
170 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Chapter IX

Web Retrieval of XML
Documents: Practice

and Challenges
Barbara Catania

University of Genoa, Italy

Elena Ferrari
University of Insubria, Italy

ABSTRACT
Web is characterized by a huge amount of very heterogeneous data sources,
that differ both in media support and format representation. In this scenario,
there is the need of an integrating approach for querying heterogeneous Web
documents. To this purpose, XML can play an important role since it is
becoming a standard for data representation and exchange over the Web.
Due to its flexibility, XML is currently being used as an interface language
over the Web, by which (part of) document sources are represented and
exported. Under this assumption, the problem of querying heterogeneous
sources can be reduced to the problem of querying XML data sources.
In this chapter, we first survey the most relevant query languages for XML
data proposed both by the scientific community and by standardization
committees, e.g., W3C, mainly focusing on their expressive power. Then, we
investigate how typical Information Retrieval concepts, such as ranking,
similarity-based search, and profile-based search, can be applied to XML
query languages. Commercial products based on the considered approaches
are then briefly surveyed. Finally, we conclude the chapter by providing an
overview of the most promising research trends in the fields.

This chapter appears in the book, Web-Enabled Systems Integration: Practice and Challenges edited by
Ajantha Dahanayake and Waltraud Gerhardt. Copyright © 2003, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB8329

IDEA GROUP PUBLISHING

Web Retrieval of XML Documents 171

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

INTRODUCTION
One of the most important characteristics of the Web is that it makes a huge

amount of information available to users scattered all over the world. The
benefit of having this information available is, however, related to the availability
of suitable techniques and tools for querying Web contents. In this respect, one
of the main issues is related to the heterogeneity of Web data sources, that differ
both in media support and format representation. Web data sources can store
either traditional structured data, or unstructured or semi-structured informa-
tion. In this scenario, there is thus a strong need for an integrating approach for
querying heterogeneous Web documents.

To this purpose, XML (eXtensible Markup Language) (WWW-XML)
can play a key role. XML is currently the most relevant standardization effort
in the area of document representation through markup languages and is rapidly
becoming a standard for data representation and exchange over the Web. Like
HTML, XML is a markup language. However, it supports a richer set of
features, such as user-defined tags, that allow one to represent within a single
document both data and descriptive information about data, maintaining at the
same time presentation aspects decoupled from data representation. Another
important characteristic of XML is that it can define application specific
document types through the use of Document Type Definitions (DTDs) or
XML Schemas (WWW-XML Schema). Due to its flexibility, XML is currently
being used as an interface language over the Web, by which (part of) document
sources are represented and exported. Under this assumption, the problem of
querying heterogeneous sources can be reduced to the problem of querying
XML data sources.

Several query languages for XML data have been proposed so far
(Bonifati & Ceri, 2000; Fernandez et al.). Most of the proposed languages
come from the database community and thus are greatly inspired by standard
database query languages (i.e., SQL and OQL). As such, these languages have
been mainly designed to express exact queries, that is, queries in which the
characteristics of the result are fully specified. Additionally, the result of a query
contains the documents that fully satisfy the query, whereas all the other
documents, included those that partially satisfy the query, are discarded.

However, people searching the Web usually have different requirements
with respect to traditional DBMS users, and this requires a re-visiting of the
philosophy underlying DBMS query languages. Usually, one of the main
problems in the Web environment is that of finding the �right information�
among a large amount of useless information, or the information that best
matches the user needs. Thus, we must be able to process partial answers
quickly and be able to relax a query when its results are too small. Additionally,

172 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

we must be able to provide support for incomplete and approximate answers.
On the other hand, since we are considering millions of documents, a particular
attention has to be devoted to optimization techniques able to make query
processing efficient.

An alternative approach to face the problem of querying XML documents,
that has received less attention to date, is to view XML documents as a
collection of text documents with additional tags and relations between these
tags. Information Retrieval (IR) techniques have traditionally been applied to
search large sets of textual data and provide some of the characteristics that a
query language for Web users must possess, such as the specification and
management of approximate queries, the ranking of the results with respect to
the degree of matching with the query and the use of profile information during
query processing.

Thus, integrating IR and XML search techniques will enable more sophis-
ticated search on the structure as well as on the content of XML documents.
We believe that, due to the nature of XML documents, what is needed is a mix
of database and IR characteristics. This chapter is thus mainly devoted to
investigate how typical IR concepts, such as ranking, approximate queries,
similarity-based and profile-based search, can be applied and integrated with
XML query languages.

In the remainder of the chapter, we first briefly summarize the main
characteristics of XML, for those readers which are not familiar with the
language. Then, we survey the most relevant query languages for XML data
proposed so far by both the scientific community and standardization commit-
tees, e.g,. W3C. In describing the query language proposals, we mainly focus
on expressive power and impact in commercial products. The second part of
the chapter is devoted to illustrate the main proposals related to the IR
approach for querying XML documents. In this part of the chapter, we analyse
both research and commercial proposals. The analysis will then help us in
identifying future trends in the field and in understanding how typical IR
concepts, such as ranking, similarity-based search and profile-based search,
can be applied to XML documents and integrated with existing XML query
languages.

A BRIEF INTRODUCTION TO XML
XML (WWW-XML) is a text-based markup language similar to SGML,

which has been defined for clearly separating structure and representation
issues in Web documents. This approach has the main advantage that an XML
document, differently from an HTML document, can be written once and

Web Retrieval of XML Documents 173

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

visualized in several ways. Text is enclosed in start tags and end tags for
markup, and the tag name provides information on the kind of content
enclosed, thus it represents an element we would like to represent inside our
document. The content of an element can be composed of other elements (tags
can be nested) or it may correspond to plain text. Each tag can also be
associated with some attributes, further describing the meaning of the corre-
sponding element.

All XML documents have to be well-formed, that is, the nesting of
elements must be correct. Moreover, an XML document can be associated
with a Document Type Definition (DTD) or an XML Schema, defining the
syntax of a set of XML documents with similar structure. An XML document
is valid if it conforms to the corresponding DTD/Schema. An example of an
XML document, modelling a sales order, is given in Figure 1. In particular, for
each sales order, the document records the identifier (modelled through the
SONumber element) and the date of the order (i.e., OrderDate element).
Additionally, the document keeps track of the information on the customer
(Customer element). For each customer, we record his/her identifier, name
and address. Thus, the Customer element is an example of nested element,

<SalesOrder>
 <SONumber> �12345� </ SONumber >
 <Customer CustNumber = �543� >
 <CustName>ABC Industries</CustName>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 </Customer>
 <OrderDate>11012001</OrderDate>
 <Item ItemNumber = �1�>
 <Description> PC Monitor </Description>
 <Price>500</Price>
 <Quantity>10</Quantity>
 </Item>
 <Item ItemNumber = �2�>
 <Description> RAM 256 Mb, one-year guarantee</Description>
 <Price>25</Price>
 <Quantity>5</Quantity>
 </Item>
</SalesOrder>

Figure 1: An example of a data-centric XML document

174 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

since it consists of five sub-elements. Finally, the XML document in Figure 1
maintains information on the items to which the order refers to. For each item,
we maintain information on its identifier, price and quantity, as well as a brief
description. Figure 2 shows a DTD for the document in Figure 1.

Alternatively it is possible to give a graph representation of an XML document,
where nodes represent elements and attributes, and edges represent relationships
between them. More precisely, there is an edge from a node n1 to a node n2 if either
n2 is a direct sub-element of n1, or n2 is an attribute of element n1.

As pointed out in Bourret, XML documents can be seen under two
different points of view:
� As transfer vehicles: in this case, XML documents are seen as containers

for data to be transferred over the Web. These documents are called
data-centric, since their meaning depends only on the structured data
represented inside them. Typically, data-centric documents are charac-
terized by a quite regular structure and a homogeneous content. Appli-
cations that may benefit by such an approach are typical business-to-
business applications, such as buyer-supplier trading automation, inven-
tory database access and sharing, integration of commercial transactions
and workflow.

� As interesting objects: in this case, XML documents are seen as new
data objects, to be stored and managed inside the system. These
documents are called text- centric, since their meaning depends on the
document as a whole. In this case, the structure is more irregular and data
are heterogeneous. Examples of document-centric XML documents are
books, emails and any XHTML document (a combination of XML and
HTML, able to model both structure and presentation layout (WWW-
XHTML)). Typical applications that may benefit by such an approach are

Figure 2: A DTD for the document in Figure 1

 <!ELEMENT SalesOrder (SONumber, Customer, OrderDate, Item+)>
 <!ELEMENT SONumber (#PCDATA)>
 <!ELEMENT Customer (CustName, Street, City, State, PostCode)>
 <!ELEMENT CustName (#PCDATA)>
 <!ELEMENT Street (#PCDATA)>
 <!ELEMENT City (#PCDATA)>
 <!ELEMENT State (#PCDATA)>
 <!ELEMENT PostCode (#PCDATA)>
 <!ATTLIST Customer CustNumber ID #REQUIRED>
 <!ELEMENT OrderDate (#PCDATA)>
 <!ELEMENT Item(Description, Price, Quantity>
 <!ATTLIST Item ItemNumber ID #REQUIRED>

Web Retrieval of XML Documents 175

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

personalized publishing and portals, customized presentations, and con-
tent and document management applications.
An example of data-centric document is the one reported in Figure 1. The

structure of the a data contained in the document is quite regular and the content
of the various tags is homogeneous. On the other hand, Figure 3 presents an
example of a text-centric document, taken from Bourret, describing a specific
product.

Data-centric and text-centric documents require different query capabili-
ties. Indeed, due to the presence of a more rigid structure, data-centric
documents can be queried by using languages very similar to database query
languages. On the other hand, text- centric documents, due to their less
structured features, require languages built on concepts developed in the area
of Information Retrieval (IR).

<Product>
<Name>Turkey Wrench</Name>
 <Developer>Full Fabrication Labs, Inc.</Developer>
 <Summary>Like a monkey wrench, but not as big.</Summary>
 <Description>

 <Para>
 The turkey wrench, which comes in both right- and
 left-handed versions (skyhook optional), is made of the finest
 stainless steel. The Readi-grip rubberized handle quickly adapts
 to your hands, even in the greasiest situations. Adjustment is
 possible through a variety of custom dials.

 </Para>
<Para>You can:</Para>
<List>

<Item><Link URL=�Order.html�>Order your own turkey wrench</
 Link></Item>
<Item><Link URL=�Wrenches.htm�>Read more about wrenches</
 Link></Item>
<Item><Link URL=�catalog.zip�>Download the catalog</Link></
 Item>

 </List>
 <Para>

The turkey wrench costs just $19.99 and, if you
order now, comes with a hand-crafted shrimp
hammer as a bonus gift.

 </Para>
 </Description>

</Product>

Figure 3: An example of text-centric XML document

176 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

In the following, we present and classify several approaches for querying
both data-centric and text-centric documents.

XML QUERY LANGUAGES
Due to the widespread use of XML for Web data and database content

representation, several query languages for XML data have been proposed so
far which differ both in the expressive power and in the way they express XML
queries. Some of the proposed languages come from the database community
and thus are greatly inspired by database query languages (i.e., SQL and
OQL). Among them we recall Lorel (Goldman et al., 1997), originally defined
for querying semistructured data; XML-QL (Deutsch et al., 1999); XML-GL
(Bonifati and Ceri, 2000); YATL (Cluet et al., 1998); and Quilt (Robbie et al.,
2000). Other languages are more closely inspired by XML and come from the
document processing community. The most important of these languages is
XQL (Robbie et al., 1998), which can be regarded as an extension of the XSL
pattern syntax (WWW-XSLT). Since these languages are greatly influenced
by database query languages, they are particularly suited for querying data-
centric documents.

No standard for an XML query language has been so far released, but the
W3C XML Query Working Group is working at a standard XML query
language, called XQuery (WWW-XQuery). XQuery is mainly derived from
Quilt although it borrows some ideas also from other XML query languages,
such as XQL, Lorel, YATL and XML-QL, and it is greatly influenced by SQL
and OQL.

Comparative analysis of XML query languages can be done along several
dimensions (Bonifati and Ceri, 2000; Fernandez et al.; Maier, 1998). In the
following, in presenting the various XML query languages, we consider the
following dimensions:
1. Basic structure of the query. This dimension evaluates how queries are

expressed in the language (for example, whether a SELECT-FROM-
WHERE paradigm is used or the queries have an alternative structure).

 XML-QL XQL Quilt XQuery Lorel
Basic query
structure

Where-In-
Construct

Path and
filtering expr.

FLWR/XPath
expression

FLWR/XPath
expression

Select-From-
Where

Restructuring Partial No Partial Partial Yes
Join operators Yes Partial Partial Partial Yes
Tag variables
& path expr.

Yes Path expr.
only

Path expr.
only

Path expr.
only

Yes

Table 1: Comparative analysis of five XML query languages

Web Retrieval of XML Documents 177

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

2. Restructuring of query results. This dimension is related to the support
for constructors that allow a complete restructuring of the query with
respect to the structure of the original documents on which the query is
applied.

3. Support for join-like operators. This dimension evaluates whether the
query language supports operators to combine data from different docu-
ments.

4. Use of tag variables or path expressions. This dimension is related to
the support for queries on arbitrarily nested data and on data whose
structure is not completely known.
In the following, we focus our attention on XML-QL, XQL, XQuery, Quilt

and Lorel, and we compare them according to the dimensions previously
introduced. In describing the languages we make use of the XML document in
Figure 1. A summary of the comparative analysis is given in Table 1.

Basic Structure of the Query
Queries in XML-QL follows a WHERE pattern IN source CON-

STRUCT result syntax, where pattern defines an XML document template
which is matched against the input XML document identified by source (e.g.,
a URI), whereas result defines the structure of the result. An example of XML-
QL query retrieving the number and the description of all the items whose
quantity is greater than 6 is given in Figure 2(a).

Lorel queries follow the SELECT-FROM-WHERE syntax, where all
the clauses may in turn contain queries. For example, Figure 2(b) reports the
Lorel query corresponding to the XML-QL query in Figure 2(a).

Figure 4: An example of: (a) XML-QL; (b) a Lorel query on the document in
Figure 1
 WHERE <SaleOrder> SELECT xml(SaleOrder: {
 <Item> (SELECT xml(Item:{ItemNumber n,Description d})
 <ItemNumber>$n</ItemNumber> FROM SaleOrder.Item i, i.ItemNumber n,
 <Description>$d</Description > i. Description d
 <Quantity>$q</Quantity > WHERE i.Quantity >6) })
 </Item>
 </SaleOrder> IN �www.dcfm/orders.html�
 $q>6
 CONSTRUCT <Item>
 <ItemNumber>$n</ItemNumber>
 <Description>$d</Description >
 <\Item>
 (a) (b)

178 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Quilt and XQuery queries are very similar and both the languages allow a
great flexibility in query specification. Like OQL, these languages are functional
languages in which each query is represented as an expression. XQuery and
Quilt support a variety of expressions, which can be nested and combined
together thus allowing a great degree of flexibility. For instance, one of the form
of these expressions is an XPath expression (WWW-XPath). Alternatively, a
query may consist of FOR/LET, WHERE, and RETURN clauses. The
FOR/LET clause contains a set of XPath expressions identifying the set of
nodes on which the query applies. The WHERE clause applies a filter to the
nodes selected by the XPath expressions, whereas the RETURN clause
defines the structure of the query result. This kind of expressions are referred
to as FLWR (FOR/LET, WHERE, and RETURN) expressions. For instance,
Figure 5 reports the Quilt version of the query presented in Figure 4.

An XQL query consists of a path expression and an optional filter
expression. The path expression is used to select specific nodes within an
XML document, by giving their path in the graph representation of the
document, whereas the filter expression selects only nodes meeting specified
criteria. Filter criteria usually refer to the nodes which are accessed during the
traversal of the path specified by the path expression, although XQL provides
also operators to refer to nodes which are not necessarily along the specified
path. Examples of XQL queries over the document in Figure 1 are:
� SaleOrder/Item[Quantity>6] {ItemNumber | Description}: returns

the number and the description of all the items with a quantity greater than
6.

� SaleOrder[OrderDate = �11052001�]: returns all the orders made on
November 5th 2001.

Restructuring of Query Results
Sometimes it is useful that the result of a query has a different structure with

respect to the original XML documents on which the query is performed. For
this reason, most XML query languages provide restructuring operators to be
applied to a query result.

<Result>
 (FOR $i IN document (�www.dcfm/orders.html�)//Item,
 WHERE $i/Quantity > 6
 RETURN $i/ItemNumber, $i/Description
)
</Result>

Figure 5: An example of Quilt query on the document in Figure 1

Web Retrieval of XML Documents 179

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

In Lorel, new XML elements can be built by using the xml() function,
whereas in XML-QL restructuring is specified in the CONSTRUCT clause.
Quilt and XQuery provide the RETURN clause for restructuring query results.
By contrast, XQL does not support a restructuring operator. Additionally,
Lorel provides a GROUP-BY construct for aggregating elements. By contrast,
an explicit group-by clause is missing from the current description of XML-QL,
XQL, Quilt and XQuery.

Join Operators
Join queries are a very relevant class of queries, since they allow one to

combine information from multiple XML documents. XML-QL, Quilt, XQuery
and Lorel fully support join operations within the same document as well as
among different documents. By contrast, XQL only supports join of data
belonging to the same document, whereas it does not support join operations
across different documents.

Tag Variables and Path Expressions
Tag variables and path expressions are a relevant feature of any XML

query language in that they allow the specification of queries on documents
whose exact structure is not known. Tag variables allow the selection of
document portions in which some element tags match regular expressions (built
by using wildcards such as �*� or �%�).

XML-QL, Quilt, XQuery and Lorel support tag variables. For instance,
consider an XML source containing bibliographic entries. The XML-QL query
in Figure 6 selects books in which �Ford� is either an author or an editor. By
contrast, XQL, Quilt and XQuery do not currently support tag variables.

As far as path expressions are concerned, Lorel and XML-QL support
regular path expressions. Regular path expressions are those built by using the
alternation (�|�), concatenation (�.�) and Kleen-star (�*�) operators. XQL,

 WHERE <$p>
 <Title> $t </Title>

 <$x> Ford </ >
 </> IN www.dscfm/bib.xml
 $x IN {author,editor}
 CONSTRUCT <$p>

<Title> $t </Title>
<$x> Ford </ >

 </>

Figure 6: Use of tag variables in XML-QL

180 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Quilt and XQuery do not support regular path expressions, but they support the
definition of relative and absolute locations, using the �/� and �//� operators.

INFORMATION RETRIEVAL APPROACHES
TO XML DOCUMENT RETRIEVAL

Besides the efforts originating from a database context, the IR community
has started to investigate how IR techniques can be applied to XML docu-
ments. Indeed, each XML document can be seen as a text document including
tags. Thus, at least two approaches can be devised for applying IR techniques
to quering XML documents. In the simplest approach, we can simply discard
tag information, thus obtaining a simple text document, to which typical IR
techniques can be applied. This approach is quite simple; however it has several
disadvantages since, by removing tags, we lose several important information
that could have been used to improve the query process, thus leading to lower
retrieval performance. An alternative method consists in considering both
textual and tag information. In this case, the search can benefit from the
knowledge represented by the tag structure. When dealing with both tag and
textual information, traditional IR techniques have to be extended in order to
cope with both this information.

The scientific community has therefore started to investigate how XML
query languages can be extended with IR features. Several approaches have
been defined, such as XXR (Theobald and Weikum, 2000), XIRQL (Fuhr and
Grobjohann, 2000), ELIXIR (Chinenyanga and Kushmerick, 2001),
ApproXQL (Schlieder and Naumann, 2000) and XIRS (Vutukuru et al.),
however no standard proposals exist yet. The existing approaches can be
compared according to the following dimensions:
� Similarity-based conditions. This dimension concerns how XML query

languages have been extended from a syntactic point of view to support
the representation of similarity-based queries.

� Ranking. Since it is very difficult to compute exhaustive answers for
XML queries, it is important to define some mechanism for ranking the
obtained results. This dimension thus concerns the used ranking algo-
rithms.

� Personalization. Providing precise structural information for querying
XML documents is a very difficult task; for this reason the automatic or
partially automatic completion of the queries submitted by the user with
conditions derived, for example, from user profiles could be quite useful
to supply to the user better results, simplifying the user query construction

Web Retrieval of XML Documents 181

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

process. This dimension is therefore related to the personalization algo-
rithms used in query specification and execution.

� Indexing. Typical indexes used for full-text search, such as inverted
indexes, have to be revisited in order to index not only text but also tags.
This dimension thus concerns the types of indexes used to support full-text
search against XML documents.
In the following, we investigate the previous issues by considering some

recently proposed IR approaches to XML retrieval. In particular, we mainly
focus our attention on XXR, XIRQL, ELIXIR, ApproXQL and XIRS, and we
compare them according to the dimensions pointed out above. The result of this
comparison is presented in Table 2.

In the table, for each considered proposal, we also specify the XML query
language on which it is based. Empty positions mean that the authors are not
aware of how the corresponding issue is treated in the considered proposal.

Similarity-Based Conditions
In order to support IR features, XML query languages have been

extended to support new constructs, to specify retrieval by similarity, so that
a query returns a ranked list of answers, sorted by descending relevance.

XXL has been defined by extending XML-QL with similarity conditions
on elements and their attributes. In particular, the similarity operator �~� is
introduced which measures the similarity between a value of a node of the XML
document and a constant or a variable element given by a query. The �~�

XL XIRQL ApproXQL XIRS ELIXIR
ML-QL XQL XQL XQL XML-QL

etween an element
an attribute and a
nstant

Between an
element or an
attribute and
a constant

No new operators,
new approach to the
evaluation

Applied to
(keyword,
concept) pairs

Between
intermediate
XML-QL
results

ore assigned to ~
nditions,
terpreted as
obabilities and
mbined under the
dependence
sumption

Probability-
based ranking

Based on
transformation costs

Based on the tag-
distance between
the concept and
the keyword

Based on
WHIRL

- The user can restrict
the number of applied
transformations

Personalization of
(keyword,concept
queries by using
user profiles

-

- Text index + structural
index

Text index +
structural index

-

Table 2: Classification of the IR approaches

182 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

operator can also be used as a unary operator applied to an element as a
shortcut for the condition: element.NAME ~ constant, where element.NAME
represents the name of the considered element. For example, the condition
Para.# ~ �wrench� allows one to retrieve XML documents containing the
word �wrench,� or a similar word, inside an element named �Para.� This
condition, when evaluated against the document presented in Figure 3, returns
a score equal to 1, since the word �wrench� is exactly contained inside a
�Para� element.

XIRQL is an XML query language with IR features obtained by extending
XQL. In particular, whereas the result of an XQL query is a set of nodes, the
result of a XIRQL query is a weighted set of nodes. In order to use term weight
to define a relevance ranking approach, the operator cw (similar to operator
�~� of XXL) is introduced which determines whether a given element or text
associated with an element contains a given word. The operator returns a value
between zero and one, representing a similarity score. Moreover, it is also
possible to associate weights with conditions. For example, referring to the
document presented in Figure 3: //Product[.//* cw �steel� and .//*
cw �catalog�] is an example of an XQL query extended with operator
cw. The query retrieves all the products having a nested element containing
the word �steel� and a nested element containing the word �catalog.� Weights
can be assigned to the two independent conditions, leading for example to the
expression: //Product[0.6 * .//* cw �steel� + 0.4 * .//* cw �cata-
log�]. In this case, a higher rate is assigned to the condition concerning �steel�
(0.6). Such weights are then used to rate the retrieved documents.

ApproXQL is a pattern-matching language corresponding to a subset of
XQL. To this language, a semantics based on cost-based transformations is
applied. In particular, a document is retrieved by a query if it is possible to
transform the (tree representation of the) document into the (tree representa-
tion of the) query by applying some atomic transformations. Three main
transformations are provided: renaming, changing the search context of a
query part; insertion, introducing in the query an inner element, thus restricting
the query to a more specific context; deletion, removing a query element, thus
obtaining a more general query context. Note that this approach represents an
example of application of a similarity condition to both element content and
document structure.

ELIXIR is another language with IR characteristics for querying XML
documents, based on XML-QL query. The main extension with respect to
XML-QL is the introduction of a textual similarity operator, which applies to
intermediate data generated through XML-QL queries. In order to execute
these extended queries, the queries are rewritten into a series of XML-QL

Web Retrieval of XML Documents 183

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

queries, generating intermediate results. These results are then represented in
WHIRL (Cohen, 2000), in order to evaluate similarity predicates on this
intermediate data. We recall that WHIRL (Word-based Heterogeneous
Information Representation Language), is an information system combining
logic-based and text-based representation methods. More precisely, it corre-
sponds to a subset of non-recursive Datalog, extended by introducing an
atomic type for textual entities, and an atomic operation for computing textual
similarity.

The output obtained by the evaluation of the WHIRL query is then
translated in XML format and returned to the user. Note that this approach is
quite different from that supported by XXL and XIRQL. Indeed, in those
cases, the similarity operator is just applied between a data value and a
constant, but no similarity joins can be specified across two data values. On the
other hand, this can be specified by ELIXIR.

Ranking
The basic idea of ranking is that if no exact matching documents are found,

results similar to the one requested by the query should be ranked according
to their similarity degree. The problem of similarity between keyword queries
and text documents has been intensively investigated in the literature. However,
traditional models cannot be directly applied to XML documents for two main
reasons: they ignore the structure of XML documents and they are based on the
frequency by which words appear in the overall documents (term distribu-
tion). This last property is not useful for data-centric documents term distribu-
tion, since in this case documents have a very rigid structure and we would like
to use this structure in the queries. On the other hand, term distribution can be
useful for text-centric documents, but this concept is too poor without consid-
ering the associated structure. Starting from the previous discussion, several
approaches have been proposed, adapting traditional ranking approaches for
text documents to XML documents.

In XXL, the score assigned to similarity conditions is assumed to be
normalized between zero and one, and indicates the relevance of the node
appearing in the condition for the given constant. In order to compute similarity
score, a text search mechanism is used, based on a thesaurus and other means.
The similarity score for similarity-based conditions is interpreted as a relevance
probability. Conditions are then provided to compute the relevance of an
overall query starting from the relevance of similarity conditions.

A different approach is used in XIRQL. Starting from the consideration
that an XML document can be represented as a tree, differently from an
unstructured document that is interpreted as a sequence of words, the first

184 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

problem is determining to which objects weights should be assigned. XIRQL
considers as index objects only specific nodes (and the corresponding sub-
trees) appearing in the tree representation of an XML document. Such nodes
can be specified inside an extended DTD for the considered XML documents.
From the weighting point of view, index objects should be disjoint, such that
each term occurrence is considered only once. However, non-disjoint index
objects are also allowed. In this case only nodes not belonging to the sub-tree
rooted by the inner sub-tree are considered in the outer sub-tree.

Based on the notion of index object, a similarity score is assigned to atomic
conditions, using the cw operator, and to Boolean queries, using a proba-
bilistic approach, assuming that and and or operations are applied to
stochastically independent events. This is possible by assuming that the index
node determines the significance of a term in the context given by that node and
by assuming that different occurrences of the same term inside an index object
represent the same event. Different events are moreover assumed to be
independent, and occurrences of the same term in different index nodes are also
independent from each other. Following this idea, retrieval results correspond
to Boolean combinations of probabilistic events.

A similar approach, tailored to text-centric documents, has been pro-
posed in Schlieder and Meuss, 2000. Also in this case, the basic idea of the
proposal is that of replacing the concept of term distribution with the concept
of structural term distribution. Similarly to the XIRQL approach, a structural
term is a sub-tree of the XML document. Based on the concept of structural
term, the traditional Vector Space model (Baeza-Yates and Ribeiro-Neto,
1999) has been extended to deal with this new concept. The Vector Space
model is based on the comparison of the query term vector with the document
term vector. Each term has a certain weight which reflects its descriptiveness
with respect to the query or document. This model can be easily extended to
deal with structural terms: standard definitions of term frequencies and inverse
document frequencies are simply redefined by considering structural term
distribution. The main difference between a Vector Space model based on
structural terms and one based on terms is that in the first case terms are
dependent (since some structural terms can contain some other structural
terms). In the context of XML documents, this is a good property since it allows
one to improve precision without lowering the recall. For example, every
document containing the query structural term Price[25] also contains the
structural term 25. However, documents containing Price[25] are preferred
since their score is a function of both terms. Thus, it is correct to assign to these
documents a higher weight.

Even if this approach considers sub-trees as index terms, it differs from

Web Retrieval of XML Documents 185

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

XIRQL from two points of views. First of all, in this approach sub-trees are not
necessarily disjoint; moreover, ranking is performed using the Vector Space
model and not a probabilistic approach as in XIRQL.

Finally, in ApproXQL, cost-based transformations are used to assign a
similarity score to the results. In particular, the score assigned to a document
is obtained by adding the cost of each single transformation step. It is important
to point out that this approach is suitable for data-centric documents, where the
structure is typically static. On the other hand, it is not suitable for text-centric
documents, due to their variable structure.

Personalization
With personalization we mean the ability of a system to complete query

specification by using information concerning user profiles. This leverages the
user from the very difficult step of constructing the correct query and burdens
the system with the process of completing the partial query submitted by the
user. We believe that personalization is a very important issue in the context of
querying XML documents. Unfortunately, as far as we know, only a few works
have been done concerning query personalization.

A weak form of personalization has been proposed in XIRS (Vutukuru et
al.) to support simple (keyword, concept) conditions. In this system, a user
profile is maintained by monitoring the browsing behaviour of the user.
Accessed XML documents are grouped in sessions, each corresponding to
documents having similar top frequency words. A user profile is generated for
each session, consisting of the top frequency words in the session. A keyword-
concept matrix is also maintained. Each entry (i,j) of the matrix specifies the
relative importance of concept j for a keyword i. The initial entries of the matrix
are the number of times a keyword occurs in a particular concept (i.e., an
element) over the entire set of XML documents to be searched. Each entry is
updated by considering user profiles as follows. Each session is assigned a
weight, representing the importance of the session. Higher weights are assigned
to more recent sessions. An entry (i,j) is updated if both i and j appear in the
top frequency words of a session. In this case, the weight of the session is added
to the entry (i,j). At query time, the user just supplies a keyword. The keyword-
concept matrix is then used to determine the top k concepts for that keyword,
thus generating k queries of the form (keyword, concept) that are then
executed.

User preferences are also considered in ApproXQL to limit the number of
transformations, applied by the system in executing similarity-based conditions.
The user can indeed specify some restrictions on rename, insertion and deletion
transformations and the system will not consider these transformations when

186 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

computing similarity scores. Note that this process is completely manual and
therefore it does not correspond to the concept of personalization we have
introduced before.

Another example of personalization is provided by the Niagara system
(Naughton et al., 2001). The basic assumption underlying the design of Niagara
is that the user cannot know in advance where XML documents are located.
Thus, the query is automatically personalized in order to determine the
documents against which the query has to be executed. More precisely, a query
execution in Niagara is composed of two main steps. First, the user specifies
a query in a modified version of the XML-QL language. From this query, a
query expressed in the Search Engine Query Language (SEQL) is extracted,
which supports Boolean combinations of predicates that specify containment
relationships between XML elements and their contents. Such SEQL query is
then passed to the Niagara search engine, that evaluates the query and returns
to the XML-QL engine a set of URLs corresponding to the XML files that
should be used in evaluating the XML-QL query.

Indexing
In order to execute IR queries, specific indexes must be constructed over

XML documents. If all the tag information is removed, traditional IR indexes
can be used, but of course leading to lower retrieval performance. Another
approach consists in extracting some important structural and contextual
information from XML documents, for example specifying which tags should
be considered in the search. A more complete approach consists of indexing
the tags as if they were index terms. In this case, the problem is how such an
index can be coupled with a structure indexing textual information contained
inside an XML document, thus supporting both queries on the document
content and structure. For example, XIRS uses two inverted indexes, one for
indexing tags and one for indexing content. The first index associates to each
tag the list of all the documents containing it; the second index associates with
each keyword the list of all the documents containing such a keyword. Each
document points to its tree-based representation, at the lowest level tag within
which the keyword occurs.

Most of the full-text indexing approaches for XML documents are based
on the usage of the inverted index data structure (Baeza-Yates & Ribeiro-
Neto, 1999). The proposed techniques mainly differ for two parameters: the
method used to specify positions inside documents and the indexed informa-
tion. Concerning indexed information, inverted indexes for XML documents
may consider either element/attribute names or element/attribute content or
both. Often, both types of information are indexed (Aguilera et al., 2000;

Web Retrieval of XML Documents 187

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Florescu et al., 2000; Kanemoto et al., 1998; Vutukuru et al.; Yamamoto et al.,
1999). Concerning the method used to specify positions, as pointed out in
Sacks-Davis et al. (1997), index approaches can be classified in position-
based indexes and path-based indexes. In path-based indexes, occurrence
positions are represented by element paths, from the root of the document to
the considered information. For example, the path-based position of word
wrench inside the document presented in Figure 3 is Product[1]/Para[2]/
List[1]/Item[1], meaning that the word is contained in the first item of the list
associated with the second paragraph describing the first product. Thus, in the
previous path expression, numbers represent the ordering number of the
considered tag occurrence in the sibling lists, from left to right.

A disadvantage of path-based indexing is that it can support only a limited
number of full-text queries. For example proximity queries, i.e., queries asking
for some group of words at a certain distance from each other, cannot be
represented by using this approach. On the other hand, these queries can be
executed by using position-based indexes that guarantee a higher flexibility.
Position-based index refers to the XML content (words, element names,
attribute names and attribute values) by means of positions. Different types of
positions have been proposed in the literature, such as the number of bytes
between the root of the document and the considered information (Aguilera et
al., 2000; Kanemoto et al., 1998; Yamamoto et al., 1999) or the pair of
numbers assigned by a preorder/postorder visit of the tree (Aguilera et al.,
2000).

Finally, in Yamamoto et al. (1999), a new type of inverted index has been
proposed to support queries concerning namespaces. Queries referring to
elements or attributes belonging to a specific namespace, such as �Find all
XML documents which refer to the Dublin Core schema and the content
of its creator element is Alessandro Manzoni.� differ from traditional XML
queries from the fact that a specific path to the element or attribute is not
provided since such a path can be different from one document to another. Such
conditions cannot therefore be specified by using typical structural conditions
and traditional indexes cannot be used to support them.,

In Yamamoto et al. (1999), a specific index for supporting namespace
conditions is presented. The idea of the index is quite easy. Starting from the
consideration that a namespace-based query may just specify an element name
defined in a given namespace, instead of indexing words, elements or paths, the
index, called reverse path index, indexes reverse paths, which are paths from
nodes to the root in the XML tree structure. With which node, the URI of the
corresponding namespace is associated. Thus, a reverse index is an inverted file
of reverse paths, i.e., a set of tuples of the form < reverse path, list of

188 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

documents>. In order to be able to answer full-text queries with respect to
namespaces, the reverse index proposed in (Yamamoto et al., 1999) has been
extended. The new index is a set of tuples of the form <word, reverse path, list
of documents>, where each pair (word, reverse path) is associated with all the
document identifiers, in which the word is found at the end of the considered
path.

Even if position-based indexes support a large number of full-text query
types, they do not guarantee good performance with respect to update
operations. Indeed, since positions represent an absolute address, updates
usually cause the re-computation of the data coordinates. In high dynamic
environments, such performance decreasing cannot be accepted. Several
approaches have therefore been proposed in order to reduce the update costs.
For example, in Kha et al. (2001), the concept of relative region coordinate
(RRC) is provided, whose idea is that of expressing the coordinate of an XML
element in relation to its parent element coordinates. Thus, using RRC, it is only
possible to know where the element starts and end inside the region of its parent
elements. As a consequence, only a portion of the index file has to be modified
in case of update.

COMMERCIAL PRODUCTS
Due to the widespread use of XML, the market has pushed the develop-

ment of commercial XML data servers and IR systems. In the following, we
present a brief overview of the most significant developments in each category.

XML Data Servers
We can divide commercial DBMSs providing support to XML into two

broad categories (Bourret): Native XML Databases and XML-Enabled
Databases. In the first category fall all the products that store and manage
XML documents in their native form, whereas XML-Enabled Database are
databases (usually relational) that provide interfaces for mapping data between
XML and their internal data model, and vice-versa.

An XML-Enabled DBMS must thus support two classes of services: data
extraction services and data formatting services. Data extraction services
make the DBMS able to receive XML documents from the Web and to extract
from them structured data to be stored in the DBMS, according to the DBMS
internal data model. Data extraction requires a specific DTD (or XML Schema)
associated with the XML documents. On the other hand, data formatting
services make the DBMS able to take the result of a query, expressed in the
DBMS query language, and encode the resulting data in an XML documents

Web Retrieval of XML Documents 189

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

that can then be transferred over the network.
Two main differences exist between native XML databases and XML-

enabled databases. First, native XML databases can uniformly store both data-
centric and document-centric XML documents, whereas in XML-enabled
databases, the mapping of an XML document onto the database schema is
often possible only if the document has an associated DTD or XML Schema.
Additionally, the only interface to the data stored into native XML databases
is XML itself and its related technologies (such as XPath, DOM, XQL, etc.),
whereas in an XML-enabled database, different technologies can be used.

 In the following, we illustrate in more detail the features of some XML-
enabled and XML-native database systems.

XML-Enabled Databases
From the side of XML-Enabled Databases, almost all the most widely

used commercial relational DBMSs have been extended to manage XML
documents. In the following, we briefly illustrate the XML support provided by
Oracle 8i and 9i (Oracle), IBM DB2 (IBM) and Microsoft SQL Server
(Microsoft).

Oracle 8i, 9i. Oracle 8i and 9i have extended their architecture, based on
an object-relational model, with a specific XML layer, supporting a set of tools
for managing XML documents. Data extraction and data formatting for data-
centric documents are supported by XML-SQL Utilities, available as com-
mand line front end, Java API and PL/SQL API. It is important to recall that
data extraction requires a specific DTD for XML documents and, on the other
hand, data formatting services generate XML documents with a fixed structure.
The user can, however, relaxe this approach by using XSL to transform generic
XML documents before extraction and after construction. Document-centric
XML documents are stored in Oracle 8i by using an unstructured representa-
tion in CLOB or BFILE fields. In the second case, the XML document is stored
and managed outside the database, but metadata for such documents are
stored in the DBMS for fast indexing and retrieval. Such documents can then
be queried by using a tool called interMedia Context in Oracle 8i and Oracle
Text in Oracle 9i, which provides flexible document indexing, with respect to
both element/attribute content and names, and enables SQL statements to
query the content of XML documents. XML documents can be queried by
using XPath, in version 9i.

IBM DB2. In IBM DB2, XML is supported by providing an XML
Extender that extends DB2 functionalities to the management of XML docu-
ments. Data-centric XML documents can be stored in an XML collection,
representing a set of relational tables that contain data which have been

190 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

extracted from XML documents. The access and storage methods supported
by the extender allow one to compose an XML document from existing data,
to decompose an XML document and to use XML as an interchange method.
Differently from Oracle 8i, the mapping between XML documents and XML
collections is not fixed but can be specified through a Data Access Definition
(DAD) document, that defines the mapping between DTD elements and
relational tables and columns by using an XSLT and XPath syntax. Document-
centric XML documents are managed through XML columns. DB2 supports
three different data types for XML columns: XMLCLOB, XMLVARCHAR
and XMLFile, storing an XML document as a CLOB, a VARCHAR and a file
on the local file system, respectively. DAD are used to specify which XML
elements or attributes should be indexed. User-Defined Functions (UDFs) are
provided to support insert, delete and update operations against XML col-
umns. Queries can be performed by using the IBM Text Extender or by using
specific UDFs.

Microsoft SQL Server 2000. Microsoft SQL Server 2000 provides
several tools for managing XML documents. In particular, data can be
extracted from XML documents and stored in relational tables by using the
OPENXML function. On other hand, XML formatting of a query result is
provided by extending the SELECT-FROM-WHERE statement with the FOR
XML clause. To this purpose, three different format types can be specified.
SQL Server also supports an interesting XML view-based approach, by which
it is possible to construct the so-called XML-Data Reduced (XDR) schemas.
Such schemas, constructed by using an XML-like syntax, generate views of the
database in XML format and can be queried with XPath, either through HTTP
or by inserting XPath queries in specific XML templates (a similar approach
can be used for SQL queries).

Native XML Databases
Several are the native XML databases today commercially available

(Bourret). Among them we recall Excelon, developed by Excelon Corporation
(Excelon), and Tamino1 (Software AG) by Software AG. Other Native XML
Databases are dbXML, an open source native XML Database, and Virtuoso,
an XML data server which includes support for widely used Internet, Web and
Data Access standards such as XPath, XSL-T, SOAP, WebDAV, SMTP,
ODBC, JDBC and OLE-DB (Bourret). In the following we briefly present the
main characteristics of Excelon and Tamino.

Web Retrieval of XML Documents 191

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Excelon. Excelon is an XML data server for storing (using DOM),
querying (through XQL) and indexing XML documents. Server-side applica-
tions can be easily implemented through Java server extensions stored in the
Excelon database.

The Excelon XML platform consists of two main classes of
components: design and run-time components. Design components
provide tools for assisting application developers in the design, imple-
mentation, and deployment of applications running on the Excelon
XML Platform. Excelon design components include:

� Stylus Studio, which provides a suite of tools for application develop-
ment, including the XML editor, for XML document manipulation; the
DTD and XML Schema editor, for DTD and XML Schema definitions;
the Java source editor, for simple edits of Java source file; the XML-to-
XML mapper, a visual tool for defining mappings between different XML
schemas; and the Debugger, a visual XSLT and Java debugger.

� Map Designer, which provides support for mapping non-XML schemas
into XML and vice-versa.
The run-time components provide tools for managing and delivering XML
data. These components include:

� Dynamic XML Engine (DXE), a native XML repository for managing
XML data. It provides a DOM interface to access XML data; an XPath
processor to process queries on XML data; an XSLT processor, to
transform XML data into HTML, WML or other delivery formats; and the
support for triggers written in Java. Additionally, DXE provides three
different kinds of indexes: value indexes, for string and numeric searches;
text indexes, for word-based searches; and structural indexing, for
structured-based searches.

� XConnects Integration Engine, a tool for transforming data from legacy
sources into XML. Supported data sources are relational databases; the
HL7 and DIALOG format; mainframe systems, such as CISC, Paradox
and Clipper; ERP systems, such as SAP; and groupware systems, such
as Lotus Notes.

� DXE Manager, a visual administration tool to manage all the components
of the Excelon server.
Tamino. Tamino is an XML information server for storing, publishing and

exchanging electronic documents, specifically conceived for e-business appli-
cations. Users can design their specific server-side applications by means of
server extensions implemented in C, C++ or other COM/DCOM-enabled
languages. The architecture of Tamino consists of the following components:

192 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

� X-Port, an HTTP-based Web server interface by which Tamino objects
can be directly accessed trough their URLs.

� X-Machine, an XML engine which allows XML documents to be stored
and retrieved in their original form. X-Machine includes user-defined
server extensions and support for standard document transformations
(i.e., XSL and CCS). Data can be queried through XQL.

� SQL Engine, a Web-enabled SQL engine to query relational data.
� X-Node, which provides support for the integration of data coming from

multiple heterogeneous sources, such as data stored in a database, or file
systems, or data provided by messaging systems.

� Tamino Manager, a graphical tool for performing administrative opera-
tions.

Information Retrieval Systems
Several XML search engines have been proposed and are currently

present on the market (Luk et al., 2000). Among them, we recall: XML Query
Engine (Katz), which is a JavaBean component for full-text indexing and
searching of XML documents; XYZFind (Egnor and Lord, 2000), which builds
a searchable database of all data from all XML documents, indexing values,
numbers, structural names and content; Inktomi Search Software (formerly
Ultraseek) (Inktomi), which supports searching XML files as full text, setting
up multiple sets of fields for field-specific searching; SIM (The Structured
Information Manager) (Structured), which uses XML and full-text indexing to
provide a powerful combination of database searching and text retrieval;
GoXML Search Engine (GoXML), which does XML-specific search by
providing the concept of context, representing the markup tag for the searched
text; XRS (Shin et al., 1998), which provides a BUS architecture to index and
search XML documents by supporting an inverted list of all the terms appearing
in the content of the elements and values of the attributes, referred by means of
XPath expressions.

It is important to note that most products, in order to be sufficiently efficient
and simple to use, have a limited expressive power. Another important aspect
of XML search engines is that often they support reactively structured
queries. With reactively structured queries we mean queries which are first only
partially specified by the user and are annotated with structure in a further
refinement process. Reactively structured queries are opposed to proactively
structured queries, which are fully structured queries first submitted by the
user. Proactively structured queries are typically used in database systems.
However, it is very difficult to create complete structured queries since the user
should have a deep knowledge of the base which is searched. For this reason,

Web Retrieval of XML Documents 193

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

reactively structured queries seem to be a fundamental aspect of XML Search
Engines.

As an example of the functionalities supported by XML search engines, in
the following we survey the main characteristics of XYZFind and XML Query
Engine.

XYZFind. XYZFind is a native XML database, supporting IR features.
The most interesting feature of XYZFind is that it classifies documents with
respect to their schema and uses this schema to refine user queries, by applying
a complete reactive query construction approach. More precisely, the user first
submits an unstructured full-text query. The documents satisfying the query are
then shown to the user by means of their corresponding schemas. The user has
then to choose one of these schema in order to complete the search. At this
step, a search form is presented to the user from which it can precisely specify
his/her request. The approach applied by XYZFind can therefore be classified
as a hybrid approach, since in a first step a category-based search, typical of
IR systems, is performed and it is followed by a typical structured database
search. It is important to recall that in XYZFind, the search is restricted to
specific XML paths, and queries must be fully conjunctive (Egnor and Lord,
2000).

XML Query Engine. XML Query Engine is a search engine tool for
XML. It is implemented as a JavaBean component that supports XML
document search for element, attribute and full-text content. The index, once
built, can be queried using an extension of XQL, providing a full-text capability.
XML Query Engine is indeed an embeddable component that can be called
inside its own applications. An interesting aspect is that query results can be
delivered in three different formats. Two of these formats return XML
documents. However, besides returning XML documents in standard format,
a specialized format is also supported for representing �navigational metadata,�
describing the nodes the document contains in terms of their location within their
originating documents. These metadata can then be used to re-navigate back
into the original documents for further post-processing. The third result-set
format is based on a Comma-Separated-Values (CSV) format, for particularly
fast and compact result delivery of navigational metadata. Even if the engine has
some interesting functionalities, it has not been designed to serve a high-volume,
multi-user environment and has memory-dependent limitations that reduce its
applicability.

194 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

RESEARCH CHALLENGES
Even if in the last years a large amount of work has been done for defining

languages and architectures for retrieving XML documents, we believe that
much work is still to be done. This is true mainly in the context of IR proposals
for querying XML documents. Indeed, even if several search engines for XML
documents have been developed, some important aspects have been only
weekly investigated.

An important issue that has not received enough attention concerns the
personalization of, possibly, similarity-based, XML queries. We claim that this
topic is quite relevant since, by a guided personalization of XML queries, the
user is relieved from the burden of writing complex expressions, at the same
time making the system able to return more precise answers with respect to
the user needs.

From our point of view, the personalization problem can be factorised in
two main problems. The first concerns which user-based information should be
used in the personalization, i.e., which kind of user profile could be useful to
this purpose. We believe that a user profile should contain both information
concerning the user needs and information concerning security aspects. Infor-
mation concerning the user needs can be either automatically collected by the
query engine or explicitly entered by the user when it subscribes to a Web IR
service. For instance, the query engine can keep track during query processing
of the previous queries made by the same user, and this information can be used
to personalize the query result. This information can impact both the set of
documents returned to the user and/or the relative ranking of the documents
belonging to the query result. Additionally, the user can explicitly state her/his
preferences. For instance, a user subscribing to an information dissemination
service can state that he/she is interested in receiving all the documents related
to Picasso, except those regarding the blue period of the painter. In this case,
the system should notify the user when some relevant documents are acquired
by the source and discard non-relevant information.

Another important issue related to user profiles is their use for providing
some sort of access control on Web documents. Indeed, it is not only important
to filter the documents according to the user preferences, but it is also important
to filter documents according to the specified security policies. For instance,
some Web content should be made available only to users who are older than
18 years, or some other Web content should be made available only to users
accessing the Web from specific countries. It is thus important that the profile
contains personal information (e.g., age, nationality, and so on) that can then be
used to filter document release to users, according to the specified security
policies.

Web Retrieval of XML Documents 195

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

The process of profile generation can be partially automatic, in the sense
that the system may generate some profiles by analysing user accesses, but of
course, to be more effective, the profile should be completed by the user or by
the system administrator. Information needed for security purposes must be
certified by some sort of Certification Authority (CA). This can be the site to
which a user subscribes or a third-party CA.

As a second step, profiles should be used to rewrite XML queries,
obtaining queries better reflecting the user needs. Additionally, query results
must be filtered according to the security information stored in the profile to
ensure that the user receives all and only those documents he/she is authorized
to access according to the specified security policies.

A further important issue is to investigate how these flexible and expressive
user profiles can fit with the work currently carried on by the Composite
Capability/Preference Profiles (CC/PP) W3C Working Group, which is
working on a method for using RDF to create a general, yet extensible
framework for describing agent preferences and device capabilities (WWW-
CC/PP). Although the focus of CC/PP is to define profiles for user agents,
specifically Web browsers, and thus it is mainly devoted to the specification of
hardware and software preferences, it is interesting to investigate whether and
how CC/PP can be extended to deal also with user preferences and security-
related information.

Additionally, the development of suitable mechanisms and models for
specifying and processing user profiles during query evaluation cannot leave out
of consideration the most relevant standardization efforts in the area of XML
query languages. We recall that the XML Working Group of the W3C is
working on a standard query language for XML documents, i.e., XQuery. It
is thus important that all the proposals be designed to be compliant with this
emerging standard. In particular, the extension of XQuery to support a full set
of IR capabilities is certainly a fundamental issue, which is starting to be
investigated by the scientific community.

Another important research issue concerns the relationships existing
between Semantic Web and XML retrieval. As pointed out in Berners-Lee et
al. (2001), the Semantic Web is the idea of having data on the Web defined and
linked in a way that they can be used by machines not just for display purposes,
but for automation, integration and reuse of data across various applications.
It seems that the Semantic Web will be based on RDF (WWW-RDF) as the
basic model for representing data and links among data. In such an environ-
ment, an important aspect is how data is queried, in a general and effective way.
We believe that research on the Semantic Web will provide important contri-

196 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

butions to the retrieval of RDF objects and, since RDF is implemented in XML,
also to the intelligent retrieval of XML documents.

CONCLUDING REMARKS
In this chapter, we have investigated problems, solutions and open issues

related to the retrieval of XML documents. Since XML is currently being used
as an interface language over the Web, by which (part of) document sources
are represented and exported, XML retrieval is a fundamental problem in
querying Web heterogeneous sources. Approaches to XML retrieval have
been first classified in database and IR proposals. These approaches have then
been analysed with respect to several parameters. Besides theoretical propos-
als, we have also surveyed some commercial products supporting XML
retrieval. The chapter has been concluded by a discussion of important future
research directions.

REFERENCES
Aguilera V. (2000). Querying XML documents in Xyleme. in Proceedings of the

ACM SIGIR 2000 Workshop on XML and Information Retrieval. Athens,
Greece.

Baeza-Yates, R. & Ribeiro-Neto, B. (Eds.). (1999). Modern Information
Retrieval. New York: Wesley-ACM Press.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The semantic Web. Scientific
America, 5(1).

Bonifati, A. & Ceri, S. (2000). Comparative analysis of five XML query languages.
SIGMOD Record, 29(1), 68-79.

Bourret R. XML Database Products. (2001). Available at: http://
www.rpbourret.com/xml/ XMLDatabaseProds.htm.

Chinenyanga, T. & Kushmerick, N. (2001). Expressive retrieval from XML
documents. Proceedings of the ACM 24th International Conference on
Research and Development in Information Retrieval (SIGIR�01), New
Orleans, USA.

Cluet, S., Delobel, C., Simeon, J. & Smaga, K. (1998). Your mediators need data
conversion! Proceedings of the ACM-SIGMOD International. Confer-
ence on Management of Data, 177-188.

Cohen, W. W. (2000). WHIRL: A word-based information representation
language. Artificial Intelligence, 118(1/2); 163-196.

Web Retrieval of XML Documents 197

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. and Suciu, D. (1999). A query
language for XML. Proceedings of the International Word Wide Web
Conference. Available at: http://www.research.att.com/~mff/files/final.html.

Egnor, D. and Lord, R. (2000). XYZFind: Searching in context with XML.
Proceedings of the ACM SIGIR 2000 Workshop on XML and Informa-
tion Retrieval, Athens, Greece.

Excelon Corporation. (2001). Extensible Information Server. White Paper.
Available at: http://www.exceloncorp.com/platform/datasheets/
extinfoserver_new.pdf.

Fernandez, M., Simeon, J. and Wadler, P. (Eds.). (1999). XML Query Lan-
guages: Experiences and Exemplars. Available at: http://www-
db.research.bell-labs.com/user/simeon/xquery. html.

Florescu, D., Kossmann, D. and Manolescum, I. (2000). Integrating keyword
search into XML query processing. Proceedings of the 9th International
World Wide Web Conference, May, Amsterdam, The Netherlands.

Fuhr, N. and Grobjohann, K. (2000). XIRQL: An extension of XQL for
information retrieval. Proceedings of the ACM 2000 SIGIR Workshop on
XML and Information Retrieval, Athens, Greece.

Generalized Markup Language (SGML). (1986). In ISO 8879.
Goldman, R., McHugh, J. and Widom, J. (1997). From semistructured data to

XML: Migrating the lorel data model and query language. Proceedings of
Very Large Databases Conference (VLDB), 436-445.

GoXML. (2001). Available at: http: //www.goxml.com.
Kha, D. D., Yoshikawa, M. and Uemura, S. (2001). An XML indexing structure

with relative region coordinate. Proceedings of the 17th IEEE Interna-
tional Conference on Data Engineering (ICDE2001), 313-320, April 2-
6, Heidelberg, Germany.

Kanemoto, H., Kato, H., Kinutani, H. and Yoshikawa, M. (1998). An efficiently
updatable index scheme for structured documents. Proceedings of 9th
International Workshop on Database and Expert Systems Applications
(DEXA�98), 991-996, IEEE Computer Society.

Katz, H. (2002). XML Query Engine. Available at http://www.fatdog.com.
IBM Corporation. (2001). IBM DB2 Universal Database�Administration

Guide�Version 7, 2001. Available at: http://www.software.ibm.com/soft-
ware/data/db2.

Inktomi Search Software. (2001). Available at: http://www.inktomi.com/prod-
ucts/ search/.

Luk, R., Chan, A., Dillon, T. and Leong, H. V. (2000). A survey of search engines
for XML documents. Proceedings of the ACM SIGIR 2000 Workshop on
XML and Information Retrieval, Athens, Greece.

198 Catania & Ferrari

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Maier, D. (1998). Database desiderata for an XML query language. Proceed-
ings of the Query Languages Workshop, Cambridge, Massachusetts.
Available at: http://www.w3.org/TandS/ QL/QL98/pb/maier.html.

Microsoft SQL Server. (2001). Available at: http://www.microsoft.com/sql/
default.asp.

Naughton, J. (2001). The Niagara Internet query system. IEEE Data Engineer-
ing Bulletin, 24(2), 27-33.

Oracle Corporation. (YEAR). Available at: http://technet.oracle.com/products/.
Robbie, J., Lapp, J. & Scach, D. (1998). XML Query Language (XQL).

Proceedings of the Query Languages Workshop, Cambridge, Massachu-
setts. Available at: http://www.w3.org/TandS/QL/QL98/pb/xql.html.

Robbie, J., Chamberlin, D. & Florescu, D. (2000). Quilt: An XML query language.
Selected papers from Third International Workshop on the World Wide
Web and Databases, LNCS, Dallas, Texas, USA.

Sacks-Davis, R., Dao, T., Thom, J. A. & Zoble, J. (1997). Indexing documents
for queries on structure, content, and attributes. Proceedings of the Interna-
tional Symposium on Digital Media Information Base (DMIB�97), 236-
245.

Shin, D. W., Jang, H. C. & Jin, H. L. (1998). Bus: An effective indexing and
retrieval scheme in structured documents. Proceedings of the ACM Confer-
ence on Digital Libraries, 235-243.

Schlieder, T. & Naumann, F. (2000). Approximate tree embedding for querying
XML data. Proceedings of the ACM SIGIR 2000 Workshop on XML and
Information Retrieval, Athens, Greece.

Shlieder, T. and Meuss, M. (2000). Result ranking for structured queries against
XML documents. Proceedings of the DELOS Workshop on Information
Seeking, Searching and Querying in Digital Libraries, Zurich, Switzer-
land.

Software AG. (2000). Tamino: The Information Sever for Electronic Business.
White Paper. Available at: http://www.sofwareag.com/tamino/download/
tamino.pdf.

Structured Information Manager. (2001). http://www.simdb.com.
Theobald, A. & Weikum, G. (2000). Adding relevance to XML. Proceedings of

the Third International Workshop on the Web and Databases, in con-
junction with ACM SIGMOD�2000, May.

Vutukuru, V., Khare, A. and Pasupuleti, K. (2000). XIRS: XML Information
Retrieval System. http://www.cs.utexas.edu/users/vamsikv/xirs/xirs.html.

World Wide Web Consortium. (1998). Extensible Markup Language (XML) 1.0.
Available at: http://www.w3.org/TR/1998/REC-xml-19980210/.

Web Retrieval of XML Documents 199

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

World Wide Web Consortium. (1999). Resource Description Framework
(RDF) Model and Syntax Specification. Available at: http://www.w3.org/
TR/1999/REC-rdf-syntax-19990222/.

World Wide Web Consortium. (2001). XML Schema Part 0: Primer. Available
at: http://www.w3.org/TR/xmlschema-0/.

World Wide Web Consortium. (2000). XHTML Basic. Available at: http://
www.w3.org/TR/xhtml-basic/.

World Wide Web Consortium. (2001). XQuery 1.0: An XML Query Language,
W3C Working Draft, 2001. Available at: http://www.w3.org/TR/xquery.

World Wide Web Consortium. (2001). XSLT: Extensible Stylesheet Language
(XSL), 1.0.

World Wide Web Consortium. (2001) W3C Recommendation, October.
Available at: http://www.w3.org/TR/2001/REC-xsl-20011015/.

World Wide Web Consortium. (1999). XML Path Language (XPath), W3C
Recommendation , November. Available at: http://www.w3.org/TR/xpath.

World Wide Web Consortium. (1999). Composite Capability/Preference
Profiles (CC/PP): A User Side Framework for Content Negotiation.
Available at: http://www.w3.org/TR/NOTE-CCPP/.

Yamamoto, Y., Yoshikawa, M. and Umeura, S. (1999). On indices for XML
documents with namespaces. Proceedings of Markup Technologies
Conference 1999, 127-135, December 7-9, GCA, Philadelphia, USA.

