence fψi

= 0 and fϕ = 0.
If f(x) = 1 then for every i = 0 . . . , s − 1 fψi

= 1 whence fδsψi
= 1/s

and fϕ = 1.
Suppose now that there exists i ∈ {0, . . . , s− 1} such that i < s · f(x) <

i + 1. Then x ∈ Supp(fi) and f(x) = fi(x) + i/s. For every j ≥ i + 1, we
have s · f(x) − j ≤ s · f(x) − i− 1 < 0 whence fj(x) = 0. Further, for every
j ≤ i− 1, we have s · f(x) − j ≥ s · f(x) − i+ 1 > 1 whence fj(x) = 1.

The last case to consider is when 0 < s · f(x) = i < 1. Then for every
j ≤ i, fj(x) = 0 and for every k > i, fk(x) = 1.

Theorem 5.2.5 The free DMV-algebra over n generators is the algebra of
all functions from [0, 1]n to [0, 1] that are continuous, piecewise linear and
such that each linear piece has rational coefficients.

Proof. Let RMn denote the set of continuous piecewise linear function
with rational coefficients over n variables and let X = {x1, . . . , xn} the set
of variables. By identifying each variable xi with the i-th projection, X is
included in RMn. If A is any DMV-algebra and h is a map from X to A,
then, for every fϕ ∈ RMn, the map

βh(fϕ(x1, . . . , xn)) = fϕ(h(x1), . . . , h(xn))

is a DMV-homomorphism such that βh(xi) = h(xi) for every xi ∈ X . If
γ : RMn → A is any DMV-homomorphism such that γ(xi) = h(xi), then

γ(fϕ(x1, . . . , xn)) = fϕ(γ(x1), . . . , γ(xn)) =
= fϕ(h(x1), . . . , h(xn)) = βh(fϕ(x1, . . . , xn)

hence γ = βh.
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5.2.2 Pavelka-style Completeness

In [98] the author, starting from the notion of many valued rules of inference,
defined a class of complete residuated lattice-valued propositional calculi and
introduced degrees of provability and degrees of validity. Then he proved
that in �Lukasiewicz propositional calculus, enriched by a denumerable set
of rational constants (what in [67] is called Rational Pavelka Logic), the
degree of provability of each formula coincides with the degree of validity
(Pavelka-style completeness).

We shall show that Rational �Lukasiewicz logic is a proper extension of
Rational Pavelka logic. Indeed every formula of Rational Pavelka logic can
be expressed in Rational �Lukasiewicz language, and, after defining the degree
of provability and the degree of truth, we shall prove that the completeness
with respect to this degrees still holds. We shall adapt to our context the
arguments in [32, 67].

Definition 5.2.6 An R�L-theory T is a set of Rational �Lukasiewicz formulas
such that

• All axioms belong to T ;

• If ϕ → ψ ∈ T and ϕ ∈ T then ψ ∈ T .

If T is an R�L-theory, let us denote by [T ] the set {[ϕ]≡ | ϕ ∈ T}. Then
T is an R�L-theory if and only if ¬[T ] = {[¬ϕ]≡ | ϕ ∈ T} is an ideal of the
Lindenbaum algebra in Proposition 5.2.1. If X is any set of formulas, then
the R�L-theory Th(X) generated by X is the smallest R�L-theory containing
X.

An R�L-theory T is consistent if there exists a formula ϕ such that ϕ /∈ T .
Following [91], an R�L-theory is prime if it is consistent and for every pair of
formulas ϕ and ψ, either ϕ → ψ ∈ T or ψ → ϕ ∈ T .

By Proposition 5.1.9, if T is a consistent R�L-theory then there exists a
prime R�L-theory T ′ such that T ′ ⊇ T .

Definition 5.2.7 Let Γ be an R�L-theory and ϕ a Rational �Lukasiewicz for-
mula. For every r ≤ s ∈ N \ {0}, the formula r.(δs1) will be denoted by the
rational number r/s. Then,

- the truth degree of ϕ over Γ is ||ϕ||Γ = inf{v(ϕ) | v is a model of Γ};
- the provability degree of ϕ over Γ is |ϕ|Γ = sup{r | r → ϕ ∈ Γ}.

Note that if ϕ ∈ Γ then by Axiom A1, 1 → ϕ ∈ Γ. Hence |ϕ|Γ = 1.
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In order to prove the completeness theorem, we note that the follow-
ing results holding for Rational Pavelka logic can be easily generalized for
Rational �Lukasiewicz logic.

Lemma 5.2.8 Let T be an R�L-theory.

(a) If T does not contain (r → ϕ) then the R�L-theory Th(T ∪ {ϕ → r})
generated by T ∪ {ϕ → r} is consistent.

(b) If T is prime, for each ϕ

|ϕ|T = sup{r | r → ϕ ∈ T} = inf{s | ϕ → s ∈ T}.

Theorem 5.2.9 If T is a prime R�L-theory, the function e : ϕ ∈ Form →
|ϕ|T ∈ [0, 1] is an assignment. That is,

|¬ϕ|T = 1 − |ϕ|T , |ϕ → ψ|T = |ϕ|T → |ψ|T , |δnϕ|T =
|ϕ|T
n

hence e is a model of T .

Proof. Since the theorem holds for Rational Pavelka logic, we only have to
prove |δnϕ|T = 1

n · |ϕ|T .
Since � (t → δnϕ) → (nt → ϕ),

1
n

· |ϕ|T =
inf{s | ϕ → s ∈ T}

n

= inf{ s
n

| ϕ → s ∈ T} = inf{t | ϕ → nt ∈ T} ≤

≤ inf{t | δnϕ → t ∈ T} = |δnϕ|.

Conversely,

|δnϕ| = sup{t | t → δnϕ ∈ T} ≤ sup{t | nt → ϕ ∈ T}
= sup{ s

n
| s → ϕ ∈ T}

=
sup{s | s → ϕ ∈ T}

n
= δn|ϕ|T .

Theorem 5.2.10 (Pavelka-style Completeness) For any R�L-theory T

|ϕ|T = ||ϕ||T .
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Proof. Soundness (i.e., |ϕ|T ≤ ||ϕ||T ) easily follows from definition:

|ϕ|T = sup{r | r ≤ e(ϕ) with e model of T}
≤ inf{e(ϕ) | e model of T} = ||ϕ||T .

Suppose without loss of generality that T is a consistent R�L-theory.
Then there exists a prime extension T ′ ⊇ T . By Theorem 5.2.9, the function
e : ϕ ∈ Form → |ϕ|T ∈ [0, 1] is a model of T ′, and |ϕ|T = e(ϕ) ≥ ||ϕ||T .

5.3 Complexity Issues

In [86] the SAT problem for �Lukasiewicz logic is proved to be NP-complete.
In this section we shall prove that the tautology problem for Rational
�Lukasiewicz logic is in co-NP and since tautology problem of �Lukasiewicz
formulas can be reduced to tautology problem of Rational �Lukasiewicz for-
mulas as a subset, then the latter is co-NP-complete. Such result will be a
byproduct of the fact that if Γ is a finite set of �Lukasiewicz formulas and ϕ
is a �Lukasiewicz formula, then the problem to establish if Γ � ϕ is in co-NP
(see, for example, [3], [8]). By [114], in this case Γ � ϕ if and only if for
every assignment v satisfying every formula of Γ, v(ϕ) = 1.

Let us consider an alphabet containing δ and a symbol | in such a way
that δ || . . . |︸ ︷︷ ︸

n times

stands for δn.

Let τ be a formula of Rational �Lukasiewicz logic, with variables among
{X1, . . . , Xn}. Using the same notation as in Subsection 5.1.1, let
δi1τi1 , . . . , δimτim denote all nodes of the parsing tree of subformulas of τ
that begin with the symbol δ.

Let τ∗(X1, . . . ,Xn, Z1, . . . , Zm) be the formula obtained by substituting
every subformula δijτij by the new variable Zj.

Let Γ be the set of �Lukasiewicz formulas defined by

Γ =
m⋃
j=1

{ij .Zij ↔ τ∗ij ,¬Zij  (ij − 1).Zij},

where τ∗ij has been obtained as τ∗, accordingly substituting occurrences of
δhk

by new variables Zhk
. Then the formula τ is satisfiable in Rational

�Lukasiewicz logic if and only if Γ � τ∗ holds. Since this last problem is in
co-NP, we have to give an estimation of lengths of Γ and ∆ in terms of the
length of τ .
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Definition 5.3.1 The length of a formula of Rational �Lukasiewicz logic is
inductively defined as follows:

(i) For every variable Xi, #Xi = 1

(ii) #(ϕ⊕ ψ) = #ϕ+ #ψ

(iii) #(¬ϕ) = #ϕ

(iv) #(δnϕ) = n+ #ϕ

Since this definition is an extension of the definition of length for
�Lukasiewicz formulas, we shall use the notation #ϕ also when ϕ is a
�Lukasiewicz formula. We set, without loss of generality, #(ϕ ↔ ψ) =
2(#ϕ + #ψ). If Λ is a finite set of formulas then

#Λ =
∑
λ∈Λ

#λ.

If δi1τi1, . . . , δimτim are all subformulas of τ involving a connective δ,
we have

#τ∗ ≤ #τ −
m∑
j=1

im +m ≤ #τ, (5.5)

because τ∗ is obtained from τ by removing all occurrences of δij . The first
inequality in (5.5) holds because not every new variable Zij appears in τ∗.
The second inequality holds since

∑m
j=1 im ≥ m.

In Γ there is a pair of formulas ij.Zij ↔ τ∗ij ,¬Zij  (ij − 1).Zij for every
δijτij occurring in τ . Since

#(δijτij ) = ij + #τij

and

#(ij .Zij ↔ τ∗ij ) = 2(ij + #(τ∗ij )) ≤ 2(ij + #(τij ))
#(¬Zij  (ij − 1).Zij ) = 1 + ij − 1,

then

#Γ =
m∑
j=1

(
#(ij .Zij ↔ τ∗ij ) + #(¬Zij  (ij − 1).Zij )

)
≤

≤
m∑
j=1

(
2(ij + #(τij )) + ij

)
≤

m∑
j=1

3#(δij τij )

≤ 3#τ.
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Putting together Equations (5.6) and (5.5) we get the desired conclusion.

We shall now show that the complexity of the tautology problem for
Rational �Lukasiewicz logic does not change if the index n of δn is written in
binary notation.

Then let, in Definition 5.3.1, #δnϕ = log2 n+ #ϕ. If δnτn occur in τ let
m1 > . . . > mh ≥ 0 be integer numbers (depending on n) such that

n = 2m1 + . . .+ 2mh .

We introduce m1 new variables Y1, . . . , Ym1 and new formulas

σ(1, n) = Y1 ⊕ Y1 ↔ Y2

. . .

σ(m1 − 1, n) = Ym1−1 ⊕ Ym1−1 ↔ Ym1

σ′(1, n) = Y1  Y1 ↔ 0
. . .

σ′(m1 − 1, n) = Ym1−1  Ym1−1 ↔ 0

τ∗ = τn ↔
(

2Ym1 ⊕ 2Ym2 ⊕ . . .⊕
{

2Ymh
if mh > 0

Ymh
if mh = 0

)
We have 2(m1 − 1) ≤ 2 log2 n formulas σ(i, n) and σ′(i, n) of constant

length and further #τ∗ = 2(#τ + 2(m1 + . . . + mh)) ≤ 2(#τ + 2 log2 n).
Since #(δnτ) = #τ + log2 n, then #τ∗ ≤ 4#(δnτ).

If δi1τi1, . . . , δimτim are all subformulas of τ that begin with a symbol δ,
then for any δijτij we suitably introduce formulas σ, σ′, τ∗ and thus reduce
the problem of tautology to the problem of deciding if a �Lukasiewicz formula
is consequence of a finite set of formulas. The latter is co-NP in the length
of τ .

5.4 Weakly divisible MV-algebras

Divisible MV-algebra are reducts of DMV-algebras. Divisibility implies that
an algebra contain the nth divisor of every of its elements. This notion can
be weakened by requiring that the algebra contains just the nth divisor of
1 [49]. In [31] we shown how to construct the weakly divisible hull of any
MV-algebra.

Let A be an MV-algebra and let (G,u) be the �-group associated with
A (A = Γ(G,u)).
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Definition 5.4.1 A is said to be n-weakly divisible if there exists x ∈ A
such that

nx = x+ . . .+ x︸ ︷︷ ︸
n times

= 1.

An MV-algebra A is weakly divisible if it is n-weakly divisible for every
integer n ≥ 1.

Note that if ξ exists in A such that ξ + ξ = 1, then trivially ¬ξ = ξ (such ξ
is said a selfcomplemented element).

The set nA = {nx | x ∈ A} is an MV-subalgebra of Γ(G,nu) equipped
with the operations of Γ(G,nu), i.e.,

x⊕n y = inf{x+ y, nu}
¬nx = nu− x.

Every element x + . . . + x ∈ nA will be denoted by nx. Further, consider
the operation

x�n y = sup{x− y, 0} = ¬n(¬nx⊕n y).

Proposition 5.4.2 The subalgebra 〈nA, u〉 of Γ(G,nu) generated by nA
and u is given by

{nx, ru⊕n nx, ru�n nx | x ∈ A, r = 1, . . . , n} ⊆ Γ(G,nu)

equipped with the operations of Γ(G,nu).

Proof. Since every abelian �-group is a subdirect power of linearly ordered
abelian groups, arguing componentwise we get that equations holding for
linearly ordered abelian groups are still valid for any abelian �-group. Let
T = {kx, ru⊕k kx, ru�k kx | x ∈ A, r = 1, . . . , k− 1}. T equipped with the
operation of Γ(G, ku) is an MV-algebra. Indeed the following holds:

• kx1 ⊕k (r1u ⊕k kx2) = r1u ⊕k k(x1 ⊕A x2) ∈ T , since, if x1 + x2 ≥ u
then k(x1 ⊕A x2) ≥ ku;

• kx1 ⊕k (r1u�k (kx2)) =
{
kx1 if ru1 − kx2 ≤ 0
r1u⊕k k(x1 �k x2) otherwise.

• (r1u⊕k kx1) ⊕k (r2u�k kx2) =⎧⎨⎩
r1u⊕k kx1 if r2u− kx2 ≤ 0
ku if r1u+ kx1 ≥ ku
(r1 ⊕ r2)u⊕k k(x1 �k x2) otherwise.
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• (r1u�k kx1) ⊕k (r2u�k kx2) =⎧⎨⎩
r1u�k kx1 if r2u− kx2 ≤ 0
r2u�k kx2 if r1u− kx1 ≤ 0
(r1 ⊕k r2)u�k k(x1 ⊕k x2) otherwise.

Hence T is the MV-subalgebra of Γ(G, ku) generated by kA = {kx | x ∈ A}
and {ru | r = 1, . . . , k − 1}.

Definition 5.4.3 Given MV-algebras A, B and C and homomorphism f :
A → C and g : B → C, C is the direct sum or coproduct A

∐
B of A and B

if for every MV-algebra N and homomorphism f∗ : A → N and g∗ : B → N
there exists a unique homomorphism h : C → N such that the following
diagram commutes:

A −→f C ←−g B

↘f∗ ↓h ↙g∗

N

Proposition 5.4.4 Let A be an MV-algebra, Sn = {0, 1/n, . . . , 1}, ϕ : x ∈
A �→ nx ∈ nA and θ : Sn → {0, u, 2u, . . . nu} such that θ(0) = 0, θ(1/n) =
u, . . . , θ(1) = nu. Then 〈nA, u〉 is the coproduct of (A,ϕ) and (Sn, θ).

Proof. We must show that for every MV-algebra (D,⊕D,¬D, 0D) and
homomorphism v1 : A → D and v2 : L2 → D, there exists a unique homo-
morphism h : 〈2A,u〉 → D such that v1 = ϕh and v2 = θh.

A −→ϕ 〈nA, u〉 ←−θ L2

↘v1 ↓h ↙v2

D

Indeed, the function h can be defined on elements of 〈nA, u〉 in the following
way:

h(nx) = v1(x)
h(ru⊕n nx) = v2(r/n) ⊕D v1(x)
h(ru�n nx) = v2(r/n) �D (v1(x)).

Proposition 5.4.5 If A is not n-weakly divisible (i.e., there does not exist
x ∈ A such that nx = 1), then, if r < n, r′ < n, x, x′ ∈ A and ru⊕nnx < nu,

ru⊕n nx = r′u⊕n nx
′ ⇔ r = r′ and x = x′.
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Proof. Suppose that ru⊕nnx = r′u⊕nnx
′ and r 	= r′. Note that ru⊕nnx <

nu if and only if x < u. Indeed, if ru + nx ≥ nu then ru ≥ n(u − x) and
since r < n then it must be u = x. So, let x, x′ < u so that ru ⊕n nx =
r′u⊕nnx

′ < nu and hence ru+nx = r′u+nx′. If A = Γ(G,u), in the group
G such equation is equivalent to

(r − r′)u = n(x′ − x).

Note that u > y = x− x′ ∈ A, and, since r − r′ 	= 0, in A

ny = y ⊕1 . . .⊕1 y︸ ︷︷ ︸
n times

= u

This is a contradiction since A is not n-weakly divisible.

Proposition 5.4.6 If A is not n-weakly divisible then, if r < n, r′ < n,
x, x′ ∈ A and ru�n nx > 0,

ru�n nx = r′u�n nx
′ ⇔ r = r′ and x = x′.

Proof. The proof is analogous to the previous one. Note that ru�nnx = 0
if and only if ru− nx = 0 if and only if nx = ru if and only if x = 0 (A is
not n-w.d.). Then ru−nx = r′u− nx′ if and only if (r− r′)u = n(x− x′) if
and only if r = r′ and x = x′.

Suppose now that the MV-algebra A is not weakly divisible.

Definition 5.4.7 A direct family of algebras A is defined to be a triplet of
the following objects:

• A directed partially ordered set 〈I;≤〉;

• algebras Ai of the same type, for each i ∈ I;

• homomorphisms ϕij for all i ≤ j, between Ai and Aj, such that

ϕijϕjk = ϕik if i ≤ j ≤ k

and ϕii is the identity mapping for all i ∈ I.

For a direct family of algebras A consider the set ∪{Ai | i ∈ I} (or, if Ai
are not pairwise disjoint, consider the disjoint union). Define on it a binary
relation ≡ by x ≡ y if and only if x ∈ Ai, y ∈ Aj , for some i, j ∈ I and
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there exists a z ∈ Ak such that i ≤ k, j ≤ k, ϕik(x) = z = ϕjk(y). It is an
equivalence relation.

The set of equivalence classes is called direct limit of the direct family of
algebras A, and it is denoted by lim

i∈I
Ai. Operations over lim

i∈I
Ai are suitable

defined in such a way that lim
i∈I

Ai is an MV-algebra.

Example of direct family of algebras. Consider the partially ordered
set 〈N,�〉 of natural numbers, where n � m if and only if there exists k ∈ N

such that m = nk. Then the family {Sn | n ∈ N} with homomorphism ϕnm
where n � m defined by ϕnm(i/n) = (ik/m) is a direct family. Further,
the direct limit of this family is constituted by the equivalence classes [i/n]
where j/m ∈ [i/n] if and only if nj = mi. Such direct limit can be shown
to be isomorphic to Q ∩ [0, 1].

Denote by un the element u ∈ A
∐
Sn. We want now to describe the limit

of the direct family (〈N,�〉, A
∐
Sn, ϕij), where, for every i � j (j = li),

ϕij : A
∐
Li → A

∐
Lj is an homomorphism such that

ϕij(ix) = jx

ϕij(rui ⊕i ix) = lruj ⊕j jx

ϕij(rui �i ix) = lruj �j jx

It is a direct family since if h = mj = mli then

ϕjh(ϕij(ix)) = ϕjh(jx) = hx = ϕjh(jx)
ϕjh(ϕij(rui ⊕i ix)) = ϕjh(lruj ⊕j jx) = mlruh ⊕h hx = ϕih(rui ⊕i ix)
ϕjh(ϕij(rui �i ix)) = ϕjh(lruj �j jx) = mlruh �h kx = ϕih(rui ⊕i ix)

Over such direct family, let us see what the relation ≡ becomes for v ∈
A

∐
Li and w ∈ A

∐
Lj : it must exists z ∈ A

∐
Lk such that i � k, j � k

and ϕik(v) = z = ϕjk(w). If we take k = ij, then v ≡ w if and only if one
of the following cases hold:

• if v = ix1 and w = jx2 then ijx1 = ijx2, and hence x1 = x2;

• if v = r1ui ⊕i ix1 and w = jx2 then r1juij ⊕ij ijx1 = ijx2. Since A is
not weakly divisible then it holds if and only if r1 = 0 and x1 = x2.
The case is analogous for v = ix1 and w = r2uj ⊕j jx2;

• if v = r1ui⊕i ix1 and w = r2uj ⊕j jx2 then r1juij ⊕ij ijx1 = r2iuij ⊕ij

ijx2. Hence

[r1ui ⊕i ix1] = {r2uj ⊕j jx2 | r2 = r1 and x2 = x1}
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• [r1ui �i ix1] = {r2uj �j jx2 | r2 = r1 and x2 = x1}

Suppose now to consider maps

ϕ : x ∈ A → [kx] ∈ lim
n∈�

A
∐

Sn

and
i :
r

q
∈ Q ∩ [0, 1] → [ruq] ∈ lim

n∈�
A

∐
Sn

Proposition 5.4.8 lim
n∈�

A
∐

Sn is the coproduct of A and Q ∩ [0, 1].

Proof. Let D be any MV-algebra and h1 : A → D and h2 = Q∩ [0, 1] → D

homomorphism. We must define a homomorphism h : lim
n∈�

A
∐

Sn → D

such that the diagram commutes:

A −→ϕ lim
n∈�

A
∐

Sn ←−i Q ∩ [0, 1]

↘v1 ↓h ↙v2

D

It is enough to define h over elements:

[kx] = {hx | h ∈ N}

[rui ⊕i ix] = {r1uj ⊕j jx1 | rj = r1i and x = x1}

[rui �i ix] = {r1uj �j jx1 | rj = r1i and x = x1}

Let

h([kx]) = h1(x)

h([ru1 ⊕i ix]) = h2

(r
i

)
⊕D h1(x)

h([ru1 �i ix]) = h2

(r
i

)
�D h1(x)

In order to prove that h is well defined, let r′uj ⊕j jx
′ ∈ [ru1 ⊕i ix]. Then

rj = r′i and x = x′. So

h([r′uj ⊕j jx
′]) = h2(r′/j) ⊕D h1(x′)

= h2(r/i) ⊕D h1(x) = h([rui ⊕i ix])
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Definition 5.4.9 The weakly divisible hull of an MV-algebra
(A,⊕A,¬A, 0, u) is the smallest (w.r.t. the set inclusion) MV-algebra
containing A that is weakly divisible.

Theorem 5.4.10 Given a not weakly divisible MV-algebra A, A
∐

(Q ∩
[0, 1]) is the weakly divisible hull of A.

Proof. We must show that

(i) A
∐

(Q ∩ [0, 1]) is weakly divisible;

(ii) A
∐

(Q ∩ [0, 1]) contains A;

(iii) if (B,⊕B,¬B , 0, u) is a weakly divisible MV-algebra such that A is a
subalgebra of B, then A

∐
(Q ∩ [0, 1]) ⊆ B.

i) By Proposition 5.4.8 we know that A
∐

(Q ∩ [0, 1]) = lim
k∈�

A
∐

Lk.

The unit element of lim
k∈�

A
∐

Lk is [u]. For every n > 0 the equation n[x] =

[u] is equivalent to [nx] = [u] and so it has always solution in A
∐

(Q∩ [0, 1]).
ii) A can be embedded in lim

k∈�
A

∐
Lk considering the immersion i : x ∈

A �→ [x] ∈ lim
k∈�

A
∐

Lk.

iii) if A ≤ B and B is weakly divisible, then B contains solutions x of
equation nx = u for every n > 0. Let us denote by u/n such a solution.
Consider the map i : lim

k∈�
A

∐
Lk → B such that i([hx]) = x, i([ru ⊕h

hx]) = r(u/h) ⊕B x and i([ru�h hx]) = r(u/h) �B x. It is an embedding of
lim
k∈�

A
∐

Lk into B.



Chapter 6

Probability of Fuzzy events

In this chapter we shall study probabilities over MV-algebras, as introduced
in [90] under the name of states. In the first part we shall use the game
of multiple bets [54] in order to give a subjective interpretation of states
on MV-algebras, following the work in [39]. In the second part we shall
investigate conditional states corresponding to conditional probability and
we shall describe a probabilistic approach to Ulam game [53, 113, 87, 88].

6.1 States and conditional states

Let L be a finite MV-chain:

L = Sk = {0,
1
k
, . . . ,

k − 1
k

, 1}.

For any set X, an L-subset of X is a function d : X → L. The class LX

of all L-subsets inherits from L the structure of an MV-algebra: operations
are obtained by pointwise application of the �Lukasiewicz operations and are
called �Lukasiewicz union, intersection and complement. Identifying subsets
of X with their characteristic functions, the powerset 2X of X then coincides
with the boolean skeleton of LX .

We say that two L-subsets µ and ν are -disjoint if µ ν = 0, that they
are ∧-disjoint if µ ∧ ν = 0.

An L-singleton is an L-subset µ whose support Supp(µ) = {x ∈ X |
µ(x) 	= 0} is a singleton. If λ ∈ L−{0} and x ∈ X, then we denote by 〈x, λ〉
the L-singleton defined by

〈x, λ〉(y) =
{
λ, if y = x,
0, otherwise.

(6.1)

108
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Every g ∈ LX − {0} can be written as the sum⊕
x∈X

g(x) �=0

〈x, g(x)〉,

of pairwise ∧-disjoint L-singletons 〈x, g(x)〉.
Let L = Sk+1. For each x ∈ X let δx : X → L be the L-singleton

〈x, 1/(k+1)〉. It is immediate that these L-singletons are pairwise -disjoint
and that every g ∈ LX − {0} is a linear combination of the δx’s with non-
negative integer coefficients g(x)(k + 1)⊕

x∈X
g(x) �=0

(k + 1)g(x)δx.

The classical notion of (finitely additive) probability measure on boolean
algebras was generalized to MV-algebras in [90] as follows:

Definition 6.1.1 By a state of an MV-algebra A we mean a function s :
A → [0, 1] satisfying the following conditions:

(i) s(0) = 0;

(ii) s(1) = 1;

(iii) whenever a, b ∈ A and a b = 0, then s(a) + s(b) = s(a⊕ b).

A state is called faithful if for every nonzero a ∈ A, s(a) > 0.

As observed in [90], a state is a monotone functions and a faithful state
s is a valuation, i.e., s(a⊕ b) + s(a b) = s(a) + s(b).

The following natural example of state in LX was furnished by Zadeh in
[116]. As usual, given a set X, a probability p : 2X → [0, 1] and x ∈ X, we
write p(x) instead of p({x}).

Proposition 6.1.2 Let X be a finite set and p : 2X → [0, 1] an arbitrary
probability measure. Let the function p� : LX → [0, 1] be defined by stipulat-
ing that, for every µ ∈ LX ,

p�(µ) =
∑
x∈X

µ(x)p(x). (6.2)

Then p� is a state of LX .
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Proof. Trivially, p�(0) = 0. Further, p�(1) =
∑

x∈X p(x) = 1. Now assume
µ, ν ∈ LX and µ  ν = 0; it follows that µ(x) ⊕ ν(x) = µ(x) + ν(x) ≤ 1,
whence

p�(ν ⊕ µ) =
∑
x∈X

(ν ⊕ µ)(x)p(x) =
∑
x∈X

(ν + µ)(x)p(x)

=
∑
x∈X

ν(x)p(x) +
∑
x∈X

µ(x)p(x) = p�(ν) + p�(µ).

The following proposition is a consequence of a general result in [42].
For reader’s convenience we give here the proof.

Proposition 6.1.3 The map p �→ p�, where p� is given by (6.2), is a one-
one correspondence between probability measures on the boolean algebra 2X

and states on the MV-algebra LX . The inverse of this map is obtained by
restricting each state to the boolean skeleton 2X .

Proof. Let L = Sk. Skipping all trivialities, we have only to prove that
the state p� is the unique state on LX extending p. Now, it is immediate
that, by definition, every state is determined by its values on the atoms δx.
Suppose that q is a state such that q 	= p�. Then for some x ∈ X we have
p�(δx) 	= q(δx). Since kδx ∈ 2X , and p� extends p, then p�(kδx) = kp�(δx) =
p(x), whence, p�(δx) = p(x)/k. In case q(δx) < p(x)/k then q(kδx) < p(x),
and q does not extend p. On the other hand, in the case q(δx) > p�(δx), we
have q(kδx) = p�(δx) > p(x), and again, q does not extend p.

Notice that, in particular, given any state s, for every µ in LX ,

s(µ) =
∑
x∈X

s(x)µ(x).

6.2 Multiple bets and subjective states

In this section we shall use MV-algebra operations to describe multiple bets.
Two players, A and B, agree on a finite set Ω of elementary events. A subset
X ⊆ Ω will be called an event. They also fix an integer k > 0. Player A
buys from Player B (the Bank) a sequence of events u = X1...Xn (that we
will call multiple bet), for a price, say s(u)$, fixed by Player B. Then, an
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elementary event x ∈ Ω is extracted and Player B pays 1$ to Player A for
each distinct Xi among X1, . . . ,Xn containing x. Further, we suppose that
Player B cannot give to Player A more than k$. By a suitable normalization
we can suppose that the maximum winning is 1$ and that Player A wins h

k$
if x is belongs to h many distinct elements among X1, . . . ,Xn.

Different sequences of events can be considered equivalent whenever they
lead to the same winnings for Player A.

The set of equivalence classes of multiple bets can be equipped with a
structure of MV-algebras and turns out to be isomorphic to the boolean
power of the MV-chain of k elements.

As we shall see in Section 6.2.3, states over the MV-algebras of equiva-
lence classes of multiple bets are rates given by Player A in such a way that
the betting system is fair.

In Section 6.2.4 such results are extended to DMV-algebras.

6.2.1 Identifying bets

Let B = (B,∨,∧, 0, 1) be a boolean algebra. We will denote by B+ the free
semigroup on the domain B of B. Then, B+ is the set of words X1 · · ·Xn

with Xi ∈ B, equipped with the operation of juxtaposition. In the sequel
we shall not make distinctions between B and B.

For any boolean algebra B and for any n-tupla u = X1 · · ·Xn ∈ B+,
let us denote by Bu the (finite) boolean subalgebra of B generated by
X1, . . . ,Xn. The set of atoms of Bu will be denoted by at(Bu).

Let k > 0 be a natural number. For every u = X1 · · ·Xn ∈ B+ and
X ∈ B the quantity

ck(X,u) =
min{k, card({i | X ≤ Xi})}

k
(6.3)

is called the frequency (up to k) of X in u. Note ck(X,u) ∈ Sk+1.

Lemma 6.2.1 Let u, v ∈ B+, X ∈ at(Buv) and Z ∈ at(Bu), Z ′ ∈ at(Bv)
such that Z ∧ Z ′ 	= 0. Then:

(i) ck(X,uv) = ck(X,u) ⊕ ck(X, v).

(ii) ck(Z ∧ Z ′, uv) = ck(Z ∧ Z ′, u) ⊕ ck(Z ∧ Z ′, v) = ck(Z, u) ⊕ ck(Z ′, v).

(iii) ck(Y, u) = ck(Z, u) for every Y ∈ B such that Y ≤ Z.

(iv) at(Buv) =
{
Z ∧ Z ′ | Z ∈ at(Bu), Z ′ ∈ at(Bv), Z ∧ Z ′ 	= 0

}
.
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Definition 6.2.2 Given u = X1 · · ·Xn and v = Y1 · · ·Ym in B+, we set
u �k v if and only if, for every X ∈ at(Buv),

ck(X,u) ≤ ck(X, v). (6.4)

Intuitively, u �k v means that the winning obtainable by playing u is less
than the winning of playing v.

The relation �k is a pre-order, i.e., a reflexive and transitive relation.
Then we can associate �k with an equivalence relation as usual:

Definition 6.2.3 Two elements u, v ∈ B+ are k-equivalent, and we write
u ≡k v, if u �k v and v �k u.

Consider the quotient B+/ ≡k of B+ modulo ≡k. Then it is easy to see
that the relation ≤k given by

[u] ≤k [v] ⇔ u �k v (6.5)

is a partial order relation over B+/≡k. Further, ≡k is a congruence in the
semigroup B+. We can then consider the operation ⊕ in B+/≡ induced by
the operation in B+ as follows:

[X1 · · ·Xn] ⊕ [Y1 · · · Ym] = [X1 · · ·XnY1 · · ·Ym]. (6.6)

Further let us denote by 0 the element [0k] = [0k−1] = . . . = [0]. The
resulting structure (B+/≡,⊕,0) is a monoid. We shall denote by 1 the
element [1k], where 1 is the unit element of B.

Proposition 6.2.4 If X,Y ∈ B, then

(i) XY ≡k Y X

(ii) XY ≡k (X ∨ Y )(X ∧ Y )

(iii) Xk+1 ≡k X
k

(iv) X0 ≡k X

(v) XY ≡k (X − Y )(Y −X)(X ∧ Y )2 .
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Proof. We will prove (ii). Proofs of the other conditions are similar.
We must compare the words u = XY and v = (X ∨ Y )(X ∧ Y ). If

k = 1, 2 then the result trivially holds. Suppose that k > 2. For every
Z ∈ at(Buv) possible cases are:

- ck(Z, u) = 0; then Z 	≤ X and Z 	≤ Y , so Z 	≤ X ∨ Y , Z 	≤ X ∧ Y and
ck(Z, v) = 0;

- ck(Z, u) = 1; then we can assume that Z ≤ X and Z 	≤ Y so that
Z ≤ X ∨ Y , Z 	≤ X ∧ Y and ck(Z, v) = 1;

- ck(Z, u) = 2; then Z ≤ X and Z ≤ Y , so that Z ≤ X ∧ Y , Z ≤ X ∨ Y
and ck(Z, v) = 2.

So ck(Z, u) = ck(Z, v) and u ≡k v.

Proposition 6.2.4 suggests a rewriting system that enables us to choose in
an effective way a particular element as the representative of an equivalence
class (for an overview of rewriting systems see [40]).

Definition 6.2.5 A word on B can be transformed into another element of
B+ applying the following rewriting rules:

(a) If X ∧ Y 	= 0 then XnY m → (X − Y )n(Y −X)m(X ∧ Y )n+m;

(b) if X ∧ Y = 0 then XnY n → (X ∨ Y )n;

(c) if n ≤ m then Y mXn → XnY m;

(d) if h > k then Xh → Xk.

This rule system is terminating, i.e., after a finite number of applications
of rules to a word w over B it is not possible to apply other rules. The
expression resulting from such a derivation is called normal form of w and
will be denoted by N(w).

Proposition 6.2.6 A word w is in normal form if and only if it has the
form Xm1

1 · · ·Xmn
n where Xi are non-zero pairwise disjoint elements of B

and (mi)i=1,... ,n is a strictly increasing sequence of positive integers ≤ k.

Proposition 6.2.7 For every w ∈ B+, N(w) is unique.
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Proof. We give here only a sketch of the proof. Using the above nota-
tions, we have to prove that our rule system is locally confluent, i.e, if two
expressions w1 and w2 are deducible from the expression w, then w1 and w2

have the same normal form. Since the system is terminating, this property
assures the uniqueness of the normal form (See [40]). We will prove that
if w1 and w2 are different words deducible from w, then a finite number of
application of rules to w1 and w2 yields to the same word (i.e., there is w′

such that w1 →∗ w′ and w2 →∗ w′ where →∗ is the transitive closure of →).

- If w1 and w2 are obtained from w applying rules to two different dis-
joint sub-words of w, then applying the rules again in the opposite
order, we obtain the same word w′ and then the same normal form.

- Otherwise, suppose that w1 and w2 are obtained from w using respec-
tively rules h and k (where h, k ∈ {(a), (b), (c), (d)}), applied to the
same sub-word XnY m of w. Then surely {h, k} 	= {(a), (b)} and ap-
plying h and k respectively to w2 and w1, we obtain the same word
w′. In symbols:

w
h→ w2

k→ w′ (6.7)

w
k→ w1

h→ w′. (6.8)

Proposition 6.2.8 If u is obtained from v using rules (a), (b), (c), (d), then
u ≡k v.

An immediate consequence is that every word over B is equivalent to its
normal form.

We will refer to an element α = [Xm1
1 · · ·Xmn

n ] written in normal form
as the generic element of the quotient B+/≡k.
Using the operation ⊕ and the order relation ≤k, we can introduce the
complement ¬[u] of an element [u] of B+/≡k as the least element [z] ∈ B+/≡k

such that [u] ⊕ [z] = [1k].
Taking normal forms as representatives of equivalence classes, we are able
to describe the complement of an element of B+/≡k in a simple way and, at
the same time, to prove its existence. Indeed if [w] is in normal form, say
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[w] = [Xm1
1 · · ·Xmn

n ], it is easy to prove that

¬[w] = ¬[Xm1
1 · · ·Xmn

n ] =

{
[Xk

0X
k−m1
1 · · ·Xk−mn

n ], if mn 	= k;
[Xk

0X
k−m1
1 · · ·Xk−mn−1

n−1 ], if mn = k

(6.9)

where X0 = 1 −
n∨
i=1

Xi.

Lemma 6.2.9 For any [u] ∈ B+/≡k, the identity [v] = ¬[u] holds if and
only if for every X ∈ at(Bu), ck(X, v) = ¬ck(X,u).

Within the above algebraic context, we can formalize multiple bets de-
scribed in the introduction. To this purpose let us fix a finite set Ω (space
of events) and let

B(k) = ((2Ω)+/≡k,⊕,¬, [∅k], [Ωk]). (6.10)

Then an element of (2Ω)+/≡k will be called multiple bet. If Player A buys
from the Bank (Player B) the multiple bet α = [u] = [X1 · · ·Xn] paying
s(α), the winning given by elementary event x ∈ Ω is the frequency ck(x, u)
of x in u. The total gain is given by the difference ck(x, u) − s(α).

The relation �k over (2Ω)+ is such that X1 · · ·Xn �k Y1 · · ·Ym if and
only if for every x ∈ Ω,

min{k, card{i | x ∈ Xi}} ≤ min{k, card{j | x ∈ Yj}}. (6.11)

We say that a multiple bet X1 · · ·Xn is smaller than Y1 · · · Ym provided that,
whenever the elementary event x happens, the winning resulting from the
first is less than the winning resulting from the second. Consequently, two
multiple bets are equivalent if they led to the same winning.
A normal form for an element of (2Ω)+ has the form Xm1

1 · · ·Xmn
n with

Xi ⊆ Ω and it represents a multiple bet such that if an elementary event
x ∈ Ω happens then Player A wins mi if x ∈ Xi, for a suitable i, otherwise
he wins 0. The complement of a multiple bet α is the least bet β such that
if a player plays on α and β then the total winning is exactly 1.

More generally, for any boolean algebra (B,∨,∧,¬, 0, 1), the structure
B(k) = (B+/≡k,⊕,¬ ,0,1) will be called the algebra of k-bets. We will
denote by B(k) = B+/≡k the underlying set of B(k). The boolean algebra
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B = (B,∨,∧,¬, 0, 1) can be easily embedded in such a structure by consid-
ering the function

i : X ∈ B → [Xk] ∈ B+/≡k . (6.12)

Moreover for k = 1, B(k) is isomorphic to B.

Definition 6.2.10 For every u, v ∈ B+ the conjunction  is defined by

[u]  [v] = ¬(¬[u] ⊕ ¬[v]). (6.13)

From Lemmas 6.2.1(i) and 6.2.9 it follows that if [u]  [v] = [w] then for
every X ∈ Buv,

ck(X,w) = ck(X,u)  ck(X, v). (6.14)

In the next subsection, using boolean powers, we will demonstrate that B(k)

is an MV-algebra.

6.2.2 Boolean powers

Let us recall the definition of boolean power of an MV-algebra (see also [23],
[46] and references therein):

Definition 6.2.11 Let B be a boolean algebra and A a finite MV-algebra.
The boolean power A[B] = (A[B],⊕,¬,0,1) is defined in the following way:

A[B] = {f ∈ BA | f(a1) ∧ f(a2) = 0 if a1 	= a2 and
∨
a∈A

f(a) = 1}

(f ⊕ g)(x) =
∨

h⊕k=x
f(h) ∧ g(k)

¬f(x) = f(¬x)
(6.15)

and where 0 is the characteristic function of {0} and 1 is the characteristic
function of {1}, i.e.,

0(x) =
{

1 if x = 0
0 if x 	= 0

1(x) =
{

1 if x = 1
0 if x 	= 1.

(6.16)

The boolean power of an MV-algebra is an MV-algebra. Further, if the
boolean algebra is supposed to be complete then it is possible to define
boolean powers for infinite MV-algebras.
Using the following theorem we will show that every algebra B(k) of k-bets
is an MV-algebra and that every boolean power of the form Sk+1[B] where
Sk+1 = {0, 1

k , . . . ,
k−1
k , 1}, can be interpreted as an algebra of k-bets.
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Theorem 6.2.12 The algebra of k-bets B(k) is isomorphic to the MV-
algebra (Sk+1[B],⊕,¬,0,1). Thus, in particular, B(k) is an MV-algebra.

Proof. We will construct an isomorphism

F : B(k) → Sk+1[B] (6.17)

starting from a homomorphism of semigroups G : B+ → Sk+1[B].
For every u ∈ B+ we define the function ψu ∈ Sk+1[B] such that for every
r ∈ Sk+1:

ψu(r) =
∨

{X ∈ at(Bu) | ck(X,u) = r}. (6.18)

In case u = Xm1
1 · · ·Xmn

n is in normal form, then ψu becomes

ψu(r) =

⎧⎨⎩
Xi, if r = mi

k
X0 = 1 −

∨n
i=1Xi, if r = 0

0, otherwise.
(6.19)

In the interpretation of multiple bets, ψu(r) is the set of elementary events
for which Player A wins r.

Fact 1. ψu ∈ Sk+1[B].
Indeed, if r 	= s ∈ Sk+1 we have

ψu(r) ∧ ψu(s) = (6.20)

∨
{X ∈ at(Bu) | ck(X,u) = r} ∧

∨
{Y ∈ at(Bu) | ck(Y, u) = s} = (6.21)

∨
(X ∧ Y | X,Y ∈ at(Bu), ck(X,u) = r, ck(Y, u) = s}) = 0. (6.22)

since different atoms of Bu are always disjoint.
Further,

∨
r∈Sk+1

ψu(r) = 1, because

∨
r∈Sk+1

ψu(r) =
∨

r∈Sk+1

(∨
{X ∈ at(Bu) | ck(X,u) = r}

)
=

∨
X∈at(Bu)

X = 1.

(6.23)

Fact 2. The function G : u ∈ B+ → ψu ∈ Sk+1[B] is an epimorphism of
semigroups.
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Indeed, if u, v ∈ B+ then for every r ∈ Sk+1,

(ψu ⊕ ψv)(r) =
∨

i⊕j=r
(ψu(i) ∧ ψv(j)) = (6.24)

∨
i⊕j=r

(∨
{X | X ∈ at(Bu) and ck(X,u) = i} ∧ (6.25)

∨
{Y | Y ∈ at(Bv) and ck(Y, v) = j}) = (6.26)

∨
i⊕j=r

∨
{X ∧ Y | X ∈ at(Bu), Y ∈ at(Bv), ck(X,u) = i, ck(Y, v) = j}.

(6.27)

If i and j are integers such that i⊕j = r, and X ∈ at(Bu) and Y ∈ at(Bv)
are such that X∧Y 	= 0, c(X,u) = i, c(Y, v) = j, then Z = X∧Y is an atom
of Buv, such that (by Lemma 6.2.1(ii)), ck(Z, uv) = ck(Z, u) ⊕ ck(Z, v) = r.

Conversely, let Z be an atom in Buv, such that ck(Z, uv) = r. Then (by
Lemma 6.2.1(iv)), there exist X ∈ at(Bu), Y ∈ at(Bv) such that X∧Y = Z.
By setting i = c(X,u) and j = c(Y, v) we have

r = ck(Z, uv) = ck(Z, u) ⊕ ck(Z, v) = ck(X,u) ⊕ ck(Y, v) = i⊕ j. (6.28)

Thus,

(ψu ⊕ ψv)(r) =
∨

{Z ∈ at(Buv) | ck(Z, uv) = r} = ψuv(r). (6.29)

In order to show that G is surjective, let f : Sk+1 → B be an element of
the boolean power Sk+1[B]. Then the element

u = f(
1
k

)f(
2
k

)2 . . . f(
k − 1
k

)(k−1)f(1)k ∈ B+ (6.30)

satisfies the identity f = ψu = G(u).

Fact 3. The congruence ≡G associated to G, defined by u ≡G v if and only
if G(u) = G(v), coincides with the congruence ≡k.
Indeed, let u ≡G v, i.e., for every r ∈ Sk+1, ψu(r) = ψv(r). Then∨

{X ∈ at(Bu) | ck(X,u) = r} =
∨

{Y ∈ at(Bv) | ck(Y, v) = r}. (6.31)
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Let Z be an atom of Buv such that ck(Z, u) = r. Then there exists
X ∈ at(Bu) such that Z ≤ X and ck(X,u) = r. By (6.31)

Z ≤
∨

{Y ∈ at(Bv) | ck(Y, v) = r} (6.32)

whence there exists Y ∈ at(Bv) such that Z ≤ Y and ck(Y, v) = r. Conse-
quently, ck(Z, v) = r = ck(Z, u) and this proves that u ≡k v .

Vice-versa assume that for every atom Z of Buv we have ck(Z, u) =
ck(Z, v). Then,∨

{X ∈ at(Bu) | ck(X,u) = r} =
∨

{Z ∈ at(Buv) | ck(Z, u) = r} =
(6.33)

∨
{Z ∈ at(Buv) | ck(Z, v) = r} =

∨
{Y ∈ at(Bv) | ck(Y, v) = r}. (6.34)

This proves that u ≡G v.

Fact 4. The map F : [w] ∈ B+/≡k→ G(w) ∈ Sk+1[B] is an isomorphism of
MV-algebras.

Indeed, since ≡k and ≡G coincide, it follows that F is an isomorphism
of semigroups. We have F (0) = G(0k) = ψ0k , where

ψ0k(r) =
∨

{X ∈ at(B0k) | ck(X, 0k) = r}. (6.35)

Since B0k = {0, 1} then ψ0k is the characteristic function of 0.
Let us denote ¬[w] by [z]. We then have

F (¬[w]) = F ([z]) = G(z) = ψz. (6.36)

By Lemma 6.2.9, for every r ∈ Sk+1[B] we get

ψz(r) =
∨

{X ∈ at(Bz) | c(X, z) = r} = (6.37)

∨
{X ∈ at(Bw) | c(X,w) = ¬r} = ψw(¬r). (6.38)

From Definition 6.2.10 it follows that the operation  is the �Lukasiewicz
conjunction in the MV-algebra B(k). From (6.14) we have

[u]  [v] = 0 ⇔ ck(X,u)  ck(X, v) = 0 (6.39)

for every X ∈ at(Buv).
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6.2.3 Subjective states

De Finetti in [39] used the idea of fair betting system as a foundation for the
theory of probability (see also [75, 97]). A betting system is a set of events
and rates fixed by the bank. A player bet over events and win in accordance
with rates. The betting system is said to be unfair if, no matter which event
occurs, the player always wins or always looses. If the distribution of rates
satisfies the probability rules, then there does not exist any set of bets for
which the player or the bank always wins (Dutch book theorem), and the
game is fair.

In [96], the author generalizes the classical Dutch Book argument to
probability functions for various non-standard propositional logics for ex-
ample modal, intuitionistic and paraconsistent logics. In [54] we extend this
argument to finite-valued �Lukasiewicz logic, while the problem for infinite-
valued logic is still matter of investigation.

Let us consider the MV-algebra of k-bets over the finite boolean algebra
2Ω,

B(k) = (B(k) = (2Ω)+/≡k,⊕,¬, [∅k], [Ωk]). (6.40)

An element of B(k) has the form [Xm1
1 · · ·Xmn

n ] with Xi ⊆ Ω disjoint events
and (mi)i∈I strictly increasing sequence of positive integers ≤ k.

Definition 6.2.13 A subjective quotation in a multiple bets game over the
space of events Ω, is a function over the MV-algebra B(k) of k-bets

s : B(k) → [0, 1] (6.41)

Definition 6.2.14 A favourable (resp., unfavourable) Dutch book for a sub-
jective MV-quotation s, is a set of multiple bets T (that is, a subset of B(k))
such that for every x ∈ Ω∑

w∈T
s(w) − ck(x,w) < 0 ( resp., > 0). (6.42)

In other words, a favourable (resp., unfavourable) Dutch book T for a
quotation s is a set of bets such that whatever elementary events x in Ω
occurs, Player A wins more (resp., less) than he has paid.

A subjective quotation for which it is not possible to construct a Dutch
book, will be called a coherent quotation.

Theorem 6.2.15 Any coherent quotation satisfies axioms (i), (ii) and (iii)
in the definition of states and is therefore a state.
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Proof. Let s be a coherent quotation. First of all note that if s([∅k]) > 0
then {[∅k]} would be a favourable Dutch book for s, since

s([∅k]) − ck(x, ∅k) = s([∅k]) − 0 > 0. (6.43)

So we have

s([∅k]) = 0. (6.44)

Consider a multiple bet α = [u] and its complement ¬α = [w]. If s([u]) +
s([w]) < 1 then from Lemma 6.2.9 and from (6.9), we get, for every x ∈ S,
ck(x, u) = 1 − ck(x,w) and hence

s([u]) − ck(x, u) + s([w]) − ck(x,w) = s([u]) + s([w]) − 1 < 0. (6.45)

Symmetrically, if s([u]) + s([w]) > 1 we are similarly led to an unfavourable
Dutch book. So for a coherent quotation we have

s(α) + s(¬α) = 1. (6.46)

Further, s(1) = s([Ωk]) = s(¬[∅k]) = 1.
Let us consider the case of two disjoint bets α = [u] and β = [v], and let

α⊕ β = [w] and ¬(α⊕ β) = [w′]. By Definition 6.2.10, for every x ∈ Ω

ck(x, u)  ck(x, v) = ck(x, ∅k) = 0 (6.47)

whence

ck(x, u) ⊕ ck(x, v) = ck(x, u) + ck(x, v). (6.48)

Suppose

s([u]) + s([v]) + s([w′]) < 1. (6.49)

From equation (6.48) and Lemmas 6.2.1(i), 6.2.9, for every x ∈ Ω we have

ck(x,w′) = 1 − (ck(x, u) ⊕ ck(x,w)) = 1 − ck(x, u) − ck(x, v), (6.50)

hence

s([u]) + s([v]) + s([w′]) − ck(x, u) − ck(x, v) − ck(x,w′) < 0. (6.51)

So in case s([u]) + s([v]) + s([w′]) < 1, {[u], [v], [w′ ]} would be a Dutch book.
Symmetrically we get

s(α) + s(β) + s(¬(α⊕ β)) = 1. (6.52)

Thus, using (6.46),

s(α) + s(β) = s(α⊕ β). (6.53)
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6.2.4 States on DMV-algebras

The machinery of the previous sections can be used also when considering
DMV-algebras instead of MV-algebras [56]. Indeed if A is a DMV-algebra,
then a state of A is a function s : A → [0, 1] such that s is a state of the
MV-algebra A∗. One can prove that for every x ∈ A

s(δnx) =
s(x)
n

. (6.54)

Then the set of bets can be constructed in the following way: let us
denote by B the set

B =
⋃
n∈�

Bn × Qn.

Let k > 0 be a natural number. For every u = ((X1 · · ·Xn), (r1, . . . , rn)) ∈ B
and x ∈ Ω let

ck(x, u) =
min{k,

∑
x∈Xi

ri}
k

.

Note that ck(x, u) is an element of the DMV-algebra Q ∩ [0, 1].

Definition 6.2.16 Two elements u, v ∈ B are k-equivalent ( and we write
u ≡k v) if for every x ∈ Ω, ck(x, u) = ck(x, v).

Elements of B/≡k are said multiple bets. If Player A buys from Player
B the multiple bet α = [u] paying s(α), ck(x, u) is the winning (given by
elementary event x ∈ Ω), of x in u. The total gain is given by the difference
ck(x, u) − s(α). Two multiple bets are equivalent if they led to the same
winning.

The following operations in B/≡k are well defined. Let

u = ((X1, . . . ,Xn), (r1, . . . , rn))
v = ((Y1, . . . , Yn), (s1, . . . , sn))

belong to B. Then we set

• [u] ⊕ [v] = [((X1, . . . , Xn, Y1, . . . , Yn), (r1, . . . , rn, s1, . . . , sn))]

• ¬[u] = [w] where w is an element of B such that for every x ∈ Ω,
ck(x,w) = 1 − ck(x, u)

• δn[u] = [z] where z is an element of B such that for every x ∈ Ω,

ck(x, z) =
ck(x, u)

n
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Let 0 = [((∅, . . . , ∅), (r1, . . . , rn))] = [((X1, . . . ,Xn), (0, . . . , 0))] and

1 = [((Ω, . . . ,Ω)︸ ︷︷ ︸
k times

, (1, . . . , 1)︸ ︷︷ ︸
k times

)].

Clearly, for every x ∈ Ω, ck(x,0) = 0 and ck(x,1) = 1. Further, if [w] = [u]⊕
[v] then, for every x ∈ Ω, ck(x,w) = ck(x, u) ⊕ ck(x, v) and if [u]  [v] = [w]
then for every x ∈ Ω, ck(x,w) = ck(x, u)  ck(x, v).

The structure B(k) = (B/≡k,⊕,¬, {δn}n∈� ,0,1) is the algebra of k-bets.
Following the same guidelines as in [54] one can prove that B(k) is

isomorphic to the Boolean power (Q ∩ [0, 1])[B] ([23, 46]) and so it is
a DMV-algebra. Indeed, recall that the boolean power (Q ∩ [0,1])[B] =
((Q ∩ [0, 1])[B],⊕,¬,0,1) is the set of all function f : Q ∩ [0, 1] → B such
that

f(a1) ∧ f(a2) = 0 if a1 	= a2 and
∨

a∈�∩[0,1]

f(a) = 1

equipped with operations

(f ⊕ g)(x) =
∨

h⊕k=x
f(h) ∧ g(k);¬f(x) = f(¬x),

0(x) =
{

Ω if x = 0
∅ if x 	= 0

1(x) =
{

Ω if x = 1
∅ if x 	= 1.

The boolean power of a DMV-algebra is a DMV-algebra. Then the
function Ψ : [u] ∈ B/≡k→ Ψ(u) ∈ (Q ∩ [0, 1])[B] such that

Ψ(u) : r ∈ Q ∩ [0, 1] �→ {x ∈ Ω | ck(x, u) = r}

is an isomorphism between the algebra of k-bets and the boolean power
(Q ∩ [0, 1])[B].

Again it is possible to prove that states on B are coherent quotation and
further it is also possible to check directly that any coherent quotation has
to satisfy (6.54). Indeed if otherwise s is a coherent quotation such that
s(δn[u]) > s([u])/n and [w] = δn[u], then one can prove that the multiset
formed by [u] and by n repetition of [w] is a unfavorable Dutch book, and,
symmetrically, if s(δn[u]) < s([u])/n the same multiset is an favorable Dutch
book.
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6.3 Conditioning a state given an MV-event

We extend the notion of conditional states proposed in [43] in light of [101].
For any MV-algebra A we say that B ⊆ A is an MV-bunch if 1 ∈ B, 0 	∈ B
and B is closed under ⊕ operation. A typical example of MV-bunch is
obtained by considering the set B = Bs = {x ∈ A | s(x) 	= 0} where s
is any state: in this case we will say that B is the MV-bunch of s. For
instance the MV-bunch of the state p� of Proposition 6.1.2, is given by
Bp = {µ ∈ LX | ∃x ∈ Supp(µ), p(x) 	= 0}= {µ ∈ LX | p�(µ) 	= 0}.

Definition 6.3.1 A conditional state s(x | y) of an MV-algebra A is a
function s : A × B → [0, 1], where B ⊆ A is an MV-bunch, satisfying the
following conditions:

(i) s(−| y) is a state on A for every y ∈ B, ;

(ii) s(y | y) = 1 for every y ∈ B(A) ∩B;

(iii) s(x  y | z) = s(y | z)s(x | y  z); for any x ∈ A, y ∈ B(A),
z ∈ B(A) ∩B such that y  z ∈ B then

(iv) s(x | y)s(y | 1) = s(y | x)s(x | 1), for any x, y ∈ B.

In this section we shall address the following problem: given a state s
and events µ and ν, what is the conditional state s(µ|ν)? Troughout this
section we set L = Sk+1.

Let s be a state on LX and let µ be an element in the MV-bunch of s,
i.e. s(µ) 	= 0. We define the state sµ on the MV-algebra LX by setting

sµ(ν) =
∑
x∈X

s(x)ν(x)µ(x)
s(µ)

, (6.55)

for all ν ∈ LX . In other words, in accordance with Proposition 6.1.2, sµ
is the state extending the probability whose distribution is s(x)µ(x)

s(µ) . By
Proposition 6.1.3, such extension is unique.

Proposition 6.3.2 Let B be the MV-bunch of a state s and define s : LX×
B → [0, 1] by setting s(ν, µ) = sµ(ν). Then s(− | −) is a conditional state
of LX .
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Proof. First of all, as we have seen above, for every µ ∈ B, s(−| µ) = sµ is
a state. Further,

s(ν | 1) =
∑
x∈X

ν(x)s(x)
s(1)

= s(ν),

and so s(−, 1) is a state. Secondly, if X ∈ B(LX) ∩B then

s(X | X) =
∑
x∈X

X(x)s(x)
s(X)

=
∑
x∈X

s(x)
s(X)

=
s(X)
s(X)

= 1.

Thirdly, whenever µ ∈ LX , X ∈ B(LX) = 2X , Z ∈ 2X ∩B, and XZ =
X ∩ Z ∈ B, then

(X  µ)(x) = min{X(x) + µ(x) − 1, 0} =
{
µ(x) if x ∈ X
0 otherwise

Furthermore, we have the identities

s(X  µ | Z) =
∑
x∈X

(X  µ)(x)
Z(x)s(x)
s(Z)

=
∑

x∈X∩Z

µ(x)s(x)
s(Z)

and

s(X | Z)s(µ | X  Z) =
s(X ∩ Z)
s(Z)

·
∑

x∈X∩Z

µ(x)s(x)
s(X ∩ Z)

=
∑

x∈X∩Z

µ(x)s(x)
s(Z)

Then s(X  µ | Z) = s(X | Z)s(µ | X  Z).
To conclude the proof, if µ, η ∈ B then we can write

s(µ | η) · s(η | 1) =
∑
x∈1

µ(x)η(x)s(x)
s(η)

·
∑
x∈1

η(x)s(x)

=
∑
x∈1

µ(x)η(x)s(x)
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s(η | µ) · s(µ | 1) =
∑
x∈1

η(x)µ(x)s(x)
s(µ)

·
∑
x∈1

µ(x)s(x)

=
∑
x∈1

η(x)µ(x)s(x).

Thus, s(µ | η) · s(η | 1) = s(η | µ) · s(µ | 1).

A basic property of the classical conditioning for a probability p is the
iteration rule

p(x | y ∩ z) =
p(x ∩ y | z)
p(y | z) ,

for every set x, y and z. This identity is an immediate consequence of the
definition p(x | y) = p(x∩y)

p(z) .

By contrast, since condition (iii) of Definition 6.3.1 holds for all y and z
in the boolean skeleton of the MV-algebra, the same rule does not hold for
conditional states, in general. A counterexample is given by the conditional
state defined in (6.55). So, given a state s, in accordance with the classical
case, one might try to define the state conditioned by an MV-event µ by
setting

s(ν | µ) =
s(ν  µ)
s(µ)

, (6.56)

with ν in LX . Due to the associativity of , such function satisfies the
iteration rule. But (6.56) is not a conditional state, since  is not distributive
with respect to ⊕. We weaken the definition of state and hence of conditional
state:

Definition 6.3.3 A quasi-state on a MV-algebra A, is a function q : A →
[0, 1] such that:

(q-i) q is monotone;

(q-ii) q(0) = 0;

(q-iii) q(1) = 1;

(q-iv) whenever a, b ∈ A and a ∧ b = 0, then q(a⊕ b) = q(a) + q(b).
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Since a ∧ b = 0 implies a  b = 0, every state is a quasi-state. Further the
restriction of a quasi-state to the boolean skeleton of A is a probability.
A quasi-state can be canonically constructed starting from a distribution
on the set of L-singletons, as in classical probability theory. By a q-s-
distribution we mean a function q� defined on the L-singletons such that

i) q� is monotone;

ii)
∑
x∈X

q�(〈x, 1〉) = 1.

Theorem 6.3.4 A function q : LX → [0, 1] is a quasi-state if and only if
q(0) = 0 and there exists a q-s-distribution q� such that, whenever µ 	= 0,

q(µ) =
∑
x∈X

q�(〈x, µ(x)〉).

Proof. Let q be a quasi-state. Then its restriction q� to L-singletons is a q-
s-distribution. Since, for every µ ∈ LX , µ =

⊕
x∈X〈x, µ(x)〉 and 〈x, µ(x)〉 ∧

〈y, µ(y)〉 = 0 for every x, y ∈ X, x 	= y, we have

q(µ) =
∑
x∈X

q�(〈x, µ(x)〉)

Conversely, let q� be a q-s-distribution and define q by setting q(0) = 0 and,
for µ 	= 0, q(µ) =

∑
x∈X q

�(〈x, µ(x)〉). We claim that q is a quasi state.
Indeed, (q-ii) and (q-iii) are immediate. Moreover,

(q-i) if α, β ∈ LX and α ≤ β, then 〈x, α(x)〉 ≤ 〈x, β(x)〉 for every x ∈ X,
and so (for (i)):

q(α) =
∑
x∈X

q�(〈x, α(x)〉) ≤
∑
x∈X

q�(〈x, β(x)〉) = q(β),

(q-iv) if α, β ∈ LX such that α ∧ β = 0 then, denoting by Xα and Xβ

the support of α and β respectively, we have Xα ∩Xβ = ∅. In conclusion

q(α⊕ β) =
∑
x∈Xα

q�(〈x, α(x)〉) +
∑
x∈Xβ

q�(〈x, β(x)〉) = q(α) + q(β).
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In particular, if p is a probability on X, then by setting

q�(〈x, µ(x)〉) = p(x) · µ(x)

we obtain the state s defined in [116].
Notice that the restriction of a q-s-distribution to the L-singletons of

the form 〈x, 1〉 defines a distribution of probability. Moreover, different
q-s-distributions can define the same probability and this shows that the
uniqueness proved for states in Proposition 6.1.3 cannot be extended to the
quasi states.

Analogously with Definition 6.3.1 we give the following:

Definition 6.3.5 A conditional quasi-state q(x | y) of an MV-algebra A is
a function q : A× B → [0, 1], where B ⊆ A is an MV-bunch, satisfying the
following conditions:

(i) q(−| y) is a quasi-state on A, for every y ∈ B;

(ii) q(y | y) = 1 for every y ∈ B(A) ∩B;

(iii) q(x y | z) = q(y | z)q(x | y z) for any x ∈ A and y, z ∈ B(A), such
that y  z ∈ B;

(iv) q(x | y)q(y | 1) = q(y | x)q(x | 1), for any x, y ∈ B.

Note that in condition (iii) the operation  involves always a boolean
element.

An interesting class of conditional quasi-states is given by the following
Proposition whose proof is routine.

Proposition 6.3.6 Let q be a quasi-state on X, ⊗ a t-norm (see Definition
1.2.1) and β an element in the MV-bunch of q. Then the function q�(β)
defined by:

q�(β)(〈x, λ〉) =
q(〈x, β(x) ⊗ λ〉)

q(β)

is a q-s-distribution. Moreover, let q⊗β be the quasi-state associated with q�(β),
and define the function q⊗(− | −) by setting q⊗(µ | β) = q⊗β (µ). Then q⊗ is
a conditional quasi-state on LX and

q⊗(µ | β) =
∑

x∈X q(〈x, β(x) ⊗ µ(x)〉)
q(β)

.
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Remark. If q is a state and the t-norm is the usual product, then
q⊗(−|−) coincides with the conditional state defined in (6.55). Notice that,
by defining in an obvious way the ⊗-intersection of two L-subsets, we have

q⊗β (µ) =
q(β ⊗ µ)
q(β)

. (6.57)

As a consequence,
(q⊗β )γ = q⊗β⊗γ ,

and therefore the iteration rule always holds for q⊗ provided that we refer
to ⊗-intersections.

6.3.1 Conditional states and Dempster’s rule

Let ⊗ be a t-norm, p a probability and β an L-subset. Then by setting s
equal to p� as in Proposition 6.1.2, we can consider the quasi-state s⊗β . Also,
for any state s and t-norm ⊗, the conditional quasi-state s⊗β has the same
restriction to the boolean skeleton of LX as the conditional state defined in
(6.55). Such restriction is the probability given by the distribution

s⊗β (x) =
s(x)β(x)
s(β)

. (6.58)

This gives a way to compose a probability p with a possibility β thus
obtaining a probability. In this section we examine the relationship between
such probability and the Dempster composition rule in the theory of the
belief functions [106].

Let Ω be a set. A function m : 2Ω → [0, 1] such that

(1)
∑

X⊂Ωm(X) = 1

(2) m(∅) = 0,

is called a mass distribution on the frame Ω and the subsets X of Ω such
that m(X) > 0 are called focal events of m. The function Bel : 2Ω → [0, 1]
defined by setting for any E ⊆ Ω

Bel(E) =
∑
X⊂E

m(X)
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is called belief function (or lower probability) associated with m. The func-
tion Bel
 defined by

Bel
(E) =
∑

X∩E 
=∅
m(X)

is called upper probability of m. If m is a mass such that its focal events are
singletons of Ω, then the functions Bel and Bel
 coincide with the proba-
bility whose distribution is m.

Let β be an L-subset of Ω and let C(β, λ) = {x ∈ Ω | β(x) ≥ λ}. Then
the function mβ : 2Ω → [0, 1] such that:

mβ(X) =
{

1
k+1 , if X = C(β, λ)
0, otherwise

is a mass. In this case the upper probability is given by

Bel
(X) =
∑

C(β,λ)∩X 
=∅
m(C(β, λ)) =

∑{
1

k + 1
| sup
x∈X

β(x) ≥ λ

}
=

=
supx∈X β(x)(k + 1)

k + 1
= sup

x∈X
β(x).

Both the L-subset β and the related upper probability Bel∗ will be called
possibility. The following Dempster composition rule enable us to combine
two masses:

Definition 6.3.7 Let m1 and m2 be two masses on the same frame Ω,
with focal events A1, . . . , Ak and B1, . . . , Bl respectively and suppose that
(compatibility condition) ∑

Ai∩Bj=∅
m1(Ai)m2(Bj) < 1 (6.59)

Then the function m : 2Ω → [0, 1] defined by m(∅) = 0 and

m(A) =

∑
Ai∩Bj=A

m1(Ai)m2(Bj)

1 −
∑

Ai∩Bj=∅m1(Ai)m2(Bj)

for all non-empty A ⊂ Ω is called Dempster composition of m1 and m2.

Note that the Dempster composition of two masses is a mass. The
Dempster composition of (the distribution of) a probability p and another
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mass m2, for which the compatibility condition holds, is still a probability.
Indeed, if the compatibility condition holds:

m(A) =

∑
{xi}∩Bj=A

p(xi)m2(Bj)

1 −
∑

{xi}∩Bj=∅ p(xi)m2(Bj)

so m is different from zero only on singletons. More precisely, writing m(x)
instead of m({x}) we have

m(x) =

∑
x∈Bj

p(x)m2(Bj)

1 −
∑

x �∈Bj
p(x)m2(Bj)

.

Proposition 6.3.8 Let p be a probability on Ω, ⊗ be a t-norm, q a quasi-
state extending p, and β a possibility belonging to the MV-bunch of q. Then
the restriction of q⊗(−, β) to the skeleton of LΩ is the Dempster composition
of the probability p and the possibility β.

Proof. First of all we have to prove that condition (6.59) is satisfied. Let us
denote by xi with i = 1, ..., n the focal events of p, and by Cj = C(β, j

k+1)
with j = 1, ..., k the focal events of the mass mβ. Then (6.59) becomes∑

{xi}∩Cj=∅
p(xi)m(Cj) =

∑
xi 
∈Cj

p(xi)
k + 1

< 1.

and hence ∑
xi∈Cj

p(xi)
k + 1

> 0.

On the other hand, ∑
xi∈Cj

p(xi)
k + 1

=
∑
j

p(Cj)
k + 1

.

Noting that in
∑

j p(Cj) every p(x) is repeated exactly β(x) · (k + 1) times
we get ∑

j

p(Cj)
k + 1

=
∑
x∈Ω

p(x)β(x)(k + 1)
k + 1

=
∑
x∈Ω

p(x)β(x) > 0.

Then the desired composition is given by

∑
x∈Cj

p(x)m(Cj)

1 −
∑

xi 
∈Cj
p(xi)m(Cj)

=

∑
x∈Cj

p(x)
k + 1∑

p(x)β(x)
=
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=

∑
j p(Cj)

(k + 1)
∑
p(x)β(x)

=
p(x)β(x)(k + 1)

(k + 1)
∑
p(x)β(x)

.

Thus, all conditional quasi-states given by Definition 6.3.6 are compatible
with the Dempster composition rule.

6.3.2 Ulam game

In his book “Adventures of a Mathematician” [113], Ulam describes the
following game between two players A and B: Player B chooses a secret
number x in a finite set X, and Player A must guess x by a suitable sequence
of questions to which B can only answer yes or no — being allowed to lie in at
most k of these answers. Here, by a question Q, we understand a subset ofX.
The problem is to find strategies forA that minimize the number of questions
in the worst cases, i.e. whatever is the initial choice of the secret number
and whatever is the behavior of B (see [88] and references therein). In
case all questions are asked independently of the answers, optimal searching
strategies in this game are the same as optimal k-error-correcting coding
strategies (see [18]). Now, in the particular case when k = 0 (corresponding
to the familiar game of Twenty Questions) all that Player A knows about
x is represented by the conjunction in the classical propositional calculus of
all the pieces of information obtained from the answers of Player B. In case
k > 0 classical logic no longer yields a natural formalization of the answers.
As shown in [88] (and references therein) one may more conveniently use
the (k + 2)-valued sentential calculus of �Lukasiewicz [79], [32]. In fact,
Player A can record the current knowledge of the secret number by taking
the �Lukasiewicz conjunction of the pieces of information contained in the
answers of B.

More precisely, let L = Sk+1. For every question Q ⊆ X, the positive
L-answer to Q is the L-set Qyes : X → L given by

Qyes(y) =
{

1, if y ∈ Q;
k
k+1 , if y 	∈ Q.

Elements y ∈ X such that Qyes(y) = 1 are said to satisfy L-answer Qyes;
the remaining elements falsify the answer.

The negative L-answer Qno to Q is the same as the positive answer to
the opposite question Q = X −Q, in symbols,

Qno = Q
yes
.
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The dependence of Qyes and Qno on the actual value of k is tacitly un-
derstood. By definition, the L-subset µ : X → L of possible numbers result-
ing after a sequence of questions Q1, . . . , Qn with their respective answers
b1, . . . , bn (bi ∈ {yes, no}), is the �Lukasiewicz intersection

µn = Qb11  · · · Qbnn .

By definition the L-subset resulting after the empty sequence of questions
is the function constantly equal to 1 over X. As we will show in the next
proposition, we can interpret µ as the L-subset of possible numbers. Initially
all numbers are possible and have maximum “truth value” 1 (we have no in-
formation), in the final step only one number is possible (we have maximum
information). The following Proposition is routine (see [32]).

Proposition 6.3.9 Let x ∈ X and let µn be the L-subset of possible
numbers resulting after the questions Q1, ..., Qn and the answers b1, . . . , bn
(bi ∈ {yes, no}). Then:

µn(x) =
{

1 − i
k+1 , if x falsifies precisely i ≤ k + 1 of the Qb11 , ..., Q

bn
n

0 otherwise.

Needless to say, the game terminates when the L-subset µ of possible
numbers becomes an L-singleton. More precisely let µn be the L-subset of
possible numbers resulting after a sequence of questions and related answers,
and assume that µn is an L-singleton, namely that Supp(µn) = {x}. Then
x is the secret number.

6.3.3 Probabilistic Ulam game

In this section we suppose that player B cannot arbitrarily choose the secret
element x ∈ X but that x is chosen in a random way in accordance with a
probability distribution p on X. Also, we assume that such a distribution
is known by Player A. This variant of Ulam’s game naturally arises when
one considers the problem of efficient transmission in a noisy channel with
feedback [18].

At first we will examine the case with no lies, where, as is well known,
optimal strategies use balanced questions that minimize the expected value
of entropy.

In an attempt to extend this result to the case k > 0, we shall develop a
notion of entropy of a conditioned quasi-state.
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Entropy and strategies: the case with no lies

Assume that the secret number x is defined in a random way in accordance
with a probability measure p0 : 2X → [0, 1] and that no lie is admitted. In
this case no choice is possible for Player B, and the game can be considered
as a one-person game. Then, we can consider the entropy of p0

H(p0) = −
∑
x∈X

p0(x) · log p0(x),

where we admit the usual convention that 0 log 0 = 0. If such an entropy is
equal to zero, then, as is well known, p0 is nonzero for precisely one x ∈ X
and we can conclude that x is the secret number. Otherwise, a question Q
exists such that both p0(Q) and p0(Q) are nonzero. Set Q1 = Q and assume
that b1 ∈ {yes, no} is the answer to the question Q1. In this case we have
to consider the conditional probability p1 = p0(−, Qb1), where Qyes = Q and
Qno = Q, since no lie is admitted. If the entropy of p1 is zero, then we are
done, since there is only an element x such that p1(x) 	= 0 and this is the
secret number. Otherwise, we consider a question Q2 such that both p1(Q2)
and p1(Q2) are nonzero. More generally, assume that at the ith step of this
process questions Q1, ..., Qi have been asked and b1, ..., bi are their respective
answers. Then the knowledge about x available to Player A is represented
by the set Mi = Qb11 ∩ ... ∩Qbii of possible numbers and by the conditional
probability pi = pi−1(−, Qbi). An application of the conditioning iteration
rule, yields that pi = p0(−,Mi). Now, entropy minimization suggests to
us how the next question Qi+1 should be chosen. Indeed, given a question
Q and a probability distribution p, let E(H) be the expected value of the
entropy of p after Q, in symbols,

E(H) = p(Qyes) ·H(pQyes) + p(Qno) ·H(pQno).

As is well known, we must choose a question Q that minimizes the value of
E(H).
Let Q be a question. Then the entropy of the scheme(

Qyes Qno

p(Qyes) p(Qno)

)
is given by

HQ = −p(Qyes) log p(Qyes) − p(Qno) log p(Qno).

The proof of the following result is routine.
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Proposition 6.3.10 Given a probability p on X and a question Q, we have:

E(H) = H(p) −HQ.

From this proposition it follows that, in order to minimize E(H) we have
to maximize HQ and therefore to choose a question Q that is balanced, i.e.,
p(Q) is as close as possible to p(Q).

Entropy and strategies: the case with k lies

Let us consider Ulam game with k > 0 lies on the search space X, on which
a probability distribution p0 is defined. Suppose that after i questions the
game is described by the L-set µ and by a probability pi. We can canonically
extend probabilities p0 and pi respectively to states s0 = p�0 and si = p�i as
in Proposition 6.1.2. If a new question Q is asked, and answer b is given,
there are at least three different ways to define the updated state si+1:

(1) Letting

s′i+1(α) = si(α | Qb) =
∑

x∈X si(x)α(x)Qb(x)
si(Qb)

.

In other words, s′i+1 is the state result of conditioning si by the L-
subset Qb. This conditional state is always different from zero since
for every question Q and answer b, Qb is different from zero. If we
adopt this definition, it may happen that discarded elements have a
nonzero probability.

(2) Letting

s′′i+1(α) = s0(α | µQb) =
∑

x∈X s0(x)α(x)(µ Qb)(x)
s0(µQb)

,

i.e., s′′i+1 is the state result of conditioning s0 by µQb.

(3) Letting

s′′′i+1(α) = s	i (α | Qb) =
si(αQb)
si(Qb)

=
s0(α µQb)
s0(µQb)

= s	0 (α | µQb),

i.e., s′′′i+1 is the quasi-state obtained conditioning si by Qb that is equiv-
alent to consider the quasi-state obtained conditioning s0 by µQb.
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In the following we shall adopt this last approach. Note that the restriction
of s′′′ to the boolean skeleton of LX is a probability equal to the probability
obtained by the restriction of s′′.

In the case of a game with no-lies equipped with an initial distribution of
probability, Player B must answer in the right way. So it makes no sense to
consider a game in which Player B gives the answers in a malicious way. We
can suppose that the expected value of the entropy is calculated considering
that the probability to have a positive (negative) answer to the question Q is
p(Qyes) = p(Q) (respectively p(Qno) = p(Q)). So the rate between positive
and negative answers is p(Qyes)

p(Qno) .
By contrast, when the number of lies is different from zero then Player B
can decide whether or not to give a false answer, in order to minimize the
amount of information given to A. We have a typical two persons game and,
in accordance, A can adopt a minimax strategy. More precisely:

in searching strategies with a malicious Player B, Player A must choose
at the ith step a question Q minimizing the quantity

max {H(si(−, Qyes)),H(si(−, Qno)} .

Random lies

A different case is when Player B gives the answer in a random way, equiv-
alently when lies are randomly generated. In this case it makes sense to
apply a minimization of the expected value of entropy with respect to the
probability distribution on answers yes and no. In order to have a complete
analogy with Section 6.3.3, we suppose that, given the quasi-state s = si, at
the ith step of the game, the ratio between positive and negative answers is
s(Qyes)
s(Qno) , and hence

probability (positive answer to Q) =
s(Qyes)

s(Qyes) + s(Qno)
(6.60)

and

probability (negative answer to Q) =
s(Qno)

s(Qyes) + s(Qno)
. (6.61)

Accordingly , we stipulate that the expected value of the entropy of the
quasi-state s after the question Q, is given by

E(H,Q) =
s(Qyes)

s(Qyes) + s(Qno)
·H(s(−|Qyes))+ s(Qno)

s(Qyes) + s(Qno)
·H(s(−|Qno)).
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The entropy of the scheme(
Qyes Qno

s(Qyes) s(Qno)

)
is given by

HQ = − s(Qyes)
s(Qyes) + s(Qno)

log
s(Qyes)

s(Qyes) + s(Qno)
+

− s(Qno)
s(Qyes) + s(Qno)

log
s(Qno)

s(Qyes) + s(Qno)
.

We denote by ν the normalization factor s(Qyes)+s(Qno). Denoting by k
k+1

the L-subset constantly equal to k
k+1 , it is immediate to prove that

ν = 1 + s(
k

k + 1
).

So ν does not depend on Q. Also, we denote by E( k
k+1) the entropy of k

k+1 ,
i.e.,

E(
k

k + 1
) = −

∑
x∈X

s(〈x, k
k + 1

〉) log
(

s(〈x, k
k + 1

〉)
)
.

Now, we can prove the following extension of Proposition 6.3.10.

Proposition 6.3.11 Adopt the above notation. For any quasi-state s and
question Q we have the identity

ν ·E(H,Q) = H(s) −HQ − E(
k

k + 1
).

Proof. By definition

ν ·E(H,Q) = s(Qyes)H(s(−, Qyes) + s(Qno)H(s(−, Qno)

= s(Qyes) ·
(

−
∑
x∈X

sQyes(x) log sQyes(x)

)
+

s(Qno) ·
(

−
∑
x∈X

sQno(x) log sQno(x)

)
.

From
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sQyes(x) =
s(〈x,Qyes(x)〉)

s(Qyes)
and sQno(x) =

s(〈x,Qno(x)〉)
s(Qno)

,

it follows that

ν · E(H,Q) = −
∑
x∈X

s(〈x,Qyes(x)〉) log
(
s(〈x,Qyes(x)〉)

s(Qyes)

)

−
∑
x∈X

s(〈x,Qno(x)〉) log
(
s(〈x,Qno(x)〉)

s(Qno)

)
By direct verification we got

ν · E(H,Q) = −
∑
x∈X

s(〈x,Qyes(x)〉) log s(〈x,Qyes(x)〉)

+
∑
x∈X

s(〈x,Qyes〉) log s(Qyes)

−
∑
x∈X

s(〈x,Qno(x)〉) log s(〈x,Qno〉)(x)

+
∑
x∈X

s(〈x,Qno(x)〉) log s(Qno).

By definitions of Qyes and Qno,

ν ·E(H,Q) = s(Qyes) log s(Qyes) + s(Qno) log s(Qno)

−
∑
x∈Q

s(x) log s(x) −
∑
x/∈Q

s(x) log s(x)+

−
∑
x/∈Q

s(〈x, k

k + 1
〉) log

(
s(〈x, k

k + 1
〉)
)

+

−
∑
x∈Q

s(〈x, k

k + 1
〉) log

(
s(〈x, k

k + 1
〉)
)

= s(Qyes) log s(Qyes) + s(Qno) log s(Qno) +H(s)

−
∑
x∈X

s(〈x, k

k + 1
〉) log

(
s(〈x, k

k + 1
〉)
)
.
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As in the case no lies, the questions that (in the average) give more
information are balanced in the appropriate sense:

Proposition 6.3.12 For any quasi-state s and question Q,

s(Qyes) − s(Qno) = s(Q) − s(Q) + s(
k

k + 1
).

Consequently, the minimum of the expected value of the entropy E(H,Q) is
achieved asking balanced questions, in the sense that s(Q) has to be as close
as possible to s(Q).

Proof. Since
s(Qyes) − s(Qno) =

=
∑
x∈X

s(〈x,Qyes(x)〉) −
∑
x∈X

s(〈x,Qno〉) =

=
∑
x∈Q

s(x) −
∑
x/∈Q

s(x) +
∑
x/∈Q

s(〈x, k

k + 1
〉) −

∑
x∈Q

s(〈x, k

k + 1
〉)

= s(Q) − s(Q) +
∑
x∈X

s(〈x, k

k + 1
〉),

the first part of the proposition is proved. Moreover, by Proposition 6.3.11,
the minimum value of E(H,Q) is achieved in correspondence of the max-
imum value of HQ, i.e., s(Qyes) has to be as close as possible to s(Qno).

Thus if Player A knows that for every question Q the probability of a
positive or a negative answer is given by (6.60),(6.61), then the strategy of
balanced question is such that the higher the probability of x, the smaller
the number of questions to find it.



Chapter 7

An application: fuzzy
collaborative filtering

Recommendation systems [104, 61, 107] are nowadays attracting growing
attention as successful web applications. They are of special interest for
web sites devoted to electronic commerce, and they are widely used to sup-
port user choices for virtually any kind of goods or services. In general, a
recommendation system deals with a finite set of users U and a finite set of
items I. The task is to give an estimate, for each u ∈ U and for each i ∈ I,
of the degree of preference d(u, i) of user u for item i.

Recommendation systems can be classified in two categories according to
the kind of information they use in order to accomplish their task: content-
based methods and collaborative filtering methods.

The more conventional content-based methods require a description of
each item i ∈ I and, possibly, of each user u ∈ U . Usually, these descriptions
are given in terms of a feature space: each item i ∈ I is associated with an
n-tuple (fi1, . . . , fin) of features (or, attributes), where each fij belongs to
the set Fj of all possible values of the jth feature. Analogously, a user may
be represented by an m-tuple of features in some set G1 × G2 × · · · × Gm.
Relying upon these descriptions, a content-based method gives an estimate
d(u, i) for each pair (u, i) ∈ U × I for which u still has not given any explicit
value for her/his preference for the item i. Often, similarity measures are
computed between any pair (u, u′) ∈ U2 and any pair (i, i′) ∈ I2, and the
estimated value for d(u, i) is computed in terms of these similarities.

On the other hand, collaborative filtering techniques [61, 107] are helpful
when a feature space representation of items (and users) is not available,
or gives unreliable or insufficient information. In these cases, to formulate

140
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an estimate for d(u, i), collaborative systems only rely on the collection
W ⊆ U × I of pairs (u′, i′) for which user u′ has already given an explicit
value for her/his degree of preference for the item i′. No other information
is used. Usually, the information available in the function d : W → [0, 1] is
used to compute similarities between the users in terms of the preferences
they have shown so far. Those similarities then play the role of weighting
factors in some suitably defined aggregate measure, which in turns gives the
estimate for d(u, i) for each i ∈ I.

Collaborative filtering techniques are particularly useful in web applica-
tions where in many real cases users of a service want to remain anonymous:
then any feature-based representation of users is unreliable or even impossi-
ble to get. At the same time, feature-based representation of items is often
difficult to design, or inaccurate for the task to be accomplished.

The typical example of a recommendation system based on collaborative
filtering techniques is concerned with movies [19, 81, 22]: in the standard
interaction between the user and the recommendation system user u asks
suggestions for the next movie to see. The system will suggest a film among
those still not seen by u which has been graded well by the users which
in the past have shown preferences similar to those expressed by u. The
movie scenario can be dealt with content-based techniques as well, as it is
not difficult to design a feature space for movies. Collaborative methods
have been proved to be competitive here [22].

In some domains — a notable example being music [107, 69, 6, 7] — the
identification of a feature space related to the subjective tastes of users is
intrinsically very difficult. Moreover, there are domains where the feature-
based approach is questionable, as for instance in judging the relevance of
an article [103] for a user on a certain topic just by looking at the number
of occurrences of certain associated keywords: it makes more sense to base
the relevance estimation upon the judgment of previous readers of the same
article. In all those cases, collaborative filtering techniques are to be consid-
ered as an alternative to content-based methods. Hybrid approaches mixing
collaborative and content-based techniques are also interesting.

7.1 The standard collaborative filtering algorithm

In spite of the growing demand for recommendation systems based on col-
laborative filtering techniques, only a few different algorithms have been
proposed in the literature.

Most of the algorithms for collaborative filtering are variants of the fol-
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lowing schema.
Without loss of generality, throughout this section the degree d(u, i) is

defined on W ⊆ U × I. The value d(u, i) is an element of [0, 1] expressing
the preference of user u for item i. A value in [0, 1/2) means that u dislikes
i, while a value in (1/2, 1] represents a positive judgment. The value 1/2 is
taken as a neutral judgment.

Definition 7.1.1 (Standard collaborative filtering) For each u ∈ U
let Iu = {i ∈ I | (u, i) ∈ W} 	= ∅ be the set of items i such that user
u has explicitly expressed degree of preference d(u, i) for item i and let
d̄(u) =

∑
i∈Iu d(u, i)/|Iu| be the average degree of preference of user u. For

each (u, i) ∈ U × I, the predicted value p(u, i) for d(u, i) is given by

p(u, i) = d̄(u) +

∑
v∈Ui

ρu,v(d(v, i) − d̄(v))∑
v∈Ui

|ρu,v|

where Ui is the subset of U containing all users v that have given an explicit
value d(v, i) for item i, while ρ(u, v) is the Pearson correlation coefficient
between u and v:

ρ(u, v) =

∑
j∈J(d(u, j) − d̄(u))(d(v, j) − d̄(v))√∑

j∈J(d(u, j) − d̄(u))2
∑

j∈J(d(v, j) − d̄(v))2
.

The Pearson coefficient takes values in [−1, 1] and measures linear correla-
tion of the functions d(u, .), d(v, .) : J → [0, 1], where (Iu∩Iv) ⊆ J is a subset
of I computed according to some fixed criteria. The Pearson coefficient is
used as a weighting factor in the weighted mean giving the predicted value
p(u, i). That is, the more the preference profiles between user u and user v
are linearly correlated, the better is the advice that v gives to u about i.

Variants on this schema compute the weighting coefficients ρ(u, v) using
other similarity measures, as the Spearman coefficient, or the vector simi-
larity coefficient (see [22]). An alternative algorithm, in which collaborative
filtering is regarded as a classification problem and is tackled by applying
singular value decomposition techniques to the matrix {d(u, i)}u∈U,i∈I , is
presented in [19]. Attempts to conjugate collaborative filtering with other
learning paradigms are found in, for instance, [6, 7, 69].

7.2 Fuzzy collaborative filtering

We introduce collaborative filtering in the context of fuzziness and many-
valued logic. We describe an infinite-valued logical framework in which the
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collaborative approach is formalized. This framework yields an alternative
algorithm to the ones introduced above. We further consider some exten-
sions to the basic schema. We introduce in our algorithm the use of a
measure of confidence on the predicted values for d(u, i). Many-valued logic
is shown to be flexible enough to allow the realization of hybrid systems
combining the collaborative and the content-based perspectives.

Definition 7.2.1 A fuzzy similarity [117] on a set A with respect to a t-
norm ∗ is a function s : A×A → [0, 1] satisfying, for every x, y, z ∈ A,

- reflexive property: s(x, x) = 1;
- symmetric property: s(x, y) = s(y, x);
- transitivity property: s(x, y) ∗ s(y, z) ≤ s(x, z).

Example 7.2.2 If x, y ∈ [0, 1], the relation x ↔ y is a similarity relation
on [0, 1] with respect to the �Lukasiewicz conjunction .

Description of the system

A collaborative decision problem is characterized by a finite set of users U
and a finite set of items I. Besides the preference function d defined on
a subset W of U × I, in our approach the system contains two functions
p (the predicted value for the degree of preference) and c (the confidence
degree about the predicted value) assigning to each pair (u, i) ∈ U × I a
value in [0, 1]. As in the standard approach, values of pt(u, i) in [0, 1/2) are
considered negative (that is, u dislikes i). Values in (1/2, 1] are positive (u
likes i). 1/2 is considered a neutral judgment.

The meaning of c and p is that the greater is c(u, i), the better the
system trust p(u, i) as a good estimate of d(u, i). If for a pair (u, i) ∈ U × I,
c(u, i) = 1 then p(u, i) = d(u, i).

Functions d, p and c evolve in time. We shall denote by dt, ct and pt

confidence and predicted value functions at time t, for 0 ≤ t ∈ Z.
We assume that at time t = 0 the function c0 takes values in {0, 1}. We

start from a situation where the degrees p0(u, i) such that c0(u, i) = 1 have
been explicitly given by users. On the other hand, we assume no confidence
on values p0(u, i) such that c0(u, i) = 0. Then we set p0(u, i) = 1/2 when
c0(u, i) = 0.

The system acquires new knowledge every time a user u rates a new item
i (we assume that users never retract any of her/his previous judgments, even
though the system still can work if this is allowed to happen).
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When a new value dt(u, i) is given to the system, the internal state of
knowledge evolves from time t to t+ 1, and new values of pt+1 and ct+1 are
computed. The function bt : U × I → {0, 1} gives value 1 to pairs (u, i) such
that at time t user u gave an explicit preference degree for i.

There is no loss of generality in assuming a fixed size for U and I: we
are considering evolution of the system from time t = 0 to time T where the
system exactly contained |U | users and |I| items. Then t ≤ T := |U ||I| −
|{(u, i) | b0(u, i) = 1}|.

7.2.1 The logical formulation

In this section, the functions ct, pt and bt and the user inputs dt will be
described as propositional variables or propositional formulas of Rational
�Lukasiewicz calculus as in Chapter 5.

Definition 7.2.3 An influence function is a function � : [0, 1]2 → [0, 1] such
that, for every x, y, z ∈ [0, 1],

- 0 � y = 1/2, 1 � y = y, x � 1/2 = 1/2;
- If y1 ≤ y2 then x � y1 ≤ x � y2 ;
- If y ∈ [0, 1/2) and x1 ≤ x2 then x1 � y ≥ x2 � y, if y ∈ (1/2, 1] and

x1 ≤ x2 then x1 � y ≤ x2 � y.

The second variable y of an influence function � is meant to be a degree
of preference, thus having 1/2 as neutral judgment. The intended meaning
of � is weighting y by means of x. When x = 0 then x � y is constantly 1/2
for all y ∈ [0, 1]. The greater the value of x, the closer to y the value of x�y.

Example 7.2.4 The following are formulas whose truth-table is an influ-
ence function (see Figure 7.1 for their graphs):

x �1 y := δ2(¬x ∨ 2y) ⊕ δ2(x ∧ y2)
x �2 y := δ2((x → y) ∨ 2y) ⊕ δ2((x y) ∧ y2)
x �3 y := δ2(x → 2y) ⊕ δ2(x y2).

Note that �3 is the most “restrictive” influence function among those in
Example 7.2.4: indeed x �3 y = y only if x = 1 or y = 1/2.

For any pair (u, i) ∈ U × I and 0 ≤ t ≤ T , dt(u, i) and bt(u, i) are
propositional variables. We shall consider only legal assignments. A legal
assignment v : Form → [0, 1] (cf. Definition 1.1.5) must be such that all
the following formulas

(A1) bt(u, i) ↔ ( bt(u, i)  bt(u, i) )
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Figure 7.1: From left to right, the graphs of truth-table functions resp.
associated with: �1, �2, �3.

(A2)
∨

(u,i)∈U×I
bt(u, i) ∧

∧
(u,i)
=(v,j)

(¬bt(u, i) ∨ ¬bt(v, j) ) for any 0 < t ≤ T

(A3) bt(u, i) →
∧
t′ 
=t

¬bt′(u, i)

evaluate to 1 under v. (A1) asserts that under any evaluation bt(u, i) takes
values in {0, 1}. (A2) guarantees that at each t > 0 only one user u inputs a
new judgment for an item i. (A3) asserts that a judgment is never retracted.
We define the following sets of formulas:

c0(u, i) := b0(u, i)
p0(u, i) := ( d0(u, i)  b0(u, i) ) ⊕ ( 1

2  ¬b0(u, i) ).
At time t a weighted similarity among users is computed by the formula

st(u, v) :=
⊙
i∈I

[(k → ct(u, i))  (k → ct(v, i))] → (pt(u, i) ↔ pt(v, i)) (7.1)

The meaning of (7.1) is that users u and v are similar if, for every item
i, whenever the confidence of u and v about i is high then their degree of
preference for item i is about the same.

Proposition 7.2.5 The function st is symmetric and reflexive. Further, if
v ∈ U is such that for any i ∈ I, ct(v, i) ≥ k, then st(u, v)  st(v,w) ≤
st(u,w).

Proof. Symmetry follows from definition. For every u ∈ U and i ∈ I,
pt(u, i) ↔ pt(u, i) = 1 hence [(k → ct(u, i))  (k → ct(u, i))] → (pt(u, i) ↔
pt(u, i)) = 1 and s(u, u) = 1. Whence s is reflexive. By definition, for every
i ∈ I, (

((k → ct(u, i))  (k → ct(v, i))) → (pt(u, i) ↔ pt(v, i))
)




CHAPTER 7. FUZZY COLLABORATIVE FILTERING 146


(

((k → ct(v, i))  (k → ct(w, i))) → (pt(v, i) ↔ pt(w, i))
)
≤

(
k → ct(u, i))  (k → ct(v, i))  (k → ct(v, i))  (k → ct(w, i))

)
→ (7.2)

→ ( (pt(u, i) ↔ pt(v, i))  (pt(v, i) ↔ pt(w, i)) )

Supposing than for every i ∈ I the confidence degree ct(v, i) is greater than
k, recalling Example 7.2.2, we have

(7.2) ≤ ( (k → ct(u, i))  (k → ct(w, i)) ) → ((pt(u, i) ↔ pt(w, i)).

Then st(u, v)  st(v,w) ≤ st(u,w).

Observe that the higher is the confidence of the system about user v, the
higher is the truth value of st(u, v)  st(v,w) → st(u,w).

Let n = |U | and � be an influence connective. The (aggregate) advice of
user u for item i at time t is the formula

at(u, i) =
⊕
v∈U

δn
(
(k → ct(v, i)) � (st(u, v) � pt(v, i))

)
. (7.3)

The use of the derived connective � is justified by the fact that, in order to
join ct, st and pt one must take into account that values of pt less than 1/2
are considered as negative judgments. Then equation (7.3) says that the
predicted value of the preference of user u for item i is given by considering
the average value, for every user v having a high confidence about i, of the
preference of v for i suitably weighted by the similarity between u and v.

Proposition 7.2.6 The formula ϕ = ( 3δ2c (c � x) ) ⊕ ( 3δ2¬c (¬c � y) )
is such that for any assignment v:

v(c) = 0 implies v(ϕ) = v(y);
v(c) = 1 implies v(ϕ) = v(x);
v(c) = 1/2 implies v(ϕ) = (v(x) + v(y))/2.

Suppose that at time t+1 user u∗ expresses an explicit preference degree
dt+1(u∗, i∗) for item i∗. Then bt+1(u∗, i∗) is 1 and predicted preference and
confidence degrees become:

pt+1(u, i) :=
( bt+1(u, i) ∧ dt+1(u, i) ) ∨ (¬bt+1(u, i)∧(

(3δ2ct(u, i)  (ct(u, i) � pt(u, i)) )
⊕(3δ2¬ct(u, i)  (¬ct(u, i) � at(u, i)) )

)
)

(7.4)

ct+1(u, i) := bt+1(u, i) ∨
(
pt(u, i) ↔ pt+1(u, i)

)
(7.5)



CHAPTER 7. FUZZY COLLABORATIVE FILTERING 147

Proposition 7.2.7 If t < t′ and bt(u, i) = 1 then ct
′
(u, i) = 1 and

pt
′
(u, i) = pt(u, i) = dt(u, i).

Proof. If bt(u, i) = 1, by (7.4) pt(u, i) = dt(u, i) and by (7.5), ct(u, i) = 1.
Since by (A3), for every t′ > t, bt

′
(u, i) = 0, then by (7.4) and Proposition

7.2.6, pt+1(u, i) = pt(u, i) and by (7.5) ct+1(u, i) = 1. Hence for every t′ > t,
ct

′
(u, i) = 1 and pt

′
(u, i) = pt(u, i) = dt(u, i).

The set of formulas described in this section provides an algorithm for
collaborative filtering:

Definition 7.2.8 For any 0 ≤ t ≤ T , let v be an assignment to the
propositional variables dt(i, u) and bt(i, u) satisfying (A1),(A2),(A3), and
let pt(u, i) and ct(u, i) be defined by (7.4) and (7.5). Then, the predicted
degree of preference of user u for item i at time t is the value v(pt(u, i)).

Since truth-table functions of Rational �Lukasiewicz logic are piecewise
linear, Definition 7.2.8 immediately yields an effective procedure to compute
the predicted values pt(u, i).

7.3 Combining content-based and collaborative
filtering

Suppose we have associated with each item i ∈ I an n-tuple of features
(fi1, . . . , fin) belonging to a feature space F1 × F2 × · · · × Fn. Assume also
that we have defined a fuzzy similarity measure µj : F 2

j → [0, 1] on each
component Fj of the feature space. For any items i1, i2 ∈ I, we define the
content-based similarity between i1 and i2 as

cs(i1, i2) =
n⊙
j=1

µj(fi1j , fi2j).

A purely content-based method can be described by defining the content-
based prediction on (u, i) at time t+ 1 by the formula

cpt(u, i) =
⊕

j∈I\{i}
δ|I|−1 (cs(i, j) � cpt(u, j)),

where an average on the set I \ {i} weighted by similarity of items is taken
as the predicted degree of preference of user u for item i.
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We propose two ways of designing hybrid methods combining content-
based and collaborative filtering techniques.

The external combination simply runs the content-based and the collab-
orative methods independently, then takes a combination of the two predic-
tions, giving, for the pair (u, i) ∈ U × I the prediction (where ν ∈ [0, 1] is a
parameter of the system):

hpt(u, i) = νpt(u, i) ⊕ ¬νcpt(u, i).

The internal combination mixes content-based and collaborative aspects
at a deeper level. Here we show how the content-based similarity cs can
reinforce the measure of the aggregate advice at in the collaborative filtering
algorithm of Definition 7.2.8: this is obtained by setting n = 2|U |, m =
2(|I| − 1) and by replacing the definition (7.3) of formula at(u, i) by:

at(u, i) :=
⊕

v∈U δn((k → ct(v, i)) � (st(u, v) � pt(v, i))) ⊕⊕
j∈I\{i} δm((k → ct(u, j)) � (cs(i, j) � pt(u, j))).

At present we are developing tests to measure the performance of our
algorithms compared to the standard (see Definition 7.1.1) algorithm and
some of its variants. We base our tests upon the dataset EachMovie [81]
publicly available at DEC Systems Research Center web site.

Future directions will consider how to use more actively feedback from
users (a formula for errors can be defined as et(u, i) = ¬(pt(u, i) ↔ dt(u, i)),
assuming that at time t user u expresses his degree dt(u, i) for item i).
Also, an interesting direction is in the research of selection criteria of the
underlying infinite-valued logic and of the influence functions.
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