
Security Conscious Web Service Composition1

Barbara Carminati1, Elena Ferrari1, Patrick C. K. Hung2

1University of Insubria, Italy
2University of Ontario Institute of Technology (UOIT), Canada

{barbara.carminati, elena.ferrari}@uninsubria.it; patrick.hung@uoit.ca

1 The work reported in this paper has been partially supported by the discovery grant (NSERC PIN: 290666) from the
Natural Science and Engineering Research Council (NSERC) of Canada under the project: “M-services computing security
and privacy enforcement model.”

Abstract
A Web service is a software system designed to support
interoperable application-to-application interactions over
the Internet. Web services are based on a set of XML
standards, such as Web Services Description Language
(WSDL), Simple Object Access Protocol (SOAP) and
Universal Description, Discovery and Integration
(UDDI). Recently, there has been a growing interest in
Web service composition, and some languages (e.g.,
WSBPEL, BPML) for modeling the composition have been
proposed. In this paper, we focus on security constraints
of Web service composition, which have not been deeply
investigated so far. We propose a method for modeling
security constraints and a brokered architecture to build
composite Web services according to the specified security
constraints.

Keywords: Web services, workflow, security constraints,
WSBPEL

1. Introduction
A Web service is a software system designed to support
interoperable application-to-application interactions over
the Internet. Web services rely on a set of XML standards
such as Universal Description, Discovery and Integration
(UDDI) [14], Web Services Description Language
(WSDL) [15], and Simple Object Access Protocol (SOAP)
[16]. A business process contains a set of activities that
represent both business tasks and interactions. One of the
major goals of Web services is to make easier their
composition to form more complex services. To this
purpose, many emerging languages (e.g., BPEL4WS [5],
WSBPEL [13] and BPML [2]) have been proposed for
coordinating Web services into a workflow. A workflow is
a computer supported business process. The information
processed in a workflow may be highly valued and thus it
is important to protect this information against security
threats. The prolific use of workflow management systems
for critical and strategic applications gives rise to a major
concern regarding the threats against confidentiality,
integrity, privacy, anonymity, and availability.

Additionally, the BPEL4WS specification recommends
that business process implementations use WS-Security
[6] to ensure messages have not been modified or forged
while in transit or while residing at destinations. In this
paper, we consider an aspect of Web service composition
that has not been so far deeply investigated, despite its
importance, that is, security. The idea is that both Web
service requestors and providers may have security
requirements and properties that must be taken into
account when composing Web services. We refer to Web
service composition driven by security requirements as
security conscious composition. For instance, a Web
service provider may not want to accept requests issued by
a specific IP address, or it may want to put some
additional security constraints on the composition. Such
constraints must be carefully considered when composing
Web services. In this paper, we first propose a way to
model such security constraints, which is compliant with
existing standards. Then, we present a brokered
architecture to compose Web services according to the
specified security constraints.
 The remainder of this paper is organized as follows.
Next section discusses related work. Section 3 illustrates
our strategy to model security constraints and capabilities.
Section 4 describes the architecture on support of security
conscious web service composition, whereas Section 5
illustrates the Security Matchmaker, which is the core of
the proposed architecture. Section 6 describes a prototype
implementation of the proposed framework. Finally,
Section 7 concludes the paper.

2. Literature Review
In the past few years, business process or workflow
proposals relevant to Web services are proliferating in the
business and academic world. Most of the proposals are
XML-based languages to specify Web services
interactions and compositions. All of the proposed XML
languages are based on WSDL service descriptions with
extension elements. For example, the Business Process
Execution Language for Web Services (BPEL4WS) is a

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

formal specification of business processes and interaction
protocols. The OASIS WSBPEL Technical Committee is
now established to continue working on the BPEL4WS
1.1 specification within the OASIS Consortium [13].
WSBPEL defines a model and a grammar for describing
the behavior of a business process based on interactions
between the process and its Web service interfaces. In
short, a WSBPEL business process definition can be
thought of as a template for creating business process
instances. Each of the activities in a flow model must be
executed by an appropriate Web service. In this scenario,
the role of service locators is to assign an appropriate Web
services for each activity. This assignment process is
called matchmaking. Besides exploiting the UDDI
registers, the matchmaking process can be performed also
by means of semantic Web service descriptions. In this
context, DAML-S [1] provides capability to semantically
annotate Web services based on an ontology that provides
classes and properties to describe content and capabilities
of the Web services. Another relevant effort carried on in
this field is the one proposed in [9], where authors extend
OWL-S, the new emerging standard for semantic Web
service description, by proposing ontology for annotating
input and output parameters of a Web service with respect
to their security characteristics (e.g., encryption and digital
signature requirements). In [9] they also consider privacy
and authorization policies expressed by means of the REI
language [8]. A basic difference between the approach
reported in [9] and the one proposed in this paper is that
we exploit a syntactic approach to model security
requirements of a Web service (i.e., the WSDL document),
whereas in [9] they use a semantic annotation-based
approach. A further relevant difference is that in [9] the
authors only consider the enforcement of security
constraints of a single Web service requester. By contrast,
in the proposed approach we consider the security
requirements of both Web service requestors and Web
services taking part in the composition.
 Other related work is those exploiting AI planning
techniques for Web service composition. Among them, we
recall the work by McIlraith et al. [10] that extends the
logic programming language Golog for automatic
composition of Web services, the one by Medjahed [11],
which proposes a technique for generating composite Web
services from high-level declarative descriptions. A
framework for composing Web services, based on the use
of Mealy machines has also been proposed by Bultan et al.
[3]. However, such frameworks do not address security
issues such as access control, which is the focus of our
work. There are also XML languages proposed for
describing security assertions. These XML languages
restrict access to Web services to authorized parties only,
and protect the integrity and confidentiality of messages
exchanged in a loosely coupled execution environment.
Specifically there is a well-known format for XML-based

security tokens, that is, the Security Assertions Markup
Language (SAML), which is used to define authentication
and authorization decisions in Web services [12]. Web
services providers submit SAML tokens to security
servers for making security decisions. WS-Security
describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message
confidentiality and single message authentication [6].
Based on WS-Security, WS-Policy provides a grammar
for expressing Web services security policies [7]. The
WS-Policy includes a set of security policy assertions to
support the WS-Security specification defined in WS-
Security Policy [7].

3. Security capabilities and constraints
The starting point to model any security information
related to Web services is defining a reference vocabulary.
We define the Security Vocabulary/Ontology by using the
Web Ontology Language (OWL) [21]. OWL ontology
includes descriptions of classes, properties, and their
instances, as well as formal semantics for deriving logical
consequences in entailments. Figure 1 shows a simplified
OWL Ontology that describes a security vocabulary and
related Web services standards.

<owl:Ontology rdf:about="#securityVocabulary">
 <owl:versionInfo>v 1.00 2005/06/15 23:59:59</owl:versionInfo>
 <rdfs:comment>Security Vocabulary</rdfs:comment>
 ...
 <owl:Class rdf:ID="#privacyAccessControl">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#P3P"/>
 <owl:Class rdf:about="#EPAL"/>
 <owl:Class rdf:about="#XACML"/>
 </owl:unionOf>
 </owl:Class>
 ...
 <owl:Class rdf:ID="#authentication">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#WS-Security"/>
 <owl:Class rdf:about="#SAML"/>
 <owl:Class rdf:about="#X.509"/>
 </owl:unionOf>
 </owl:Class>
 ...
</owl:Ontology>

Figure 1. An illustrative security vocabulary

 To verify whether a security constraint, specified
according to the defined security vocabulary, is satisfied
by a Web service or a Web service composition, we need,
in addition to a constraint language, also a language to
specify security characteristics of a Web service (referred
to as security capabilities in what follows). For instance, a
security constraint of a Web service provider could require
the adoption of a specific authentication mechanism. To
verify this constraint, we need to know which
authentication mechanisms a Web service supports.
Security capabilities describe the security features of a

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Web service, according to the specified security
vocabulary. We assume that there exists one or more
trusted entities in charge of validating and issuing security
capabilities.

3.1 Security capabilities
In our framework, Web service security capabilities are
expressed through SAML [12] assertions. The SAML
architecture relies on the presence of trusted authorities,
issuing signed assertions on subjects (e.g., users, services,
organizations), that is, a set of statements about the
subject.2 In our approach, we suppose the existence of a
Secure Capability Authority (SCA) in charge of evaluating
Web service security capabilities, and, based on this
evaluation, of issuing signed SAML assertions certifying
such capabilities. In particular, we use the attribute
statement of SAML assertions to express security
capabilities of a Web service, by associating a different
attribute with each different Web service security
capability. According to the SAML specification, the
attribute statement consists of an attribute name and an
attribute value. We use the attribute name to denote the
security feature, whereas the attribute value gives
information on how the security feature is enforced by the
corresponding Web service.

<saml:AttributeStatement xmlns:sv="#securityVocabulary">
 <saml:Attribute Name ="sv:privacyAccessControl">
 <saml:AttributeValue>
 P3P
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

Figure 2. An example of security capability

 As an example, Figure 2 reports a security capability
expressed through attribute assertions. The name of the
first attribute is privacy access control, thus denoting the
privacy preserving access control mechanism adopted by
the Web service. The attribute value is P3P, meaning that
the Web service exploits the P3P language to express
privacy access control policies. Security capabilities are
stored into the WSDL document of the corresponding
Web service, by exploiting the extensibility element.

3.2 Security constraints
We classify security constraints into two broad categories,
i.e., those specified by the requestor and those that refer to
conditions that a Web service can impose to another Web

2 The SAML specification supports three types of statements:
authentication statements, which assert that a subject has been
authenticated by the issuing authority; authorization statements, which
state that a subject has been given an authorization by the issuing
authority; and attribute statements, which contain subject information
that can be used to grant authorizations.

service in order to cooperate with it (referred to as
compatibility constraints). The first category is further
refined into two subcategories: general and specific
constraints. The first refers to those conditions that the
Web service requestor states for all the Web services
participating to the composition (e.g., adopted privacy or
authentication techniques), whereas specific constraints
are related to selected Web services within the
composition (e.g., the Web service making hotel
reservations should use X.509 authentication).
 We use a uniform notation to model all types of
identified constraints. As for security capabilities, we store
compatibility constraints into the WSDL document
describing a Web service. More precisely, they are stored
into the WSDL extensibility element (see the
Compatibility element in Figure 3). By contrast,
constraints specified by the Web service requestor (i.e.,
general, and specific constraints) are included into the
service request (i.e., in a SOAP message). Security
constraints are modeled as Boolean formulas over security
capabilities. To make secure matchmaking easier, we store
Boolean formulas in a disjunctive normal form, where
each clause is modeled by a different sub-element
(Clause element). The clause element contains the name
of the capability to which the condition refers to
(AttributeName element), the operator of the
condition, and the values to be evaluated on that capability
(oper and values element, respectively). Thus, for
instance, if a Web service wants to answer only requests
of Web services using SAML authentication, or
requests that do not use DES encryption, the compatibility
constraint stored in its WSDL document is:
‘authentication=SAML OR encryption ≠DES’, which
corresponds to the Compatibility element shown in
Figure 3.

<Compatibility xmlns:sv="#securityVocabulary">
 <Clause>
 <AttributeName name="sv:authentication"/>
<Oper op="="/>
<Values>
<Value val="sv:SAML"/>
</Values>
 </Clause>
 <Clause>
 <AttributeName name="sv:encryption"/>
<Oper op="≠"/>
<Values>
<Value val="sv:DES"/>
</Values>
 </Clause>
</Compatibility>

Figure 3. An example of compatibility constraint

 Since constraints must be matched against capabilities
issued by a SCA, the broker and the SCAs have to adopt
the common reference ontology (shown in Figure 1) to
express security capabilities and constraints.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

4 Secure WS-broker
Secure conscious composition of Web services is realized
by a Web service, called Secure WS-Broker (SWS-Broker
for short). The SWS-Broker receives as input a request of
a service, whose implementation may require the
composition of several Web services. The request contains
a description of the requested Web service. Additionally,
the SWS-Broker receives a set of general and specific
security constraints to be satisfied by the resulting
composition. The SWS-Broker first performs the creation
of an appropriate workflow (WF) that models the business
process generating the required service. This is done with
the help of libraries of patterns for well-know business

processes. This step is deeply affected by the service
description given in input. Indeed, the service could be
described according to either a syntactic (i.e., WSDL and
UDDI) or semantic approach (i.e., DAML-S). Once the
appropriate WF has been devised, the SWS-Broker starts
generating the composition, which finds out for each WF
activity, a suitable Web service. By suitable Web service
we mean a Web service having the ability to perform that
activity and satisfying the security constraints. The last
task performed by the SWS-Broker is the generation of the
WSBPEL document representing the secure conscious
composition, which is then returned to the requestor. In
the case that no secure conscious compositions can be
generated (i.e., no suitable Web services are found), the
SWS-Broker returns a report containing the security
constraints that cannot not satisfied and/or the WF
activities for which no Web service have been located.
More precisely, the SWS-Broker consists of four main
components (see Figure 4): WF-Modeler, WSs-Locator,
Security Matchmaker, and WSBPELgenerator, which we
briefly describe in what follows.3
WF-Modeler. The SWS-Broker receives as input a service
description, referring to the required final Web service.
The requestor does not give any direction on how and
which Web services should be involved to provide the
required service. For this reason, the first step of the SWS

3 The brokered architecture also supports the possibility of
delegating some of the tasks to an external and more specialized
Web service.

-Broker is to model the business process required to
produce the requested service. This initial step is done by
the WF-Modeler, which returns as a result a workflow.
Each activity in the devised WF is complemented by a set
of semantic annotations, to describe its functionalities and
capabilities.
WSs-Locator: Once the appropriate workflow has been
generated, the next step is to identify, for each WF
activity, one or more Web services able to carry on the
considered activity. This task is performed by the WSs-
Locator, which could exploit both UDDI search
functionality and semantics annotations to perform the
assignment.
Security Matchmaker: The WSs-Locator simply returns
for each WF activity a list of Web services able to perform
it, without considering any security constraint during this
selection. This is done by the Security Matchmaker, which
is the core of the SWS-Broker architecture. Indeed, given
the WF and Web services returned by the WS-Modeler
and the WSs-Locator, respectively, the Security
Matchmaker selects, for each WF activity, a Web service
satisfying the specified security constraints, among those
identified by the WSs-Locator, thus obtaining the secure
conscious composition.
WSBPEL Generator: The last step is the translation of the
results returned by the Security Matchmaker into a
WSBPEL document. The resulting WSBPEL document
contains information about the general and specific
constraints considered during the security conscious
composition. More precisely, these constraints are
modeled by means of WS-Agreement [22], and can be
exploited for further checks during the execution of the
composed web service.
 In the following, we describe in details the strategies
adopted by the Security Matchmaker, since it represents
the core of the proposed solution.

5. Security matchmaker
The goal of the Security Matchmaker is to associate with
each WF activity, a Web service satisfying the specified
security constraints, among the ones discovered by the
WSs-Locator. We recall that security constraints can be of
three different types: general, specific and compatibility
constraints. General and specific constraints can be
verified in an initial phase, by simply pruning from the
Web services returned by the WSs-Locator those that do
not satisfy the security conditions specified in the
constraints. By contrast, compatibility constraints have to
be considered during the allocation of a Web service to an
activity. This verification process relies on the concept of
Web services compatible with regard to security. A Web
services WS1 is compatible with regard to security with a
Web service WS2 if and only if WS2 security capabilities
satisfy WS1’s compatibilities constraints.

 Thus, when selecting a Web service to be associated

Figure 4. SWS-Broker architecture

W F
m ode le r

W F
loca to r

S ecurity
M atchm aker

B P E L4W S
genera to r

SO AP

S O A P

S O A P

S W S B roker

SO AP S O A P

W F
m ode le r

W S s
loca to r

S ecurity
M atchm aker

W S B P E L
genera to r

SO AP

S O A P

S O A P

S W S B roker

SO AP S O A P

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

with an activity, the Security Matchmaker has to choose
Web services that are compatible with regard to security
with the Web Services already assigned to activities in the
WF preceding the considered one. This matching process
is further complicated by the fact that several Web
services can be assigned to the same activity, and that the
WF may require to execute some activities in parallel. Let
us first suppose that the WF consists of a sequence of
activities. Moreover, for simplicity, when an activity
appears several times in the sequence, we consider each
occurrence as a different activity. To perform the security
conscious composition, the Security Matchmaker makes
use of a data structure, called composition tree,
representing all possible security conscious Web service
compositions. In general, a level j of the composition tree
is related to the j-th activity in the WF, where each node at
level j represents a Web service able to perform activity j
and compatible with regard to security with its predecessor
nodes. Therefore, each path in the tree denotes a security
conscious composition. Given the composition tree
associated with a WF consisting of a sequence of activities
{a1,…,an}, the Security Matchmaker selects only the Web
service compositions corresponding to complete path of
the tree, that is, a path of length n.

a1

a2

a3

a4 a5a1

a2

a3

a4 a5

Figure 5. An example of workflow

 In order to better clarify the security matchmaking
process, we consider a request of a “travel agency” service
able to plan a complete travel consisting of flight and hotel
reservations. We suppose that the travel agency takes as
input the user request and travel constraints/preferences
(e.g., departure and arrival date, preferred flight seat, hotel
room types), and finds the best combination of flight plus
hotel, based on the user request. Suppose moreover, that
the WF associated by the WF Modeler to this request
consists of five activities (see Figure 5). Activity a1
consists of the acquisition of the user travel request (e.g.,
destination and arrival city, departure and returning dates),
and its validation. Activities a2 and a3 implement the flight
scheduling process. These are two parallel activities that
consider two different classes of flights: activity a2

a1 WS2, WS6, WS8

a2 WS3, WS4, WS9

a3 WS2, WS8

a3 WS5, WS7

a4 WS11, WS12

a5 WS13, WS14

Table 1. Web Services associated with activities

corresponds to a flight scheduling service that considers
only direct connections, whereas activity a3 considers only
low cost companies. Activity a4 is the hotel scheduling.
Finally, during the last activity, i.e., a5, all the returned
combinations of flight plus hotel are evaluated in order to
find the best one, according to the user request.
 In order to explain the security matchmaking process,
let us start to consider a single sequence of activities in the
WF represented in Figure 5, that is, the sequence
consisting of activities a1, a2, a4, and a5. Suppose,
moreover, that the corresponding Web services, identified
by the WSs-Locator are those in Table 1.

WS6

WS3 WS9 WS9 WS3 WS4

WS11 WS12

WS14WS13

WS11

WS14WS13

WS12

WS2 WS8WS6

WS3 WS9 WS9 WS3 WS4

WS11 WS12

WS14WS13

WS11

WS14WS13

WS12

WS2 WS8

Figure 6. An example of composition tree

The composition tree built by the Security Matchmaker for
this sequence is represented in Figure 6. In particular, the
first level of the tree contains all the Web services
performing activity a1 (i.e., WS2, WS6, and WS8). To
build the second level of the tree, the Security
Matchmaker verifies the compatibility with regard to
security among Web services associated with activity a1
and Web services associated with activity a2 (i.e., WS3,
WS4, and WS9). The composition tree represented in
Figure 6 has been built by supposing that WS2 is
compatible only with WS3 and WS9, whereas WS6 is
compatible only with WS9, and WS8 with WS3 and WS4.
Moreover, we have supposed that WS11 is compatible only
with WS13 and WS14, whereas WS9 with WS12. Once the
composition tree has been completed, the Security-
Matchmaker is able to determine the corresponding secure
conscious Web service compositions, which, according to
Figure 6, are: {WS2, WS3, WS11, WS13}, {WS2, WS3,
WS11, WS14}, {WS8, WS3, WS11, WS13}, and {WS8, WS3,
WS11, WS14}. In the syntax of transaction logic [23], the
output of the Security Matchmaker can be represented as
follows:
workflow ← START ⊗ (WS2 | WS8) ⊗ WS3 ⊗ WS11 ⊗
(WS13 | WS14) ⊗ END
where symbol “ ” means serial conjunction between two
activities and “|” means concurrent conjunction for two or
more activities.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

 In general, a WF (see Figure 5) consists of more
complex structures than activities sequences (e.g., parallel
activities, while and branch conditions). In order to apply
the above-introduced approach to a more complex
workflow, the Security Matchmaker first derives the set of
activity sequences associated with it. Note that the activity
sequences associated with a workflow always have some
common activities (at least the activity starting the
workflow). As an example, considering again the
workflow in Figure 5, a1, a4, and a5 are examples of
common activities. The Security Matchmaker derives
from the WF two sequences: {a1, a2, a4, a5} and {a1, a3, a4,
a5}. In the syntax of transaction logic, this workflow in
terms of activities can be represented as follows:

workflow ← a1 ⊗ (a2 | a3) ⊗ a4 ⊗ a5
 Then, it builds the composition tree for each of the
derived sequences, according to the strategy described
above, and selects a secure conscious composition for
each sequence, according to several criteria (e.g.,
resources optimization, best quality of service average).
The selected secure conscious composition must have the
common activities assigned to the same Web service. For
illustration, the simplified WSBPEL for Figure 5 is shown
in Figure 8.
 The WSBPEL generator inserts information about
security constraints into the resulting WSBPEL document.
This information can be exploited for further runtime
checks during web service execution. More precisely,
security constraints are modeled by WS-Agreement (e.g.,
namespace wsag) [22]. WS-Agreement is used to define
the capabilities of service providers and create agreements
based on creational offers for monitoring agreement
compliance at runtime. In particular, we use the WS-
Agreement free-form constraint assertions “Creation
Constraints” to express the constraints. Figure 7 shows an
illustrative constraint: “It is required to adopt P3P to tackle
the privacy issue.”

<wsag:template xmlns:sv="#securityVocabulary">
 <wsag:CreationConstraints>
 <wsag:Item>sv:privacyAccessControl</wsag:Item>
 <wsag:Constraint>P3P</wsag:Constraint>
</wsag:CreationConstraints>
</wsag:template>

Figure 7. An example of security constraint

 The WSBPEL generator inserts into each Web service’s
invocation a different WS-agreement node for each
different general constraint, for each specific constraint
applied on that Web service, and for each compatibility
constraint that the Web service has to satisfy in order to
join the composition. Let us assume for instance that the
secure conscious composition has been required with the
following constraints: all Web services must exploit
SAML as authentication framework, whereas only Web
services that manage user’s credit card info must use

TDES encryption. Moreover, let us assume that according
to the workflow in Figure 5, the only activity that handles
the credit card information is a5. Each Web service’s
invocation of the resulting WSBPEL document (see
Figure 8 for a simplified version) is complemented with a
WS-agreement node modeling the general authentication
requirement (i.e., SAML). By contrast, the specific
encryption requirement (i.e., TDES) has been inserted
only into the invocation of Web services associated with
activity a5, that is, WS13 and WS14. Regarding
compatibility constraints, for simplicity let us consider
only the constraints between WS2 and WS3, and assume
that in order to allow a composition, WS2 requires to
compose only with P3P-enabled web services. In such a
case, the WSBPEL generator inserts an additional WS-
agreement node modeling WS2’s privacy requirements
into the WS3’s invocation of the resulting WSBEPL
document.

<process name="workflow"
 targetNamespace="http://travelagencies.com/workflow"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:wsag="http://schemas.ggf.org/graap/2005/09/ws-agreement"
 xmlns:sv="#securityVocabulary"
 suppressJoinFailure="yes">
 ...
 <flow>
 ...
 <receive partnerLink="START"
 portType="ta:InitiateWS_IF"
 outputVariable="request">
 <source linkName="START-to-WS2"/>
 <source linkName="START-to-WS8"/>
 </receive>
 <invoke partnerLink="WS2"
 portType="as:WS2_IF">
 inputVariable="request"
 outputVariable="responseWS2">
 <target linkName="START-to-WS2"/>
 <source linkName="WS2-to- WS3"/>
 <wsag:CreationConstraints>
 <wsag:Item>sv:authentication</wsag:Item>
 <wsag:Constraint>SAML</wsag:Constraint>
 </wsag:CreationConstraints>
 </invoke>
 <invoke partnerLink="WS8"
 portType="as:WS8_IF"
 inputVariable="request"
 outputVariable="responseWS8">
 <target linkName="START-to-WS8"/>
 <source linkName="WS8-to-WS3"/>
 …

 <wsag:template xmlns:sv="#securityVocabulary">
 <wsag:CreationConstraints>
 <wsag:Item>sv:privacy</wsag:Item>
 <wsag:Constraint>P3P</wsag:Constraint>
</wsag:CreationConstraints>
 </wsag:template>

 <wsag:CreationConstraints>
 <wsag:Item>sv:authentication</wsag:Item>
 <wsag:Constraint>SAML</wsag:Constraint>
 </wsag:CreationConstraints>

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

 </invoke>
 <invoke partnerLink="WS3"
 portType="as:WS3_IF"
 inputVariable="responseWS2| responseWS8"
 outputVariable="responseWS3">
 <target linkName="WS2-to-WS3"/>
 <target linkName="WS8-to-WS3"/>
 <source linkName="WS3-to-WS11"/>
 …
 <wsag:CreationConstraints>
 <wsag:Item>sv:authentication</wsag:Item>
 <wsag:Constraint>SAML</wsag:Constraint>
 </wsag:CreationConstraints>
 </invoke>
 <invoke partnerLink="WS11"
 portType="as:WS11_IF"
 inputVariable=" responseWS3"
 outputVariable="responseWS11">
 <target linkName="WS3-to-WS11"/>
 <source linkName="WS11-to-WS13"/>
 <source linkName="WS11-to-WS14"/>
 …
 <wsag:CreationConstraints>
 <wsag:Item>sv:authentication</wsag:Item>
 <wsag:Constraint>SAML</wsag:Constraint>
 </wsag:CreationConstraints>

 </invoke>
 <invoke partnerLink="WS13"
 portType="as:WS13_IF"
 inputVariable="responseWS11"
 outputVariable="responseWS13">
 <target linkName="WS11-to-WS13"/>
 <source linkName="WS13-to-END"/>
 …
 <wsag:CreationConstraints>
 <wsag:Item>sv:encryption</wsag:Item>
 <wsag:Constraint>TDES</wsag:Constraint>
 </wsag:CreationConstraints>
 <wsag:CreationConstraints>
 <wsag:Item>sv:authentication</wsag:Item>
 <wsag:Constraint>SAML</wsag:Constraint>
 </wsag:CreationConstraints>
 </invoke>
 <invoke partnerLink="WS14"
 portType="as:WS14_IF"
 inputVariable="responseWS11"
 outputVariable="responseWS14">
 <target linkName="WS11-to-WS14"/>
 <source linkName="WS14-to-END"/>
 …
<wsag:CreationConstraints>
 <wsag:Item>sv:encryption</wsag:Item>
 <wsag:Constraint>TDES</wsag:Constraint>
 </wsag:CreationConstraints>
 <wsag:CreationConstraints>
 <wsag:Item>sv:authentication</wsag:Item>
 <wsag:Constraint>SAML</wsag:Constraint>
 </wsag:CreationConstraints>
 </invoke>
 <reply partnerLink="END"
 portType=" ta:ReplyWS_IF "
 inputVariable="responseWS13| responseWS14" />
 <target linkName="WS13-to-END"/>
 <target linkName="WS14-to-END"/>
 </reply>
 ...
 </flow>

</process>.

Figure 8. A Simplified WSBPEL Document

6. Prototype implementation
We have implemented a prototype of the SWS-Broker
proposed in this paper. The SWS-Broker has been
implemented as a Web service. The prototype has been
developed using the NetBeans 5.0 environment. The GUI
has been implemented in C#. Constraint matching is done
by using the JTP engine [24]. At the current stage, the
prototype is able to manage only sequential WFs.
However, we plan to extend it to deal with more general
WFs. The GUI allows Web service requestors to inquire
the SWS-Broker for the needed services. By using the
GUI, the requestor can also specify constraints that the
resulting Web service (or some of its components) must
satisfy. The interface for constraint specification is
presented in Figure 9. Once the constraints have been
specified and the WF Modeller has generated the WF, the
SWS-Broker starts building the secure conscious
composition. For each considered Web service, it extracts
compatibility constraints from its WSDL document and
matches them against the security capabilities of the Web
services already belonging to the composition (using the
JTP engine as core component). Similar matches are
performed for general and specific constraints. Due to
efficiency reasons the prototype does not built the whole
composition tree, rather it uses a heuristics according to
which the tree is built using a depth first strategy.
Therefore, as soon as the first complete path has been
built, the corresponding WSBPEL document is generated
and returned to the requestor.

7. Conclusions
 In this paper, we have tackled the problem of Web service
composition, focusing on security issues. We proposed an
approach to compose Web services according to specified
security requirements of both Web service requestors and
providers. This work is just a first step of a wider project
we are currently working on. First, we plan to extend our
proposal to other classes of constraints (such as for
instance quality of services constraints). We plan also to
extend the proposed approach by considering privacy of
security constraints and capability.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Figure 9. Constraint specification

 Moreover, we plan to devise efficient techniques for the
generation of composition trees, in order to minimize the
number of paths to be computed. Finally, we plan to
integrate the current proposal with the work reported in
[4], which provides a solution to privacy issues related to
Web services discovery agencies.

References
[1] Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin,
D.L., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T.,
Sycara K., and Zeng, H. 2001. DAML-S: Semantic Markup For
Web Services. International Semantic Web Working Symposium
(SWWS), Standford University, CA, USA.
[2] Arkin. A. 2002. Business Process Modeling Language
(BPML), Version 1.0. BPMI.org..
[3] Bultan, T., Fu, X. Hull, R., and Su, J. 2003. Conversation
Specification: A New Approach to Design and Analysis of E-
Service Composition. Twelth Intl. World Wide Web Conference
(WWW2003).
[4] Carminati, B., Ferrari, E., and Hung P.C.K. Exploring
Privacy Issues in Web Services Discovery Agencies. IEEE
Security & Privacy Magazine, 3(5): 14-21, 2005..
[5] IBM Corporation. 2002. Business Process Execution
Language for Web Services (BPEL4WS), Version 1.0.
[6] IBM, Microsoft and VeriSign. 2002. Specification: Web
Services Security (WS-Security), Version 1.0, 05 April 2002.
[7] IBM, BEA, Microsoft, SAP, Sonic Software, VeriSign.
2004. Web Services Policy Framework (WS-Policy), September
2004.
[8] Kagal, L., Finin, T., Joshi, A. 2003. A Policy Based
Approach to Security on the Semantic Web, The Semantic
Web – ISWC..
[9] Kagal, L., Paolucci, M., Srinivasan, N., Denker, G.,.
Finin, T., Sycara, K. 2004. Authorization and Privacy for

Semantic Web Services, AAAI Spring Symposium,
Workshop on Semantic Web Services.
[10] McIlraith, S., Son, T.C. 2002. Adapting Golog for
Composition of Semantic Web Services 8th International
Conference on Knowledge Representation and Reasoning
(KR2002).
[11] Medjahed, B., Bouguettaya, A., and Elmagarmid,
A.K. 2003. Composing Web Services on the Semantic
Web. The VLDB Journal, 12(4).
[12] OASIS. SAML 1.0 Specification Set:, 2002.
[13] OASIS. Web Services Business Process Execution
Language (WSBPEL).
[14] Universal Description, Discovery and Integration (UDDI).
2002. UDDI v. 3.0, UDDI Spec Technical Committee
Specification.
[15] World Wide Web Consortium (W3C). 2002. Web Services
Description Language (WSDL), Version 1.2, W3C Working
Draft.
[16] World Wide Web Consortium (W3C). 2003. SOAP Version
1.2 Part 1: Messaging Framework, W3C Proposed
Recommendation,.
[17] OASIS. 2005. OASIS extensible access control markup
language (XACML). Version 2.0, OASIS Standard. Online:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-
core-spec-os.pdf.
[18] World Wide Web Consortium (W3C). The platform for
privacy preferences 1.0 (P3P1.0) specification. W3C
Recommendation. Retrieved on April 16, 2002. Online:
http://www.w3.org/TR/P3P/.
[19] IBM. Enterprise Privacy Authorization Language (EPAL).
IBM Research Report. Retrieved June 12, 2003. Online:
www.zurich.ibm.com/security/enterprise-privacy/epal
[20] Hung, P. C. K., Ferrari, E., and Carminati, B. Towards
Standardized Web Services Privacy Technologies. In
Proceedings of the 2004 IEEE International Conference on Web
Services (ICWS'04), San Diego, California, USA, July 6-9, 2004.
[21] WebOnt. 2003. OWL Web Ontology Language. Web-
Ontology (WebOnt) Working Group, World Wide Web
Consortium (W3C). Online:
http://www.w3.org/2001/sw/WebOnt.
[22] Grid Resource Allocation Agreement Protocol (GRAAP)
WG. 2005. Web Services Agreement Specification (WS-
Agreement)., Version 2005/09, GWD-R (Proposed
Recommendation).. Online:
http://www.ggf.org/Public_Comment_Docs/Documents/Oct-
2005/WS-AgreementSpecificationDraft050920.pdf
[23] Bonner, A.J. 1999. Workflows, Transactions, and Datalog.
In Proceedings of the 18th ACM Symposium on principles of
Database Systems (PODS), 294-305.
[24] Richard, F., Jenkins, J., and Frank, G. 2003. JTP: A System
Architecture and Component Library for Hybrid Reasoning.
Proceedings of the Seventh World Multiconference on Systemics,
Cybernetics, and Informatics. Orlando, Florida, USA. July 27 -
30, 2003.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

