
Security Conscious Web Service Composition with Semantic Web Support1

Barbara Carminati*, Elena Ferrari*, Ryan Bishop°, Patrick C. K. Hung°

*University of Insubria, Department of Computer Science and Communication Italy
°University of Ontario Institute of Technology (UOIT), Canada

{barbara.carminati, elena.ferrari}@uninsubria.it
ryan.bishop@mycampus.uoit.ca; patrick.hung@uoit.ca

1 The work reported in this paper has been partially supported by the discovery grant (NSERC PIN: 290666) from
the Natural Science and Engineering Research Council (NSERC) of Canada under the project: “M-services
computing security and privacy enforcement model” with the NSFC grants no. 60473091 and 60673175 in China.

Abstract

A Web service is a software system designed to support
interoperable application-to-application interactions
over the Internet. Recently, there has been a growing
interest in Web service composition, and some
languages (e.g., WSBPEL and BPML) for modeling the
composition have been proposed. In this paper, we
focus on security constraints of Web service
composition with semantic Web support, which have
not been deeply investigated so far. Based on our prior
work, we present a method for modeling security
constraints and a brokered architecture, which exploits
the REI reasoner, to build composite Web services
according to the specified security constraints.

Keywords: Semantic Web, Web service composition,
security constraints, REI.

1. Introduction

A Web service is a software system designed to support
interoperable application-to-application interactions
over the Internet. Web services rely on a set of XML
standards such as Universal Description, Discovery and
Integration (UDDI) [23], Web Services Description
Language (WSDL) [25], and Simple Object Access
Protocol (SOAP) [26]. One of the major goals of Web
services is to make easier their composition to form
more complex services. To this purpose, many
emerging languages (e.g., BPEL4WS [9], WSBPEL
[21] and BPML [2]) have been proposed to coordinate
Web services into a workflow. A workflow is a
computer supported business process.

The prolific use of workflow management
systems for critical and strategic applications gives rise
to a major concern regarding the threats against
confidentiality, integrity, privacy, anonymity, and
availability. Additionally, the BPEL4WS specification
recommends that business process implementations use
WS-Security [10] to ensure messages have not been
modified or forged while in transit or while residing at
destinations.

In this paper, we consider a security aspect of
Web service composition that has not been so far
deeply investigated, despite its importance, that is, the
one related to security requirements to be considered in
composing Web services. The idea is that both Web
service requestors and providers may have security
requirements and properties that must be taken into
account when composing Web services. We refer to
Web service compositions driven by security
requirements as security conscious compositions. For
instance, a Web service provider may not want to
accept requests issued by a specific IP address, or it
may want to put some additional security constraints on
the composition. To model and enforce such
constraints and security properties we exploit Semantic
Web technologies. The Semantic Web comprises the
standardization and use of descriptive technologies
(e.g., RDF, OWL) to relate data on the Web across
systems in various languages, as an enhancement of the
World Wide Web. For example, semantic Web
languages could be used to define ontology. However,
there is still no integration framework to link among
Web service composition, semantic Web and security
requirements.

We first propose a way to model security
constraints to be considered during Web service
composition, which is compliant with existing Web

6951-4244-0832-6/07/$20.00 ©2007 IEEE.

service standards. In particular, we use the REI
language to define security constraints and the REI
policy engine [14] as a reasoning system to reason over
security constraints for matchmaking. Then, we
present a semantic brokered architecture to compose
Web services according to the specified security
constraints, which exploits the REI policy engine.

The work reported in this paper builds on a
system for secure conscious composition of Web
services proposed by us in [6]. Differently from [6], in
the current paper we exploit the use of semantic
techniques to model security constraints and we show
how the brokered architecture proposed in [6] on
support of secure conscious composition can be
modified to cope with them.

The remainder of this paper is organized as
follows. Next section discusses related work. Section 3
illustrates our strategy to model security constraints and
capabilities with Semantic Web support. Section 4
describes the architecture on support of security
conscious Web service composition; whereas Section 5
presents an example of secure conscious composition.
Finally, Section 6 concludes the paper and outlines
directions for future work.

2. Related work

In the past few years, business process or workflow
proposals relevant to Web services are proliferating in
the business and academic world. Most of the
proposals are XML-based languages to specify Web
services interactions and compositions. All of the
proposed XML languages are based on WSDL service
descriptions with extension elements. For example, the
Business Process Execution Language for Web
Services (BPEL4WS) is a formal specification of
business processes and interaction protocols. The
OASIS WSBPEL Technical Committee is now
established to continue working on the BPEL4WS 1.1
specification within the OASIS Consortium [21].
WSBPEL defines a model and a grammar for
describing the behavior of a business process based on
interactions between the process and its Web service
interfaces. In short, a WSBPEL business process
definition can be thought of as a template for creating
business process instances. Each of the activities in a
flow model must be executed by an appropriate Web
service. In this scenario, the role of service locators is
to assign an appropriate Web services for each activity.
This assignment process is called matchmaking.
Besides exploiting UDDI registries, the matchmaking
process can be performed also by means of semantic

Web service descriptions. In this context, DAML-S [1]
provides capability to semantically annotate Web
services based on an ontology that provides classes and
properties to describe content and capabilities of the
Web services. Another relevant effort carried on in this
field is the one proposed in [16], where authors extend
OWL-S, the new emerging standard for Semantic Web
service description, by proposing ontology for
annotating input and output parameters of a Web
service with respect to their security characteristics
(e.g., encryption and digital signature requirements). A
basic difference between the approach reported in [16]
and the one proposed in this paper is that we exploit a
syntactic approach to model security requirements of a
Web service (i.e., the WSDL document), whereas in
[16] they use a semantic annotation-based approach.
Moreover, our approach to model the security
capabilities of a Web service is aligned with the
conceptual model of Security Assertions Markup
Language (SAML). A further relevant difference is that
in [16] the authors only consider the enforcement of
security constraints of a single Web service requester.
By contrast, in the proposed approach we consider
security requirements of both Web service requestors
and Web services taking part in the composition.

 Sycara et al. extend OWL-S to model constraints
and capabilities of Web services [22]. In their
approach, the REI language is exploited in the context
of Web service. However the REI language does not
address the issues of matching security constraints and
capabilities in the Web service composition. For
instance, a Web service may allow the exchange of
information without encryption, while another Web
service in the workflow may require encryption. Sycara
et al. only focus on the encoding of security
information in the inputs and outputs of the OWL-S
process description [22]. Referring to our approach, we
exploit a security matchmaker to verify Web services
compatibility with regard to security requirements of
both Web service requestors and providers.

Bartoletti et al. propose a formal framework for
statically determining a secure plan, i.e., a secure
composition [3] of Web services. In particular, in their
approach each Web service has associated an abstract
high level description of its behaviour. Then, model-
checking techniques are exploited to verify the validity
wrt security of the overall behaviour produced by a
plan. Authors consider three kinds of plans: simple
plans, selecting one service for each request, multi-
choice plans, choosing among a set of services for each
request, and dependent plans, which exploit the
knowledge of the past choices to select the best

696

combination. With respect to our approach, we have
proposed a brokered architecture with the aim to be
compliant as much as possible to Web standards,
making at the same time use of semantic technologies.
Moreover, our secure matchmaker has no limitations
on the possible plans, in that all possible workflows
can be validated.

Other related work are those exploiting AI
planning techniques for Web service composition.
Among them, we recall the work by McIlraith et al.
[18] that extends the logic programming language
Golog for automatic composition of Web services, the
one by Medjahed [19], which proposes a technique for
generating composite Web services from high-level
declarative descriptions. A framework for composing
Web services, based on the use of Mealy machines, has
also been proposed by Bultan et al. [4]. However, such
frameworks do not address security issues, which is the
focus of our work.

There are also XML languages proposed for
describing security assertions. These XML languages
restrict access to Web services to authorized parties
only, and protect the integrity and confidentiality of
messages exchanged in a loosely coupled execution
environment. Specifically, there is a well-known format
for XML-based security tokens, that is, the SAML,
which is used to define authentication and authorization
decisions in Web services [20]. Web services providers
submit SAML tokens to security servers for making
security decisions. Another XML-based language is the
one proposed in WS-Security, which describes
enhancements to SOAP messaging to provide quality
of protection through message integrity, message
confidentiality and single message authentication [10].
Based on WS-Security, WS-Policy provides a grammar
for expressing Web services security policies [11]. The
WS-Policy includes a set of security policy assertions
to support the WS-Security specification defined in
WS-Security Policy [11].

Our proposal exploits the REI policy language.
Kagal, in developing a policy language for the Me-
Centric project, [12] identifies that most research in
policy languages has been narrowed to specific
application domains, i.e., security, system management.
Thus, there are no general specifications for policy
verification. Also, the integration of the Semantic Web
must be supported by the policy language. To
overcome these drawbacks, Kagal in [12] developed
the REI policy language as a flexible language for
policy specification and reasoning across multiple
domains to be applied in the Me-Centric project. REI
allows security, management, and conversational

policies to be described by four basic constructs. The
four basic constructs of REI are: rights, obligations,
dispensations, and prohibitions [15]. Rights are the
permissions an entity has to perform the associated
actions. A permission allows an agent to perform
associated actions if and only if certain constraints are
satisfied [13]. Obligations are actions triggered by
conditions that an entity must perform. Dispensations
are waivers of obligations so an entity no longer has to
perform an action. Prohibitions are negative
authorizations stating that an entity can not perform an
action. REI policies allow the specification of privacy,
authentication, and confidentiality requirements for
Web service providers and requesters [17]. After
extensive research, we found that the REI policy
language is the best policy language that meets the
requirements of secure conscious Web service
composition discussed in this paper. The authors in [7]
propose an augmented distributed trust model built
upon a public key infrastructure that provides
authentication, non-repudiation, anti-playback, and
access control. The work extends Project Centaurus,
responsible for maintaining and executing services at
users’ requests on an independent infrastructure to
reduce the load on portable devices, by deployment of
decentralized services in the system. The primary goal
of the system is to support users’ remote access to
services across domains in a simple yet secure way.
The system uses Prolog to model permissions,
obligations, entitlements, and prohibitions. Moreover,
rights may be delegated to sustain remote access to
services if a particular user’s role does not provide
permission. We consider the importance of deferring
access rights so long as security remains paramount.

3. Security capabilities and constraints

Grounded in Resource Description Framework (RDF)
and OWL, REI allows the definition of declarative
policies over a security vocabulary and other domain
specific ontologies. In our approach, the REI policy
language is used to define security constraints of both
Web services and Web service requestors. Also, we use
REI as a reasoning system to reason over security
constraints for matchmaking. In addition, our approach
integrates the REI-Reasoner into the Web services
architecture [27].

 The starting point to model any security
information related to Web services is defining a
reference vocabulary. We define the Security
Vocabulary/Ontology by using the Web Ontology
Language (OWL) [24]. OWL ontology includes

697

descriptions of classes, properties, and their instances,
as well as formal semantics for deriving logical
consequences in entailments. Figure 1 shows a
simplified OWL Ontology that describes a security
vocabulary and related Web standards.

<owl:Ontology rdf:about="#securityVocabulary">
 <owl:versionInfo>v1.00 2005/06/15 23:59:59
 </owl:versionInfo>
 <rdfs:comment>Security Vocabulary</rdfs:comment>
 ...
 <owl:Class rdf:ID="#privacyAccessControl">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#P3P"/>
 <owl:Class rdf:about="#REI"/>
 <owl:Class rdf:about="#EPAL"/>
 <owl:Class rdf:about="#XACML"/>
 </owl:unionOf>
 </owl:Class>
 ...
 <owl:Class rdf:ID="#authentication">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#WS-Security"/>
 <owl:Class rdf:about="#SAML"/>
 <owl:Class rdf:about="#X.509"/>
 </owl:unionOf>
 </owl:Class>
 ...
</owl:Ontology>

Figure 1. An illustrative security vocabulary in OWL

 To verify whether a security constraint, specified
according to the defined security vocabulary, is
satisfied by a Web service or a Web service
composition, we need, in addition to a constraint
language, also a language to specify security
characteristics of a Web service (referred to as security
capabilities in what follows). For instance, as security
constraint a Web service provider could require the
adoption of a specific authentication mechanism such
as X.509. To verify this constraint, we need to know
which authentication mechanisms a Web service
supports. Security capabilities describe the
security features of a Web service, according to the
specified security vocabulary. We assume that there
exists one or more trusted entities in charge of
validating and issuing security capabilities.

3.1 Security capabilities

In our framework, Web service security capabilities are
expressed through SAML [20] assertions. The SAML

architecture relies on the presence of trusted
authorities, issuing signed assertions on subjects (e.g.,
users, services, organizations), that is, a set of
statements about the subject.2 In our approach, we
suppose the existence of a Secure Capability Authority
(SCA) in charge of evaluating Web service security
capabilities, and, based on this evaluation, of issuing
signed SAML assertions certifying such capabilities. In
particular, we use the attribute statement of SAML
assertions to express security capabilities of a Web
service, by associating a different attribute with each
different Web service security capability. According to
the SAML specification, the attribute statement
consists of an attribute name and an attribute value. We
use the attribute name to denote the security feature,
whereas the attribute value gives information on how
the security feature is enforced by the corresponding
Web service.

<saml:AttributeStatement xmlns:sv="#securityVocabulary">
 <saml:Attribute Name ="sv: AccessControl">
 <saml:AttributeValue>
 XACML
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

Figure 2. An example of security capability

 As an example, Figure 2 reports a security
capability expressed through attribute assertions. The
name of the attribute is privacy access control, thus
denoting the access control mechanism adopted by the
Web service. The attribute value is XACML, meaning
that the Web service exploits the XACML language to
express access control policies. Security capabilities
are stored into the WSDL document of the
corresponding Web service, by exploiting the
extensibility element.

3.2 Security constraints

In theory, there are three types of constraints: (1) Static
constraints, that can be evaluated without executing the
Web service composition; (2) Dynamic constraints,

2
The SAML specification supports three types of statements:

authentication statements, which assert that a subject has been
authenticated by the issuing authority; authorization statements,
which state that a subject has been given an authorization by the
issuing authority; and attribute statements, which contain subject
information that can be used to grant authorizations.

698

that can be evaluated only during the execution of a
Web service composition, because they express
restrictions based on the execution history of the Web
service composition; and (3) Hybrid constraints, that
is, constraints whose satisfiability can be partially
verified without executing the Web service
composition. This paper will cover static and dynamic
constraints.

We further classify security constraints into two
broad categories, i.e., those specified by the requestor
and those that refer to conditions that a Web service
can impose to another Web service in order to
cooperate with it (referred to as compatibility
constraints). The first category is further refined into
two subcategories: general and specific constraints.
The first refers to those conditions that the Web service
requestor states for all the Web services participating to
the composition (e.g., adopted privacy or
authentication techniques), whereas specific constraints
are related to selected Web services within the
composition (e.g., the Web service making hotel
reservations should use X.509 authentication).

<constraint:CompatibilityConstraint
xmlns:sv="#securityVocabulary"
rdf:ID="compatibilityConstraint1" type="static">

 <constraint:subject rdf:resource="sv:authenticaion"/>
 <constraint:predicate rdf:resource="&operator:equal"/>
 <constraint:object rdf:resource="sv:SAML"/>
</constraint: CompatibilityConstraint>
<constraint:CompatibilityConstraint

xmlns:sv="#securityVocabulary"
rdf:ID="compatibilityConstraint2" type="static">

 <constraint:subject rdf:resource="sv:encryption"/>
 <constraint:predicate rdf:resource=" &operator:notEqual"/>
 <constraint:object rdf:resource="sv:DES"/>
</constraint: CompatibilityConstraint>

Figure 3. An example of compatibility constraint

We use a uniform notation to model static and
dynamic types of identified constraints (see the Type
attribute in Figure 3). As for security capabilities, we
store compatibility constraints into the WSDL
document describing a Web service. More precisely,
they are stored into the WSDL extensibility element
(see the CompatibilityConstraint element in
Figure 3). By contrast, constraints specified by the
Web service requestor (i.e., general, and specific
constraints) are included into the service request (i.e.,
in a SOAP message). Security constraints are modeled
as Boolean formulas over security capabilities. To

make secure matchmaking easier, we store Boolean
formulas in a disjunctive normal form, where each
clause is modeled by a different element
(CompatibilityConstraint element). The
compatibility constraint element contains the name of
the capability to which the condition refers to
(subject element), the operator of the condition, and
the values to be evaluated on that capability
(predicate and object element, respectively).
Thus, for instance, if a Web service wants to answer
only requests of Web services using SAML
authentication, or requests that do not use DES
encryption, the compatibility constraint stored in its
WSDL document is: ‘authentication=SAML OR
encryption ≠DES’, which corresponds to the
CompatibilityConstraint element shown in
Figure 3.

Referring to Figure 3, both constraints are
classified as static constraints. Since constraints must
be matched against capabilities issued by a SCA, the
broker and the SCAs have to adopt the common
reference ontology (shown in Figure 1) to express
security capabilities and constraints.

Figure 4 shows an example of general/static
constraint defined in REI. This constraint states that the
Web service requestor requires that all Web services
participating to the composition exploit the X.509
framework for authentication. This static constraint is
handled by the matchmaker before the execution of
Web service composition.

<constraint:SimpleConstraint
xmlns:sv="#securityVocabulary"
rdf:ID="GeneralConstraint1" type="static">

 <constraint:subject rdf:resource="sv:authenticaion"/>
 <constraint:predicate rdf:resource="&operator:adopt"/>
 <constraint:object rdf:resource="sv:X.509"/>
</constraint:SimpleConstraint>

Figure 4. An example of general constraint

By contrast, Figure 5 shows an example of
specific/dynamic constraint defined in REI. This
constraint states that an authentication request for
connecting to Web service 1 (WS1) can not fail more
than three times. In this case, this dynamic constraint
can not be handled by the matchmaker alone before the
execution of Web service composition. This constraint
has to be handled and monitored by the workflow
executor during the execution of Web service
composition.

699

<constraint:SimpleConstraint
xmlns:esv="#enhancedSecurityVocabulary"
rdf:ID="SpecificConstraint1" type="dynamic">

 <constraint:subject
rdf:resource="esv:AuthenticationRetry"/>

 <constraint:predicate
rdf:resource="&logicaloperator:lessThan"/>

 <constraint:object rdf:resource="×3"/>
</constraint:SimpleConstraint>

Figure 5. An example of specific constraint

Constraints (general, specific and compatibility)
can be combined in pairs using the Boolean operators
And, Or, and Not, forming more complex constraints,
called composite constraints. For instance, the
constraints that require that all Web services
participating to the composition exploit X.509
framework for authentication, and an authentication
request for connecting to Web service 1 can not fail
more than 3 times, are paired in Figure 6. In this case,
the composite constraint combines a specific and a
general constraint. This constraint can be partially
verified before executing the composition, since the
general constraint component is static, whereas the
component referring to the specific constraint can be
only evaluated at run-time.

<constraint:And rdf:ID="GeneralAndSpecificConstraint">
 <constraint:first rdf:resource="#GeneralConstraint1"/>
 <constraint:second

rdf:resource="#SpecificConstraint1"/>
</constraint:And>

Figure 6. An example of composite constraint

4. Secure WS broker

In what follows, we describe how the brokered
architecture proposed in [6] for secure conscious
composition of Web services can be extended to
support constraints modeled using REI.

 Secure conscious composition of Web
services is realized by a Web service, called Secure
WS-Broker (SWS-Broker for short). The SWS-Broker
receives as input a request of a service, whose
implementation may require the composition of several
Web services. The request contains a description of the
requested Web service. Additionally, the SWS-Broker
receives a set of general and specific security
constraints (both static and dynamic) to be satisfied by
the resulting composition. The SWS-Broker first
performs the creation of an appropriate workflow (WF)

that models the business process generating the
required service. This is done with the help of libraries
of patterns for well-known business processes. This
step is deeply affected by the service description given
in input. Indeed, the service could be described
according to either a syntactic (i.e., WSDL and UDDI)
or semantic approach (i.e., DAML-S).

Once the appropriate WF has been devised, the
SWS-Broker starts generating the composition, which
finds out for each WF activity, a suitable Web service.
By suitable Web service we mean a Web service
having the ability to perform that activity and satisfying
the security constraints. The last task performed by the
SWS-Broker is the generation of the WSBPEL
document representing the secure conscious
composition, which is then returned to the requestor.
In the case that no secure conscious compositions can
be generated (i.e., no suitable Web services are found),
the SWS-Broker returns a report containing the
security constraints that cannot be satisfied and/or the
WF activities for which no Web service have been
located.

Security constraints verification is done by
adapting the REI’s policy reasoning engine. The REI-
Reasoner is integrated into the security matchmaker to
evaluate the compatibility of constraints and
capabilities of different Web services. The REI-
Reasoner and Security Matchmaker work in unison to
select the services which best meet the original request.
More precisely, the SWS-Broker consists of five main
components and the interactions are formatted in
SOAP (see Figure 7): WF-Modeler, WSs-Locator,
Security Matchmaker, REI-Reasoner, WSBPEL
Generator and WSBPEL Executor, which we briefly
describe in what follows.3

WSs
Locator

SOAP
Security

Matchmaker
WSBPEL
Generator

WF
Modeler

REI
Reasoner

S
O

A
P

S
O

A
P

S
O

A
P

WSBPEL
ExecutorSOAP

S
O

A
P

SOAP

S
O

A
P

Figure 7. SWS-Broker Architecture

3 The brokered architecture also supports the possibility of
delegating some of the tasks to an external and more
specialized Web service.

700

WF-Modeler: The SWS-Broker receives as input a
service description, referring to the required final Web
service. The requestor does not give any direction on
how and which Web services should be involved to
provide the required service. For this reason, the first
step of the SWS-Broker is to model the business
process required to produce the requested service. This
initial step is done by the WF-Modeler, which returns
as a result a workflow in WSBPEL. We propose to use
workflow technologies such as Workflow Management
System (WFMS) in WF-Modeler. WFMS is the
software to support the specification, decomposition,
execution, coordination, and monitoring of workflows
[28]. Each activity in the devised WF is complemented
by a set of semantic annotations, to describe its
functionalities and capabilities.

WSs-Locator: Once the appropriate workflow has been
generated, the next step is to identify, for each WF
activity, one or more Web services able to carry on the
considered activity. This task is performed by the WSs-
Locator, which could exploit both UDDI search
functionality and semantics annotations to perform the
assignment. Both matchmaking and delegation
processes are expected to use the UDDI to find the
most appropriate Web service to satisfy WF activities’
or even sub-activities’ requirements.

Security Matchmaker: The WSs-Locator simply
returns for each WF activity a list of Web services able
to perform it, without considering static and dynamic
security constraints and compatibility constraints
during this selection. This is done by the Security
Matchmaker, which is the core of the SWS-Broker
architecture. Indeed, given the WF and Web services
returned by the WS-Modeler and the WSs-Locator,
respectively, the Security Matchmaker selects, for each
WF activity, a Web service satisfying the specified
security constraints, among those identified by the
WSs-Locator, thus obtaining the secure conscious
composition. In this scenario, the role of WSs-Locator
is to assign an appropriate Web service for each
activity. This assignment process is called
matchmaking. Furthermore, value-added Web services
are required to be enacted by long duration multi-step
activities. Thus Web services may also delegate some
sub-activities that are decomposed from the assigned
activities to other Web services. This assignment
process is called delegation.

REI-Reasoner: The Security Matchmaker sends the
security constraints with the selected Web service in
OWL-S description to the REI-Reasoner. In this stage,
static general and specific constraints are resolved by
the REI policy engine in cooperation with the Security
Matchmaker. The Security Matchmaker will only select
the Web service for an activity that can satisfy static
constraints of that specific activity. The policy engine
is structured around the meta policies of the requestor
to resolve conflicts that force constraints to be accepted
or rejected by the system. Furthermore, the REI policy
engine reasons about the selected Web service to
monitor and ensure that static compatibility constraints
are not violated. The policy engine can only reason
about policies that it has knowledge of. However, REI
supports both domain dependent and independent
information. Thus, REI provides specifications for
representing domain independent information, allowing
the engine to reason over information that is not
included in the knowledge base. For dynamic
constraints, the REI-Reasoner works with the WSBPEL
Executor and the Security Matchmaker. Finally, the
REI-Reasoner passes the results to the Security
Matchmaker that forwards them to the WSBPEL
Generator.

WSBPEL Generator: The last step is the translation of
the results returned by the Security Matchmaker into a
WSBPEL document that includes the specification and
decomposition of workflows [28]. Again this step
involves WFMS. The resulting WSBPEL document
contains information about the general and specific
constraints considered during the security conscious
composition. More precisely, these constraints are
modeled by means of WS-Agreement [8], and can be
exploited for further checks during the execution of the
composed Web service. WS-Agreement is a service-
level agreement (SLA), which represents a formal
contract between a Web services requestor and
provider guaranteeing quantifiable issues at defined
levels only through mutual concessions. More details
on the WSBPEL Generator can be found in [6].

WSBPEL Executor: The last step is the execution,
coordination and monitoring of workflows [28]. Again
this step involves WFMS as a middleware to support
Web services execution and management in according
to the WSBPEL document. The WSBPEL executor
component is also called the run-time engine which
consists of an execution end-user interface. The run-

701

time engine is an execution environment which assists
or performs the coordination of WSBPEL.

5. An illustrative example

In this section, we present an example to clarify how a
secure conscious composition is generated by SWS-
Broker. A detailed description of the Security
Matchmaker can be found in [6]. In doing this, let us
assume that a user requires to the SWS-Broker a
“travel plan” service, by which to plan a complete
travel consisting of flight, hotel, and car reservations.
Moreover, let us assume that the requestor specifies a
set of constraints. More precisely, he/she requires that
all Web services participating to the composition
exploit the X.509 framework for authentication (i.e., a
general constraint). Additionally, the Web service
carrying out the hotel reservation (A2) must adopt
XACML for access control policy specification (i.e., a
specific constraint). Both of these constraints are static.
In addition, the Web service requestor specifies a
dynamic security constraint stating that the number of
authentication for a request to the car reservation
activity can not fail more than three times. In order to
create the secure conscious composition, the SWS-
Broker first inquires the WF modeler for modeling
such a service.

Figure 8. The workflow for a travel planning

By assuming that the workflow returned by the
modeler is the one reported in Figure 8, the SWS-
Broker has to find out for each of the activities
depicted in Figure 8 one or more Web services able to
carry out them. This task is performed by WS-Locator,
which returns for each WF activity the WSDL
documents of those Web services able to perform the
corresponding activity. More precisely, we assume that
WS-Locator found out Web services WS1, WS2, and
WS3 for activity A1, Web services WS4 and WS5 for
activity A2, and Web services WS6 and WS7 for
activity A3 (see Table 1). Once the Web services have
been located, the SWS-Broker can evaluate the security
constraints, that is, the requestor constraints and
compatibility constraints of the discovered Web
services.

Activity
Web

Services
Web Services
Capabilities

WS1 Authentication=SAML
WS2 Authentication=X.509 A1
WS3 Authentication=SAML

WS4
Authentication=X.509

AccessControl=XACML
A2

WS5
Authentication=X.509

AccessControl=XACML
Signature=XML-SIG

WS6 Authentication=X.509
A3

WS7 Authentication=SAML

Table 1. Security capabilities of Web services returned by
WS-Locator

As introduced in Section 4, this task is performed
by the Security Matchmaker, which separately
evaluates both kinds of security constraints with the
help of the REI engine. In particular, it starts to
evaluate the requestor constraints. In doing that, from
each WSDL document returned by the WS-Locator it
extracts the security capabilities of the corresponding
Web service. Table 1 shows the results of this step,
where with each Web service it is associated its
security capabilities.

During the evaluation of requestor constraints, the
Security Matchmaker prunes from the Web services
returned by WF-Locator, those that do not satisfy the
constraints specified by the Web service requestor.
This implies pruning from all Web services those that
do not adopt X.509. Moreover, only from the Web
services associated with activity A2 (i.e., hotel
reservation), it has to remove those Web services that
do not adopt XACML. The final result of the requestor
constraints evaluation is presented in Table 2, which
reports also the corresponding compatibility
constraints.

Table 2. Security capabilities and compatibility constraints
of Web services after the evaluation of requestor constraints

Activity
Web

Service
Web Service
Capabilities

Web Service
Compatibility
Constraints

A1 WS2 Authentication=X.509
Signature=
XML-SIG

WS4
Authentication=X.509
AccessControl=
XACML

-

A2

WS5

Authentication=X.509
AccessControl=

XACML
Signature=XML-SIG

-

A3 WS6 Authentication=X.509 -

702

Table 3. The secure conscious composition

In the second step, the Security Matchmaker
evaluates compatibility constraints. To do that, it
extracts from the WSDL documents the compatibility
constraints specified by Web services. As reported in
Table 2, there is only one Web service having a
compatibility constraint, i.e., WS2, who requires to the
consequent Web services to adopt XML-SIG standard
as signature mechanism. In order to satisfy this
constraint, the SWS-Broker prunes from the Web
services associated with activity A2 those that do not
adopt XML-SIG. Table 3 reports the result of the
evaluation of compatibility constraints and also the
dynamic constraint on A3 (which will be handled by
the REI-Reasoner and WSBPEL Executor).

Finally, the secure conscious composition resulting
after constraint evaluation is translated into a WSBPEL
document (see [6] for more details).

6. Conclusions

In this paper, we have tackled the problem of Web
service composition, focusing on security issues. We
have proposed an approach to compose Web services
according to specified security requirements of both
Web service requestors and providers which uses REI
to model security constraints and reasoning on them.

This work is just a first step of a wider project we
are currently working on. First, we plan to extend our
proposal to other classes of constraints (such as for
instance hybrid or quality of services constraints). We
plan also to extend the proposed approach by
considering privacy of security constraints and
capabilities. Moreover, we plan to devise efficient
techniques for generating Web service compositions.
Up to now [6] we use a naïve strategy that basically
considers all the possible combination of Web services
among those selected by the WS-Locator, until it finds
one that satisfies the specified security constraints.

Finally, we plan to integrate the current proposal
with the work reported in [5], which provides a

solution to privacy issues related to Web services
discovery agencies.

7. References

[1] Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O.,
Martin, D.L., McIlraith, S.A., Narayanan, S., Paolucci, M.,
Payne, T., Sycara K., and Zeng, H. DAML-S: Semantic
Markup For Web Services. In Proceedings of the
International Semantic Web Working Symposium (SWWS),
Standford University, USA, 2001.

[2] Arkin. A. Business Process Modeling Language (BPML),
Version 1.0. BPMI.org. , 2002.

[3] Bartoletti, M., Degano, P. and Ferrari, G.L. Plans for
service composition. In Proceedings of the Workshop on
Issues in the Theory of Security (WITS), Vienna, Austria,
2006.

[4] Bultan, T., Fu, X. Hull, R., and Su, J. Conversation
Specification: A New Approach to Design and Analysis of E-
Service Composition. In Proceedings of the Twelfth Intl.
World Wide Web Conference (WWW2003), Budapest,
Hungary, 2003.

[5] Carminati, B., Ferrari, E., and Hung P.C.K. Exploring
Privacy Issues in Web Services Discovery Agencies. IEEE
Security & Privacy Magazine, 3(5): 14-21, 2005.

[6] B. Carminati, E. Ferrari, P.C.K. Hung. Secure Conscious
Web Service Composition. In Proceedings of the IEEE
International Conference on Web Services. Chicago, USA,
2006.

[7] A. Cedilnik, L. Kagal, F. Perich, J. Undercoffer, A. Joshi.
A Secure Infrastructure for Service Discovery and Access in
Pervasive Computing. ACM Monet: Special Issue on Security
in Mobile Computing Environments, 8(2), 2003.

[8] Grid Resource Allocation Agreement Protocol (GRAAP)
WG. Web Services Agreement Specification (WS-
Agreement)., Version 2005/09, GWD-R (Proposed
Recommendation).Online:http://www.ggf.org/Public_Comm
ent_Docs/Documents/Oct-2005/WSAgreementSpecification
Draft050 920.pdf, 2005.

[9] IBM Corporation. Business Process Execution Language
for Web Services (BPEL4WS), Version 1.0., 2002.

[10] IBM, Microsoft and VeriSign. Specification: Web
Services Security (WS-Security), Version 1.0, 2002.

[11] IBM, BEA, Microsoft, SAP, Sonic Software, VeriSign.
Web Services Policy Framework (WS-Policy), September
2004.

[12] L. Kagal. REI: A Policy Language for the Me-Centric
Project. HP Labs. Palo Alto, USA., 2002.

[13] L. Kagal, T. Finin. Modeling Conversational Policies
using Permissions and Obligations. Journal of Autonomous
Agents and Multi-Agent Systems, 2006.

Activity
Web

Servic
e

Web Service
Capabilities

Web Service
dynamic

constraints
A1 WS2 Authentication=X.509

A2 WS5

Authentication=X.509
AccessControl=

XACML
Signature=XML-SIG

-

A3 WS6 Authentication=X.509
Fail(Authenticati

on)
 < 3

703

[14] Kagal, L., Finin, T., Joshi, A. A Policy Based Approach
to Security on the Semantic Web, In Proceedings of the
second International Semantic Web Conference (ISWC),
Florida, USA, 2003.

[15] L. Kagal, T. Finin, A. Joshi. A Policy Language for a
Pervasive Computing Environment. In Proceedings of the
IEEE 4th International Conference on Policies for
Distributed Systems and Networks. Bologna, Italy, 2003.

[16] Kagal, L., Paolucci, M., Srinivasan, N., Denker, G.,.
Finin, T., Sycara, K. Authorization and Privacy for Semantic
Web Services, In Proceedings of First International
Semantic Web Services Symposium, Palo Alto, USA, 2004.

[17] R. Masuoka, M. Chopra, Y. Labrou, Z. Song, Wei-lun
Chen, L. Kagal and T. Finin, Policy-based Access Control
for Task Computing Using REI, In Proceedings of the Policy
Management for the Web Workshop, Chiba, Japan, 2005.

[18] McIlraith, S., Son, T.C. Adapting Golog for
Composition of Semantic Web Services. In Proceedings of
the 8th International Conference on Knowledge
Representation and Reasoning (KR2002), Toulouse, France,
2002.

[19] Medjahed, B., Bouguettaya, A., and Elmagarmid, A.K.
Composing Web Services on the Semantic Web. The VLDB
Journal, 12(4), 2003.

[20] OASIS. SAML 1.0 Specification Set:, 2002.

[21] OASIS. Web Services Business Process Execution
Language (WSBPEL).

[22] Sycara, K., McGuinness, D., Mcllraith, S., Paolucci, M.,
Finin, T., Denker, G., Kagal, L. OWL-S Technology for
Representing Constraints and Capabilities of Web Services,
In Proceedings of the W3C Workshop on Constraints and
Capabilities for Web Services, CA, USA 2004.

[23] Universal Description, Discovery and Integration
(UDDI). UDDI v. 3.0, UDDI Spec Technical Committee
Specification, 2002.

[24] WebOnt. OWL Web Ontology Language. Web-
Ontology (WebOnt) Working Group, World Wide Web
Consortium (W3C). Online: http://www.w3.org/2001/sw/
WebOnt, 2003.

[25] World Wide Web Consortium (W3C). Web Services
Description Language (WSDL), Version 1.2, W3C Working
Draft, 2002.

[26] World Wide Web Consortium (W3C). SOAP Version
1.2 Part 1: Messaging Framework, W3C Proposed
Recommendation, 2003.

[27] World Wide Web Consortium (W3C). Web Services
Architecture Requirements. World Wide Web Consortium
(W3C) Working Draft,. Online: www.w3.org/TR/2002/WD-
wsa-reqs-20021114, 2002.

[28] Workflow Management Coalition (WfMC):
www.wfmc.org

704

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

