
�

Modern Technologies in
Web Services Research

L�ang-J�e Zhang
IMB T.J. Watson Research Center, USA

Hershey • New York
IGI PublIShInGIGIP

��

Acquisition Editor: Kristin Klinger
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Assistant Managing Editor: Sharon Berger
Development Editor: Kristin Roth
Copy Editor: Katie Smalley
Typesetter: Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
IGI Publishing (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
IGI Publishing (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by IGI Global. All rights reserved. No part of this book may be reproduced in any form
or by any means, electronic or mechanical, including photocopying, without written permission from the
publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names of
the products or companies does not indicate a claim of ownership by IGI Global of the trademark or regis-
tered trademark.

Library of Congress Cataloging-in-Publication Data

Modern technologies in Web services research / L.J. Zhang.
p. cm.
Summary: “Web service technologies are constantly being recreated, continuously challenging Web service
professionals and examiners. This book facilitates communication and networking among Web services and
e-business researchers and engineers in a period where considerable changes are taking place in Web services
technologies innovation”—Provided by publisher.
Includes bibliographical references and index.
ISBN 978-1-59904-280-0 (hardcover)—ISBN 978-1-5904-282-7 (ebook)
1. Web services. I. Zhang, Liang-Jie.
TK5105.88813.M64 2006
006.7’6—dc22
 2006033768

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book
are those of the authors, but not necessarily of the publisher.

Authent�cat�on Techn�ques for UDDI Reg�str�es �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.II

Authentication.Techniques.
for.UDDI.Registries

El�sa Bert�no, Purdue Un�vers�ty, USA

Barbara Carm�nat�, Un�vers�ty of Insubr�a at Varese, Italy

Elena Ferrar�, Un�vers�ty of Insubr�a at Varese, Italy

Abstract

A Web service is a software system designed to support interoperable application-
to-application interactions over the Internet. Web services are based on a set of
XML standards, such as Web services description language (WSDL), simple ob-
ject access protocol (SOAP) and universal description, discovery and integration
(UDDI). A key role in the Web service architecture is played by UDDI registries,
i.e.,	a	structured	repository	of	information	that	can	be	queried	by	clients	to	find	the	
Web	services	that	better	fit	their	needs.	Even	if,	at	the	beginning,	UDDI	has	been	
mainly	conceived	as	a	public	registry	without	specific	facilities	for	security,	today	
security issues are becoming more and more crucial, due to the fact that data pub-
lished in UDDI registries may be highly strategic and sensitive. In this chapter, we
focus on authenticity issues, by proposing a method based on Merkle hash trees,
which does not require the party managing the UDDI to be trusted wrt authenticity.
In the chapter, besides giving all the details of the proposed solution, we show its
benefit	wrt	standard	digital	signature	techniques.

�0 Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

A Web service is a software system designed to support interoperable application-
to-application interactions over the Internet. Web services are based on a set of
XML standards, such as Web services description language (WSDL) (Christensen,
Curbera, Meredith, & Weerawarana, 2001), simple object access protocol (SOAP)
(Mitra, 2003), and universal description, discovery and integration (UDDI) (Clement,
Hately, von Riegen, & Rogers, 2002). A key role in the Web service architecture is
played by UDDI registries. UDDI is an XML-based registry with the primary goal
of making widely available information on Web services. It thus provides a struc-
tured and standard description of the Web service functionalities as well as search-
ing facilities to help in finding the provider(s) that better fit client requirements. In
the beginning, UDDI was mainly conceived as a public registry without specific
facilities for security. Today, security issues are becoming more and more crucial,
due to the fact that data published in UDDI registries may be highly strategic and
sensitive. In this respect, a key issue regards authenticity: For a client querying a
UDDI registry it should be possible to first verify that the received answer is actu-
ally originated at the claimed source, and, then, that the party managing the UDDI
registry has not maliciously modified some of answer portions before returning
them to the client. To deal with this issue the current version of UDDI specifications
allows one to optionally sign some of the elements in a registry, according to the
W3C XML signature syntax (Eastlake, Reagle, & Solo, 2001).
UDDI can be implemented according to either a third party or two party architecture.
A third party architecture consists of a service provider, that is, the owner of the
services, the service requestors, that is, the parties who request the services, and a
discovery agency, that is, the UDDI registry, which is responsible for managing (a
portion of) the service provider information and for answering service requestors
queries. By contrast, in a two party architecture, there is no distinction between
the service provider and the discovery agency. Authenticity issues are particularly
crucial when UDDI registries are managed according to a third party architecture.
For this reason, in the chapter we focus on authenticity issues for third party imple-
mentations of UDDI. In this architecture the main problem is how the owner of
the services can ensure the authenticity of its data, even if the data are managed
by a third party (i.e., the discovery agency). The most intuitive solution is that of
requiring the discovery agency to be trusted with respect to authenticity. However,
the main drawback of this solution is that large Web-based systems cannot be easily
verified to be trusted and can be easily penetrated. For this reason, in this chapter,
we propose an alternative approach, previously developed by us for generic XML
data distributed, according to a third party architecture (Bertino, Carminati, Ferrari,
Thuraisingham, & Gupta, 2004). The main benefit of the proposed solution is that
it does not require the discovery agency to be trusted wrt authenticity.

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

It is important to remark that in the scenario we consider it is not possible to directly
apply standard digital signature techniques to ensure authenticity. Indeed, since a
client may retrieve only selected portions of a document, depending on its needs, it
will not be able to validate the signature generated on the whole document. For this
reason, we apply an alternative solution that requires the owner to send the discovery
agency, in addition to the information it is entitled to manage, a summary signature,
generated using a technique based on Merkle hash trees (Merkle, 1989). The idea
is that when a client submits a query to a discovery agency requiring any portion
of the managed data, the discovery agency sends it, alongside the query result, the
signatures of the documents on which the query is performed. In this way, the client
can locally re-compute the same bottom-up hash value signed by the owner, and by
comparing the two values it can verify whether the discovery agency has altered
the content of the query answer and can thus verify its authenticity. The problem
with this approach is that since the client may be only returned selected portions of
a document, they may not be able to re-compute the summary signature, which is
based on the whole document. For this reason, the discovery agency sends the client
a set of additional hash values, referring to the missing portions that make the client
able to locally perform the computation of the summary signature.
In the current chapter, we show how this approach can be applied to UDDI and we
discuss its benefits. Additionally, we describe the prototype implementation we have
developed for supporting the proposed approach. The remainder of this chapter is
organized as follows. The “Background” section briefly overviews the authentica-
tion mechanisms devised so far for third party architectures and summarizes the
basic concepts of UDDI registries. The section “XML Merkle Tree Authentication”
presents in detail the Merkle tree-based authentication method conceived for XML
documents. In the “Applying the Merkle Signature to UDDI Registries” section, we
show how this authentication mechanism can be exploited in the UDDI environment.
In “Merkle Signatures vs. XML Signatures in UDDI Registries,” we compare our
approach with the traditional digital signature techniques. Then, in “Prototype of an
Enhanced UDDI Registry,” we give some details about the prototype implementa-
tion. Finally, “Conclusion” ends the chapter.

Background

In this section we provide the reader with some background that can be useful while
reading the chapter. In particular, we start by reviewing the mechanisms introduced
so far to face up the authenticity issues in third party architectures. We then sum-
marize the basic concepts of UDDI registries.

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Authentication.Mechanisms.for.Third.Party.Architectures

Mechanisms exploiting traditional digital signatures are not suitable for third party
architectures. This is mainly due to the fact that users must be able to validate the
owner’s signature even if they received a selected portion of the signed data. A naive
solution to overcome this problem, by still exploiting traditional signature schemes,
is to impose the owner to separately sign each possible portion of data. This set of
digital signatures can be outsourced together with the data, and properly returned
to users by the third party. However, this solution implies an enormous overhead,
both in owner computation and in query answer size. For this reason, in the recent
years several alternative strategies have been presented. We can group these strate-
gies on the basis of the underlying adopted techniques. In particular, there are two
main exploited techniques, that is, Merkle tree authentication (Merkle, 1989) and
signature aggregation (Boneh, Gentry, Lynn, & Shacham, 2003). In what follows
we present them by introducing some of the related proposals.

Merkle Tree Authentication

Merkle (1989) proposed a method to sign multiple messages by producing a unique
digital signature. The method exploits a binary hash tree generated by means of the
following bottom-up recursive construction: At the beginning, for each different
message m, a different leaf containing the hash value of m is inserted in the tree;
then, for each internal node, the value associated with it is equal to H(h_l||h_r),
where h_l||h_r denotes the concatenation of the hash values corresponding to the left
and right children nodes, and H() is an hash function. The root node of the resulting
binary hash tree can be considered as the digest of all messages, and thus it can be
digitally signed by using a standard signature technique and distributed. The main
benefit of this method is that a user is able to validate the signature by having a
subset of messages, providing him/her with a set of additional hash values. Indeed,
a user, by having hash values of the missing messages, is able to locally build up
the binary hash tree and thus to validate the signature.
Merkle hash trees have been used in several computer areas for certified query
processing. For instance, they have been exploited by Naor and Nissim (Naor &
Nissim, 1998) to create and maintain efficient authenticated data structures hold-
ing information about certificate validity. More precisely (Naor & Nissim, 1998),
proposed as data structure a sorted hash tree, which is built in such a way that tree
leaves correspond to revoked certificates. Thus, verifying that a certificate is revoked
or not is equivalent to verify the existence of certain leaves in the tree. Similar
schemes have also been used for micro-payments (Charanjit & Yung, 1996), where
Merkle hash trees are used to minimize the number of public key signatures that are
required in issuing or authenticating a sequence of certificates.

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Merkle hash trees have also been exploited for data outsourcing. For instance,
(Devanbu, Gertz, Martel, & Stubblebine, 2000) Devanbu et al. adapt Merkle hash
trees to the relational data model to prove the completeness and authenticity of
query answers. In particular, in Devanbu et al. approach for each relation R a dif-
ferent Merkle hash tree is generated, in such a way that leaf nodes represent hash
values of tuples.
Merkle hash trees have been investigated also for third party distribution of XML
data (Bertino et al., 2004;Devanbu et al., 2001). Here the challenge is how the XML
hierarchical data model can be exploited in construction of Merkle trees. A brief
introduction to Merkle tree application to XML documents is given in the “XML
Merkle Tree Authentication” section, where we refer interested readers to (Bertino
et al., 2004) for a deeper presentation of it.

Signature Aggregation Schemes

Another technique recently exploited to ensure authenticity in third party architec-
tures is based on signature aggregation. In general, signature aggregation schemes
allow one to aggregate into a unique digital signature n distinct signatures generated
by n distinct data owners (Boneh et al., 2003). The validation of this unique digital
signature implies the validation of each component signature. Aggregate signature
schemes have also been investigated to aggregate into a unique signature n generated
by the same owner. This last kind of aggregation scheme can be adopted to ensure
authenticity in third party scenarios. Indeed, according to this solution, data own-
ers could generate a distinct signature for each distinct message and then aggregate
them into a unique digital signature. By having only the aggregate signature and by
simply validating it, a user is able to authenticate selected messages received by the
third party. Such kind of solution has been proposed by Mykletun, Narasimha and
Tsudik (2004) for relational data, where two different aggregate signature schemes,
namely condensed-RSA and Boneh et al. (2003), have been compared.

UDDI.Registries.

The main goal of a UDDI registry (Clement et al., 2002) is to supply potential cli-
ents with the description of businesses and the services they publish, together with
technical information about the services, making thus the requestor able to directly
require the service that better fits its needs. The UDDI registry organizes all these
descriptions into a single entry.

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure 2. The BusinessEntity element

Figure 1. UDDI main data structutres

<?xml version="1.0" encoding="UTF-8"?>
 <businessEntity businessKey="9ECDC890-23EC-11D8-B78C-89A8511765B5" operator="jUDDI.org"
authorizedName="Carminati">
 <discoveryURLs>
 <discoveryURL useType="BusinessEntity"> http://www.dicom.uninsubria.it/ </discoveryURL>
 <discoveryURL
useType="businessEntity">http://localhost:8080/juddi/discovery?businessKey=9ECDC890-23EC-11D8-
B78C-89A8511765B5</discoveryURL>
 </discoveryURLs>
 <name xml:lang="it">DICOM</name>
 <description xml:lang="it">Dipartimento d’Informatica e Comunicazione</description>
 <contacts>
 <contact>
 <personName>Barbara Carminati</personName>
 <email>barbara.carminati@uninsubria.it</email>
 <address>
 <addressLine>Via Mazzini, 5</addressLine>
 <addressLine>21100 Varese </addressLine>
 </address>
 </contact>
 </contacts>
 <businessServices>
 <businessService serviceKey="9F063DB0-23EC-11D8-B78C-ECBB5F8B0CFC" businessKey="9ECDC890-23EC-
11D8-B78C-89A8511765B5">
 <name>Service 1</name>
 <description>Example service</description>
 <bindingTemplates>
 <bindingTemplate bindingKey="9F063DB0-23EC-11D8-B78C-F7A09CE94F7B" serviceKey="9F063DB0-23EC-
11D8-B78C-ECBB5F8B0CFC">
 <description>Binding Example 1</description>
 <accessPoint URLType="www.example.it/service.asmx"></accessPoint>
 <tModelInstanceDetails />
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
 <identifierBag />
 <categoryBag />
 </businessEntity>

Business Entity

Business Service

Binding TemplatePublisher Assertion

tModel

More precisely, each entry is composed of five main data structures (see Figure 1),
namely, the Bus�nessEnt�ty, the Bus�nessServ�ce, the B�nd�ngTemplate, the publ�sherAssert�on
and the tModel, which are briefly described in what follows.
The Bus�nessEnt�ty provides general information about the business or the organiza-
tion providing the Web services (e.g., the name of the organization, the contact

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

person). Additionally, a UDDI entry contains one Bus�nessServ�ce data structure for
each service provided by the business or organization and described by the Bus�nes-
sEnt�ty. This data structure contains a technical description (i.e., the B�nd�ngTemplate
data structure) of the service, and information about the type of the service (i.e., the
tModel data structure). By contrast, the Publ�sherAssert�on data structure models the
relationships existing among different Bus�nessEnt�ty elements. For example, by this
data structure it is possible to represent the relationships among the UDDI entries
corresponding to subsidiaries of the same corporations.
Figure 2 reports an example of the XML representation of a UDDI entry. In particu-
lar, this entry represents the DICOM organization (i.e., the name element contained
in the Bus�nessEnt�ty element), which has specified only one contact person, that is,
Barbara Carminati (i.e., the personName element contained in the Bus�nessEnt�ty ele-
ment). According to Figure 2, the DICOM organization provides only one service,
called Service1 (i.e., the name element contained in the Bus�nessServ�ce element),
whose binding template is accessible at URL www.example.it/service.asmx (i.e.,
the accessPo�nt element contained in the b�nd�ngTemplate element).
UDDI registries provide clients searching facilities for provider(s) that better fits
the client requirements. More precisely, according to the UDDI specification, UDDI
registries support two different types of inquiry: The drill-down pattern inquiries
(i.e., get_xxx API functions), which return a whole core data structure (e.g., Bus�ness-
Template, Bus�nessEnt�ty, operat�onalInfo, Bus�nessServ�ce, and tModel), and the browse
pattern inquiries (i.e., find_xxx API functions), which return overview information
about the registered data.

XML.Merkle.Tree.Authentication.

The approach we propose in Bertino et al. (2004) for applying the Merkle tree
authentication mechanism to XML documents is based on the use of the so-called
Merkle signatures. This signature allows one to apply a unique digital signature on
an XML document by ensuring at the same time the authenticity of both the whole
document, as well as of any portion of it (i.e., one or more of its elements/attributes).
The peculiarity of the Merkle signature is the algorithm used to compute the digest
value of the XML document to being signed. This algorithm, which exploits the
Merkle tree authentication mechanism (see “Authentication Mechanisms for Third
Party Architectures” section), associates a different hash value, called Merkle hash
value, with each node (i.e., elements/attributes) in the graph representing an XML
document. Before presenting the function computing these Merkle hash values, we
need to introduce the notation we adopt throughout the chapter. Given an element e,
we use the dot notation e.content and e.tagname to denote the data content and the

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

tagname of e, respectively. Moreover, given an attribute a, the notation a.val and
a.name is used to denote the value and the name of attribute a, respectively.

Definition 1. Merkle hash function(). Let d be an XML document, and v a node of
d (i.e., an element, or an attribute). The Merkle hash value associated with a node
v of d, denoted as MhXd(v), is computed by the following function:

 h(h(v.val)||h(v.name)) if v is an attribute

MhXd(v)=

 h(h(v.content)||h(v.tagname)||MhXd(child(1,v))||…

||MhXd(child(Ncv,v))) if v is an element where ‘||’ denotes the concatenation opera-
tor, and function child(i,v) returns the i-th child of node v, with Ncv denoting the
number of children of node v.
According to Definition 1, the Merkle hash value associated with an attribute is the
result of an hash function applied to the concatenation of the hashed attribute value
and the hashed attribute name. By contrast, the Merkle hash value of an element is
obtained by applying the same hash function over the concatenation of the hashed
element content, the hashed element tagname, and the Merkle hash values associ-
ated with its children nodes, both attributes and elements.
As an example, consider the XML document d in Figure 2, containing the Bus�nessEnt�ty
element defined according to the UDDI specification. The Merkle hash value of the
contacts element (MhXd(contacts)) is the result of the hash function computed over the
concatenation of the element content, if any, the element tagname, and the Merkle
hash values associated with its children nodes (i.e., contact elements).
The important point of the proposed approach is that if the correct Merkle hash value
of a node v is known by a client, an untrustworthy third party or an intruder cannot
forge the value of the children of node v, as well as its content and tagname. Thus,
by knowing only the Merkle hash value of the root element of an XML document,
the client is able to verify the authenticity and integrity of the whole XML document.
To ensure the integrity of the Merkle hash value of the document root element we
impose that the owner of the data signs this value, and we refer to this signature as
the Merkle signature of the document.
The main benefit of the proposed technique wrt traditional digital signature technique
is when a third party architecture is adopted like the UDDI, that is, when there exists
a third party that may prune some nodes from a document as a result of the query

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

evaluation. In this case, the traditional approach of digital signatures is no longer
applicable, since its correctness is based on the assumption that the signing and veri-
fication processes are performed on exactly the same bits. By contrast, if the Merkle
signature is applied, the client is still able to validate the signature, provided that it
receives from the third party a set of additional hash values, referring to the missing
document portions. This makes the client able to locally perform the computation
of the summary signature and comparing it with the received one. We refer to this
additional information as the Merkle hash path, defined in what follows.

Merkle Hash Paths

Intuitively, the Merkle hash paths can be defined as the hash values of those nodes
pruned during query evaluation, and needed by the client for computing the Merkle
signature. In general, given two nodes v,w in an XML document d, such that v be-
longs to the path connecting w to the root, the Merkle hash path between w and v,
denoted as MhPath(w,v), is the set of hash values necessary to compute the Merkle
hash value of v having the Merkle hash value of w. The formal definition is given
in what follows.

Definition 2. Merkle Hash Path – MhPath(). Let d be an XML document, and
let v,w be two nodes in d such that v∈ Path(w), where Path(w) denotes the set of
nodes connecting w to the root of the corresponding document. MhPath(w,v) is a
list consisting of the following hash values:

• {h(f.content), h(f.tagname)| ∀ f ∈ Path(w,v) \ {w}}

• {MhXd(e)| ∀ e ∈ s�b(f), where f ∈ Path(w,v)\ {v}}

where sib() is a function that, given a node f, returns f’s siblings.

Thus, the Merkle hash path between w and v consists of the hash values of the
tagname and content of all the nodes belonging to the path connecting w to v (apart
from w), plus the Merkle hash values of all the siblings of the nodes belonging to
the path connecting w to v (apart from v).
To better clarify how the proposed approach works, consider Figure 3, which depicts
three different examples of Merkle hash paths. In the graph representation adopted in
this chapter we do not distinguish elements from attributes by treating them as generic
nodes. In the figure, the triangle denotes the view returned to the client, whereas
black circles represent the nodes whose Merkle hash values is returned together
with the view, that is, the Merkle hash paths. Consider the first example reported in

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure 3. The Merkle hash path between nodes 4 and 1 consists of the Merkle hash
values of nodes 5 and 3, plus the hash values of the tagname and content of nodes
2 and 1. Indeed, by using node w, the Merkle hash value of node 5, and the hash
value of the tagname and content of node 2, it is possible to compute the Merkle
hash value of node 2. Then, by using the Merkle hash values of nodes 2 and 3, and
the hash values of the tagname and content of node 1, it is possible to compute the
Merkle hash value of node 1. In the second example in Figure 3, the view consists
of a non-leaf node. In such a case MhPath(7,1) contains also the Merkle hash values
of the child of node 7, that is, node 9. Thus, by using the Merkle hash value of node
9 and the hashed content of node 7, it is possible to compute the Merkle hash value
of node 7. Then, by using this value, the Merkle hash value of node 6 and the hash
values of the tagname and content of node 3, it is possible to generate the Merkle
hash value of node 3. Finally, by using the Merkle hash values of nodes 3 and 2, and
the hash values of the tagname and content of node 1, it is possible to generate the
Merkle hash value of node 1. By contrast, in the third example the view consists of
the whole sub-tree rooted at node 5. In such a case, MhPath(5,1) does not contain
the hash values of the children of node 5. Indeed, since the whole sub-tree rooted
at 5 is available, it is possible to compute the Merkle hash value of node 5 without
the need of further information. Then, similarly to the previous examples, by us-
ing the Merkle hash values of nodes 5 and 4, and the hash values of the tagname
and content of node 2 (these last values supplied by MhPath(5,1)), it is possible
to compute the Merkle hash value of node 2. Finally, by having the Merkle hash
values of nodes 2 and 3, and the hash values of the tagname and content of node 1,
it is possible to compute the Merkle hash value of node 1. We can note that if the
query result consists of an entire sub-tree, the only necessary Merkle hash values
necessary are those associated with the siblings of the node belonging to the path
connecting the subtree root to the document root.

Figure 3. Examples of Merkle hash paths

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

3

1

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

3

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

5

3

w w w

v v v

MhPath(4,1) MhPath(7,1) MhPath(5,1)

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

3

1

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

3

5

8

11

9

13

4

2

10 12

6

14 1615 17

7

1

5

3

w w w

v v v

MhPath(4,1) MhPath(7,1) MhPath(5,1)

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Applying.the.Merkle.Signature.to.UDDI.Registries

In this section, we show how we can apply the authentication mechanism, illustrated
in the previous section, to UDDI registries. As depicted in Figure 4, the proposed
solution implies that the service provider first generates the Merkle signature of the
Bus�nessEnt�ty element, and then publishes it, together with the related data structures,
in the UDDI registry. Then, when a client inquiries the UDDI, the Merkle signature
as well as the set of necessary hash values (i.e., the Merkle hash paths, computed
by the UDDI) are returned by the UDDI to the requesting client together with the
inquiry result.
Adopting this solution requires to determine how the Merkle signature and the
Merkle hash paths have to be enclosed in the Bus�nessEnt�ty element, and inquiry
result, respectively. To deal with this issue, we make use of the ds�g:S�gnature ele-
ment introduced in the latest UDDI specification (Clement, Hately, von Riegen, &
Rogers, 2002). Indeed, to make the service provider able to sign the UDDI entry
the latest UDDI specification supports an optional ds�g:S�gnature element that can be
inserted into the following elements: Bus�nessEnt�ty, Bus�nessServ�ce, b�nd�ngTemplate,
publ�sherAssert�on, and tModel. Thus, according to the XML Signature syntax (Eastlake,
Reagle, & Solo, 2001), a service provider can sign the whole element to which the
signature element refers to, as well as it can exclude selected portions from the
signature, by applying a transformation.
Therefore, in order to apply the Merkle signature to the UDDI environment, and
at the same time to be compliant with the UDDI specification, we represent both

Figure 4. The Merkle signature in UDDI environment

UDDI

Service
requestor

Service
providers

Inquiry

Business Service

Publisher Assertion
Binding Template

Business Service

tModel

Business Entity
<dsig: Signature

�0 Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the Merkle signature and the Merkle hash paths according to the XML signature
syntax (i.e., by using the ds�g:S�gnature element). In the following sections, we give
more details on the proposed representation.

Merkle.Signature.Representation.

In Figure 5 we show how the ds�g:S�gnature element can be used to wrap the Merkle
signature. Note that the URI attribute of the Reference element is empty and thus it
identifies the XML document where the S�gnature element is contained, that is, the
Bus�nessEnt�ty element. In addition to the required enveloped signature and scheme
centric canonicalization transformations, the ds�g:S�gnature element specifies also a
Merkle transformation, through a Transform element whose Algor�thm attribute is equal
to “Merkle.” This last transformation indicates to the client and UDDI registries
that the service provider has computed the Merkle signature on the Bus�nessEnt�ty
element.
It is important to note that the syntax of the Transforms element implies an order ac-
cording to which the various transformations should be applied. In particular, this
order is given by the order in which the corresponding Transform elements appear in
their parent element. Thus, to generate the digital signature contained into the ds�g:
S�gnature element, presented in Figure 5, it is first necessary to apply the enveloped
signature transformation and the scheme centric canonicalization. Then, the Merkle
hash function is computed on the obtained result. Finally, the obtained digest value
is digitally signed according to the XML Signature Recommendation.

Figure 5. An example of signature element storing the Merkle signature

<dsig:Signature>
 < SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xnl-c14n-20010315"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="">
 < Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

 < Transform Algorithm="Merkle"/>
 < /Transforms>
 < DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 < DigestValue>1fR07/Z/XFW375JG22bNGmFblMY=</DigestValue>
 </Reference>
 < /SignedInfo>
 < SignatureValue> W0uO9b47TqmlpunAwmF4ubn1mdsb4HYR17c+3ULmLL2BxslwSsl6kQ
 </SignatureValue>
</ dsig:Signature>

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Merkle.Hash.Path.Representation.

According to the strategies depicted in Figure 4, once client inquiries a UDDI reg-
istry, the UDDI registry computes the corresponding Merkle hash path and returns
it to the client together with the inquiry result. As we will see in the next section,
the latest UDDI specification states that for some kind of inquiries (i.e., the get_xxx
inquiries), the UDDI registry has to include in the inquiry answer also the ds�g:
S�gnature element corresponding to the data structure returned as inquiry result. For
this reason, we represent also the Merkle hash paths into the ds�g:S�gnature element,
supplying thus the client with the additional information needed for verifying the
authenticity and integrity of the inquiry results.
To enclose this information into the ds�g:S�gnature element, we exploit the ds�g:S�g-
naturePropert�es element, in which additional information useful for the validation
process can be stored.
In Figure 6 we present an example of ds�g:S�gnature element containing the ds�g:
S�gnaturePropert�es element, which is inserted as direct child of an Object element. It
is important to note that, according to the XML Signature generation process, the
only portion of the ds�g:S�gnature element which is digitally signed is the S�gnedInfo
element.
Thus, by inserting the Object element outside the S�gnedInfo element the UDDI registry
does not invalidate the signature. This allows the UDDI to complement the ds�g:
S�gnature element representing the Merkle signature of the Bus�nessEnt�ty element with
the ds�g:S�gnaturePropert�es element containing the appropriate Merkle hash paths, and
then to insert it into the inquiry answer. More precisely, during the Merkle signa-
ture validation, the client must be able to recompute the Merkle hash value of the
Bus�nessEnt�ty element, to compare it with the Merkle signature. In order to do that,
the client must know the Merkle hash value of each subelement of the Bus�nessEnt�ty
element not included into the inquiry answer (i.e., the Merkle hash path). To make
the validation simpler, the Merkle hash paths are organized into an empty Bus�nes-
sEnt�ty element (see Figure 6), whose children contain a particular attribute, called
hash, storing the Merkle hash value of the corresponding element. This Bus�nessEnt�ty
element is inserted into the ds�g:S�gnaturePropert�es element.

Merkle.Signatures.vs..XML.Signatures.in..........
UDDI.Registries

In this section, we explain the differences and the benefits that could be attained
by adopting in UDDI registries the Merkle signature approach instead of the tra-

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ditional digital signature techniques. Before we do that it is interesting to note that
similarly to Merkle signature also the XML signature syntax allows one to generate
a different hash value for each different node of the XML document, and then to
generate a unique signatures of all these values. This feature is obtained by means
of the Man�fest element, which creates a list of Reference elements, one for each
hashed node. However, this solution does not care about the structure of the XML
document, ensuring thus only the authenticity of the data content and not of the
relationships among nodes.
In the following, we separately consider the possible inquiries that a client can
submit to a UDDI registry, that is, the find_xxx and get_xxx inquiries.

Figure 6. An XML signature element complemented with Merkle hash paths
<dsig:Signature>
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xnl-c14n-20010315"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

 <Transform Algorithm="Merkle"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>1fR07/Z/XFW375JG22bNGmFblMY=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 W0uO9b47TqmlpunAwmF4ubn1mdsb4HYR17c+3ULmLL2BxslwSsl6kQ
 </SignatureValue>
 <Object>
 <SignatureProperties>
 <SignatureProperty Target="MerkleHashPath">
 <businessEntity autorizhedName="valore" operator="juddi.org" hash="sldghoghor....">
 <discoveryURLs hash="fdsgbdsl...." />
 <identifierBag hash="57438tgfkv...." />
 <categoryBag hash="57438tgfkv...." />
 <businessServices>
 <businessService>
 <description hash="gherogh..." />
 <bindingTemplates hash="hgkvdlsfv...." />
 <categoryBag hash="hdsbghfdlb..." />
 </businessService>
 <businessService>
 <description hash="gherogh..." />
 <bindingTemplates hash="hgkvdlsfv...." />
 <categoryBag hash="hdsbghfdlb..." />
 </businessService>
 </businessServices>
 </businessEntity>
 </SignatureProperty>
 </SignatureProperties>
 </Object>
</dsig:Signature>

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

get_xxx.Inquiries

According to the UDDI latest specification, the service provider can complement
all the data structures that could be returned by a get_xxx API call with a ds�g:S�g-
nature element. However, to ensure the authenticity and integrity of all the data
structures the service provider must compute five different XML signatures (one
for each different element). Whereas, by using the Merkle signature approach the
service provider generates only one signature, that is, the Merkle signature of the
Bus�nessEnt�ty element. Thus, a first benefit of our approach is that by generating only
a unique signature it is possible to ensure the integrity of all the data structures.
When a client submits a get_xxx inquiry, the UDDI returns the whole requested data
structure, where the inserted ds�g:S�gnature element contains the Merkle signature
generated by the service provider, together with the Merkle hash path between the
root of the returned data structure and the Bus�nessEnt�ty element.
As an example, consider the get_b�nd�ngDeta�l inquiry. The UDDI specification states
that the answer to the get_b�nd�ngDeta�l inquiry must be the B�nd�ngTemplates element,
containing a list of B�nd�ngTemplate elements together with the corresponding ds�g:
S�gnature elements. In such a case, a UDDI registry exploiting the Merkle signature
approach should substitute each ds�g:S�gnature element contained into the b�nd�ngTem-
plate elements with the signature generated by the service provider, that is, the ds�g:
S�gnature element published together with the Bus�nessEnt�ty. Moreover, according
to the representation proposed in the previous sections, the UDDI registry should
insert into the ds�g:S�gnature element the ds�g:S�gnaturePropert�es subelement, which
stores the Merkle hash path between the b�nd�ngTemplate element and the Bus�nes-
sEnt�ty element.

find_xxx Inquiries

We now analyze the other types of inquiry, that is, the find_xxx inquiries. We recall
that these inquiries return overview information about the registered data. Consider,
for instance, the inquiry API find_business that returns a structure containing informa-
tion about each matching business, including summaries of its business services.
This information is a subset of those contained in the Bus�nessEnt�ty element and the
Bus�nessServ�ce elements. For this kind of inquiries, the UDDI specification states
that if a client wants to verify the authenticity and integrity of the information con-
tained in the data structures returned by a find_xxx API call, he/she must retrieve the
corresponding ds�g:S�gnature elements by using the get_xxx API calls. This means that
if a client wishes to verify the answer of a find_business inquiry, it must retrieve the
whole Bus�nessEnt�ty element, together with the corresponding ds�g:S�gnature element,
as well as each Bus�nessServ�ce element, together with its ds�g:S�gnature element.

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

By contrast, if we consider the same API call performed by using the Merkle sig-
nature approach, to make the client able to verify the authenticity of the inquiry
result it is not necessary to return the client the whole Bus�nessEnt�ty element and the
Bus�nessServ�ce elements, together with their signatures. By contrast, only the Merkle
hash values of the missing portions are required, that is, those not returned by the
inquiry. These Merkle hash values can be easily stored by the UDDI into the ds�g:
S�gnature element (i.e., ds�g:S�gnaturePropert�es subelement) of the Bus�nessEnt�ty.
As discussed previously, the main problem in applying the Merkle signature to the
find_xxx inquiries is that the expected answers, defined by the UDDI specification,
do not include the ds�g:S�gnature element. For this reason, we need to modify the data
structure returned by the UDDI by inserting one ore more ds�g:S�gnature elements.
In particular, to state where the ds�g:S�gnature element should be inserted, we need
to recall that the find_xxx API calls return overview information taken from different
nodes of the Bus�nessEnt�ty element, and wrapped into a fixed element. For instance,
the find_business API returns a Bus�nessL�st structure, which supplies information about
each matching businesses, together with summary information about its services.
All this information is wrapped into the Bus�nessInfo element, which contains the
name and the description of the service provider, and a different serv�ceInfo element
for each published service.
We can say thus that the find_xxx API returns a list of results, each of them wrapped
by a precise element (i.e., Bus�nessInfo for find_business API), which will be called,
hereafter, container element. The proposed solution is thus to insert the ds�g:S�g-
nature element, complemented with the appropriate Merkle hash paths, into each
container element.
Figure 7 reports an algorithm for generating the answer for a find_xxx inquiry. The
algorithm receives as input the answer returned according to the UDDI specification
(i.e., the xxxL�st). Then, in step 1, the algorithm interactively considers each container
element contained into the xxxL�st, and for each of them it creates the appropriate
ds�g:S�gnature element. This implies, as a first step, the generation of the Merkle hash
values associated with the Bus�nessEnt�ty element to which the information contained
into the container element belong to. Note, that according to Definition 2, it is not
necessary to create all the Merkle hash values; by contrast, the only hash values
needed are those corresponding to the nodes pruned during the inquiry evaluation.
Then, the obtained hash values are inserted into the ds�g:S�gnatureProperty element,
according to the strategies illustrated previously. Then, in step 1d, the resulting ds�g:
S�gnatureProperty element is inserted into the ds�g:S�gnature element generated by the
service provider and published together with the Bus�nessEnt�ty element. Finally, the
resulting ds�g:S�gnature element is inserted into the xxxL�st as direct child of the cor-
responding container element.
As an example, let us suppose that a client submits a find_business inquiry on the
Bus�nessEnt�ty presented in Figure 2. The answer generated by UDDI according to
Algortihm 1 is shown in Figure 8. Given this answer the client is able to verify the

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Merkle signature generated by the service provider. In order to do that the client
exploits the Merkle hash values stored into the ds�g:S�gnatureProperty element, which
correspond to those nodes of the Bus�nessEnt�ty not included in the find_business answer.
In order to compute the Merkle hash value of the Bus�nessEnt�ty element, and thus to
verify the Merkle signature, the client needs to have all the Merkle hash values of all
children of the Bus�nessEnt�ty element. The find_business inquiry returns to client only
the name and descr�pt�on element (see Figure 8). For this reason the ds�g:S�gnatureProperty
element contains the Merkle hash values of all the remaining children nodes, that is
the d�scoveryURLs, the contacts, identifierBag and categoryBag element. Another Merkle
hash value needed for the validation of the Merkle signature is the one correspond-
ing to the Bus�nessServ�ce element. The find_business inquiry returns only the name
of the services (i.e., the name element contained into the Bus�nessServ�ce element),
whereas the descr�pt�on, the b�nd�ngTemplate and the categoryBag element are omitted.
According to Definition 1, to compute the Merkle hash value of the Bus�nessServ�ce
element, the client must have the Merkle hash values of all its children. These values
are contained into the ds�g:S�gnatureProperty element.

Prototype.of.an.Enhanced.UDDI.Registry

In this section, we describe the prototype we have developed for implementing a
UDDI registry exploiting the Merkle signature technique. The prototype consists

Figure 7. Computation of find_xxx inquiry answers exploiting the Merkele signa-
tures

Algorithm..1.
Input

xxxList the answer of a find_xxx API call
Output

 T he xxxList complemented by the disg:Signature element

1. For each container n into the xxxList:
a. Let MhX be the set of Merkle Hash values associated with the businessEntity to

which n belongs to
b. Create the dsig:SignatureProperties element using the Merkle hash values in

MhX
c. Let Sign be the dsig:Signature element of the businessEntity to which n

belongs to
d. Insert the dsig:SignatureProperties element into Sign
e. Insert the obtained Sign element as direct child of the n

 EndFor
2. Return xxxList

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure 8. An example of find_xxx answer generated according the algorithm in
Figure 7

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
 <businessList generic="2.0" operator="jUDDI.org" xmlns="urn:uddiorg:api_v2">
 <businessInfos>
 <businessInfo businessKey="9ECDC890-23EC-11D8-B78C-89A8511765B5">
 <name xml:lang="it">DICOM</name>

<description xml:lang="it">Dipartimento d’Informatica e Comunicazione</description>
<serviceInfos>

<serviceInfo serviceKey="E27F6560-2579-11D8-A560-A95B48063A06">
<name>Service 1</name>

</serviceInfo>
 </serviceInfos>

<Signature>
<SignedInfo>

<Reference URI="">
<Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10"/>

 <Transform Algorithm="Merkle"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/01/xmldsig/sha1"/>
<DigestValue>CysG5cZQelvxENwHwxBXLMBYGgo=</DigestValue>

 </Reference>
<CanonicalizationMethod Algorithm="http://www.w3.org/1999/07/WD-xml-c14n-19990729"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/01/xmldsig/rsa"/>

</SignedInfo>
<SignatureValue>n2XH0Jk6g7jVgGnZxp+7PyBEJhCrVXNx2bdjgzN4zOu1Q52jOfFh3VHMMi6nZsRHHZb5TgqFl

QFgG/Z3JGZJ9P1AWLUVn+kuX1ClZPxKdZ12oe4w/pa/qqXex/K8szgmrBUDIzXNfGEgQIUF+Nbh2WpHK/tVumLNfF+hIg+
jD+StWLTalqlV4jfJbdaeEO7EQyiS3AJ+FByvd7qtArlJvzAwAQ8WLIO6uprG+
/soHewJLNNgHywPjpSh9FMKraFSyhyjVcrXXgX4Aauv5M3YM6k7ZOEDfD0WVQTMk8ukbU31rQ9dlPOgJvp/aRQPtBb4D
CqD4tM0701s1a6Pxmf+8p7IvvfKWWHy3nWNXTLZtGIYssN/BN3clLuiXijW3sIaBU=

</SignatureValue>
<KeyInfo>

<KeyValue>
<RSAKeyValue>

<Modulus>ALkV0Yv6NSWMQ/GxX7VElnUCmBiBB2kA92iRuXzjr+TesJ6mJWsu
NrQTdaLXNUeLaCfTyibXCHEo8GKhGr3+6UlxkNfPbApqRMG2Z6f

</Modulus>
<Exponent>AQAB</Exponent>

</RSAKeyValue>
</KeyValue>

</KeyInfo>
<Object>

<SignatureProperty Target="MerkleHashPath">
<businessEntity authorizedName="Barbara" operator="jUDDI.org">

<discoveryURLs hash="sB/kzmjVacE9iBuLdyxC5S2Ha9E="/>
<contacts hash="bMwPAQ5nAZZhhKcAMswsxDAfPeY="/>
<identifierBag hash="PFIc19Gspd46sXkdP4f2+i8yajk="/>
<categoryBag hash="ako/7rv5NZdxp5qjDGQ/W0++acY="/>
<BusinessServices>

<BusinessService>
 <description hash="az8oQfVMxw1C7Dtf5logCtlZNtQ="/>
 <bindingTemplates hash="cQw/q+Z4iL50QOA/7hj0jnXhkmg="/>
 <categoryBag hash="ako/7rv5NZdxp5qjDGQ/W0++acY="/>
</BusinessService>

</BusinessServices>
</businessEntity>

</SignatureProperty>
</Object>

</Signature>
 </businessInfo>
 </businessInfos>
 </businessList>
 </soapenv:Body>
</soapenv:Envelope>

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of two different components: the UDDI registry, called enhanced-UDDI registry
and a UDDI client, playing the role of both service provider publishing data to a
UDDI, and service requestor inquiring the enhanced UDDI registry.
As reported in Figure 9, the enhanced-UDDI registry is built on top of jUDDI, which
is a Java open source implementation of a UDDI registry. In particular, in the proto-
type jUDDI exploits a MySQL database as UDDI entries repository. Moreover, since
the latest jUDDI implementation has been developed according to UDDI version
2 that, unlike the latest specification, does not provide support for the ds�g:S�gnature
element, we have integrated the prototype also with the IAIK Java cryptography
extension (JCE) toolkit. This last component makes the prototype able to exploit hash
functions, symmetric and asymmetric encryption, and thus to validate the Merkle
signature. Thus, in the current version of our enhanced-UDDI registry the standard
API functions are implemented by means of jUDDI, whereas the functionalities
devoted to the Merkle signature management are implemented by two distinct java
classes, directly invoked by jUDDI. These functionalities are the generation of the
Merkle hash paths, and the generation of inquiry answers. More precisely, the last
task implies the insertion of the computed Merkle hash path into the ds�g:S�gnature
element and the insertion of the obtained element into the inquiry answer.
The UDDI client plays the role of both service provider and requestor. To support
both these tasks, the UDDI client exploits UDDI4j, a Java class library providing
APIs for interacting with a UDDI registry. UDDI4j supports the UDDI version 2.
For this reason, the UDDI client makes also use of additional Java classes, imple-
menting the functionalities devoted to Merkle signatures management, that is, the
Merkle signature generation and the Merkle signature validation. Such classes are
directly invoked by the UDDI4j implementation (see Figure 9), and exploit IAIK
JCE for signature generation and validation. An example of Bus�nessEnt�ty generated

Figure 9. The enhanced IDDI registry

TOMCATTOMCAT

jUDDIjUDDI

MySQL
UDDIUDDI

JCEJCE

MerkleMerkle hash pathhash path
generationgeneration

Java ClassJava Class

inquiry

XcercesXcerces JCEJCE UDDI4JUDDI4J

MerkleMerkle HashHash

generationgenerationMerkleMerkle HashHash
validationvalidation

Java ClassJava Class

Enhanced-UDDI register UDDI client

save

TOMCATTOMCAT

jUDDIjUDDI

MySQL
UDDIUDDI

JCEJCE

MerkleMerkle hash pathhash path
generationgeneration

Java ClassJava Class

inquiry

XcercesXcerces JCEJCE UDDI4JUDDI4J

MerkleMerkle HashHash

generationgenerationMerkleMerkle HashHash
validationvalidation

Java ClassJava Class

Enhanced-UDDI register UDDI client

save

�� Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure 10. The Bus�nessEnt�ty element generated by UDDI client
<?xml version="1.0" encoding="UTF-8"?>
<save_business xmlns="urn:uddi-org:api_v2" generic="2.0">
 <authInfo xmlns="">authToken:9EF0E0F0-23EC-11D8-B78C-8DDAF5C9614A</authInfo>
 <businessEntity xmlns="" businessKey="9ECDC890-23EC-11D8-B78C-89A8511765B5"
operator="jUDDI.org" authorizedName="Barbara">
 <discoveryURLs>
 <discoveryURL useType="BusinessENtity"> http://www.dicom.uninsubria.it/ </discoveryURL>
 <discoveryURL
useType="businessEntity">http://localhost:8080/juddi/discovery?businessKey=9ECDC890-23EC-11D8-
B78C-89A8511765B5</discoveryURL>
 </discoveryURLs>
 <name xml:lang="it">DICOM</name>
 <description xml:lang="it">Dipartimento d’Informatica e Comunicazione</description>
 <contacts>
 <contact>
 <personName>Barbara Carminati</personName>
 <email>barbara.carminati@uninsubria.it</email>
 <address>
 <addressLine>Via Mazzini, 5</addressLine>
 <addressLine>21100 Varese</addressLine>
 </address>
 </contact>
 </contacts>
 <businessServices>
 <businessService serviceKey="9ECF4F30-23EC-11D8-B78C-D4B4D63A03DD" businessKey="9ECDC890-
23EC-11D8-B78C-89A8511765B5">
 <name>Service 1</name>
 <description>Example service</description>
 <bindingTemplates>
 <bindingTemplate bindingKey="9ED25C70-23EC-11D8-B78C-E6B2648DFC70" serviceKey="9ECF4F30-
23EC-11D8-B78C-D4B4D63A03DD">
 <description>Binding Example 1</description>
 <accessPoint URLType="www.example.it/service.asmx"></accessPoint>
 <tModelInstanceDetails />
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
 <identifierBag />
 <categoryBag />
 <Signature>
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/1999/07/WD-xml-c14n-19990729"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/01/xmldsig/rsa"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
 <Transform Algorithm="urn:uddi-org:schemaCentricC14N:2002-07-10" />
 <Transform Algorithm="Merkle" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/01/xmldsig/sha1" />
 <DigestValue>PyAeAtNeYcRQq2gI6Fq7NXOgEnI=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>pJQn61Vo7ZjzBQNh944I1aMMJPO/ofR16CdHmTNpEYEoI8f3U0dI2OIjR9u+JiBA2MaN7TlwxnKR
ks/mdnWCL85SABOADHwqD1+zoF/VLnaFeGfCJfbWfOTiTN0xjxZFkYISPbfrM6hLFG/qhMb1RRmMp9v+jJKNh00ktpx9Vn
g=</SignatureValue>
 <KeyInfo>
 <KeyValue>
 <RSAKeyValue>
 <Modulus>ALkV0Yv6NSWMQ/GxX7VElnUCmBiBB2kA92iRuXzjr+TesJ6mJWsuEjWgU2CkezriMRsu1MbRGeXb
E0RSXluH4VPcE4IYECEb5pheQCeA1eFHdS+BHAXmFIx0sNrQTdaLXNUeLaCfTyibXCHEo8GKhGr3
+6UlxkNfPbApqRMG2Z6f </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
 </businessEntity>
</save_business>

Authent�cat�on Techn�ques for UDDI Reg�str�es ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

by the UDDI client, and published to the enhanced-UDDI registry is reported in
Figure 10.

Conclusion

In this chapter we have presented an approach based on Merkle hash trees, which
provides a flexible authentication mechanism for UDDI registries.
The proposed approach has two relevant benefits. The first is the possibility for the
service provider to ensure the authenticity and integrity of the whole data struc-
tures by signing a unique small amount of data, with the obvious improvement of
the performance. The second benefit regards browse pattern inquiries (i.e., find_xxx
API), which return overview information taken from one or more data structures.
According to the UDDI specification, in such a case if a client wishes to verify the
authenticity and integrity of the answer, it must request the whole data structures
from which the information are taken. Besides being not efficient, this solution
is not always applicable. Indeed, the information contained in the data structures
may be highly strategic and sensitive, and thus may not be made available to all
the clients. In such a case, if the client does not have the proper authorization it is
not able to verify the authenticity and integrity of the received answer. By contrast,
the proposed solution supports the browse pattern inquiries by ensuring at the same
time the confidentiality of the data, in that, by using Merkle hash paths it is not
necessary to send clients the whole data structures.
We plan to extend this work along several directions. One extension regards the
support for additional security properties, such as for instance confidentiality and
completeness, using strategies similar to those presented in Bertino, et al. (2004)
and an extensive testing and performance evaluation of our prototype.

References

Bertino, E., Carminati, B., Ferrari, F., Thuraisingham, B., & Gupta A. (2004). Selective
and authentic third-party distribution of XML documents. IEEE Transactions
on Knowledge and Data Engineering(TKDE), 16(10), 1263-1278.

Boneh, D., Gentry, C., Lynn, B., & Shacham, H. (2003). Aggregate and verifi-
ably encrypted signatures from bilinear maps. In Proceedings of Advances
in Cryptology, International Association for Cryptologic Research. Berlin,
Germany: Springer-Verlag.

�0 Bert�no, Carm�nat�, & Ferrar�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Charanjit, S., & Yung, M. (1996). Paytree: Amortized signature for flexible mi-
cropayments. In Proceedings of the 2nd USENIX Workshop on Electronic
Commerce.

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web services
description language (WSDL), Version 1.2 (World Wide Web Consortium
recommendation). Retrieved from http://www.w3.org/TR/wsdl12/

Clement, L., Hately, A., Von Riegen, C., & Rogers, T. (2002). Universal descrip-
tion, discovery and integration (UDDI), Version 3.0 (UDDI Spec Technical
Committee specification). Retrieved from http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm

Devanbu, P., Gertz, M., Martel, C., & Stubblebine, S. G. (2000). Authentic third-
party data publication. In Proceedings of the 14th Annual IFIP WG 11.3 Working
Conference on Database Security, Schoorl, The Netherlands.

Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G., & Stubblebine, S.G.
(2001). Flexible authentication of XML documents. In Proceedings of the 8th
ACM Conference on Computer and Communications Security. ACM Press.

Eastlake, D., Reagle, J., & Solo, D. (2001). XML signature syntax and process-
ing 2001 (World Wide Web Consortium Recommendation). Retrieved from
http://www.w3.org/TR/2001/CR-xmldsig-core-20010419/

Merkle, R. C. (1989). A certified digital signature. In Proceedings of Advances in
Cryptology-Crypto ’89.

 Mitra, N. (2003). Simple object access protocol (SOAP), Version 1.1 (World Wide
Web Consortium recommendation). Retrieved from http://www.w3.org/TR/
SOAP/

Mykletun, E., Narasimha, M., & Tsudik, G. (2004), Authentication and integrity
in outsourced databases. In Proceedings of Network and Distributed System
Security (NDSS 2004).

Naor, M., & Nissim, K. (1998). Certificate revocation and certificate update. In
Proceedings of the 7th USENIX Security Symposium.

