_

PROCEEDINGS Reprinted From

TWELFTH INTERNATIONAL CONFERENCE
ON VERY LARGE DATA BASES

KYOTO, JAPAN AUGUST 25-28, 1986

TRANSLATION AND OPTIMIZATION OF LOGIC QUERIES:
THE ALGEBRAIC APPROACH

5. Ceri

('), G. Gottlab ("), L. Lavazza (")

(') bipartimento di Elettronica, Politecnico di Milano, Italy
(") Istituto per la Matematica Applicata del CNR, Genova, Italy
(") TET-Techint Software e Telematica, Milano, Italy

ABSTRACT
This paper presents an algebraic approach to
translation and optimization of Llogic gueries. We

first dewvelop a syntax directed translation from
rules of function=free logic programs to algebraic
equations; then we show solution methods for
independent equations and for systems of
interdependent equations. Such solutions define the
operational and fixpoint semantics of function—free
Logic programs and queries. We also present
algebraic optimization methods for "top-down™ and
“bottom-up" strategies; the former are useful if no
initial binding is provided with the query, while

the Llatter are wuseful if some arguments of the
query are bound to constant values.

1. INTRODUCTION

In recent times, the combination of relational

databases and logic programming (LPF) has become a
popular argument of research. The application of LP
as query Llanguage of a relational database entails
a relevant enrichment of the expressive power of
traditional query Languages; hence the database
community Llooks at LP as a promising approach for
posing complex {e.g. recursive or deductivel
queries. At the same time, databases provide the
technology for processing large collections of data
in an efficient way, hence solving many of the
problems posed by LP applications when they manage
large amounts of information.

The efficient
been discussed

implementation of Llogie queries has

in many - recent papers, including
[BanciLlhonB6, Chandra82, CeriBé HenshenBs,
Margue-Fucheudd, Sacca'86, UL lman85]. Majar
research directions are:

pesigning “pure”™ LP languages, e.g. languages
Wwhich do not incorporate procedural features,
such as the dependency of the computation from
the order of clauses and the use of special
predicates. This trend has marked the adoption
of “pure™ Horn clauses as “standard" LP
Language, and conseguently a certain resistence
to Proleg.

b. Determining how function-free Horn Clauses can
be efficiently executed. HNew formal models,
such as '"rule=goal" graphs, describe binding
propagation among c¢lauses. Several rules for
"ecapturing" nodes of graphs have been defiped;
capturing a node is equivalent to evaluating
the information asseciated to the corresponding
clause or rule, deduced from the database.

Permission to coj
advantage, the
the Verg Large Data Base Endowment. To coj
Procee

! its date appear, and notice is given that copyi
] i otherwise, or to republish, requires a fee andfor special permission from the Endotwment,
ings of the Twelfth International Conference on Very Large Data Bases

betermining how LP programs can be made more
efficient, by operating transformations from LF
to LP. Tecnigques such as the “"magic set™, the
“"counting™ and the "“Eager" methods have been
developed to this purpose.

We have focused our attention on the use of
relational algebra at work on the same problems.
While the idea of using relational algebra for
executing Llogic queries is not new (see, among
others, CAhe 791 and [Marque-Pucheu 341}, the major
contribution of this paper is to give a systematic
averview of how traditional algebra, extended by a
closure operator, can be applied to solve logic
queries, ;

2. MODELS FOR LOGIC PROGRAMMING AND RELATIONAL
DATABASES

In this section, we give our definition and
interpretation of function=free Llogic programs and
queries; then, we fintroduce positive algebra

extended with the closure operator.

2.1 Function-free logic programs

A function—free Llogic program (FFLP) s a set of
definite, function—free Horn clauses (i.e. clauses
that contain exactly one positive Literal); we use
a Prolog-Llike syntax for clauses, which have their

positive Literal on the LHS and zero or more
(negative) Lliterals on the RHS, in conjunctive
form. For instance, the following is a FFLP:
Sta,bl.
Ric,b).

P(Xiz= PCY), ROX,Y).
PCXY:z= SOY,X).
Q{X,¥):= PLX), ROA,ZI, SCY,ID.

We can better interpret a FFLP within the framework
of databases if we consider terms appearing in the
LHS of clauses as either database relations or
computed relations. Ground clauses of the former
are stored in an extensional database EDB; ground
clauses of the latter are evaluated by executing
the FFLP; thus, each computed relation appears as
LHS of one or more clause. In the above example, R
and 5 are database relations, P and @ are computed
relations; the first twe clauses are eguivalent to
assigning an instance to relations R and 5, and in
general will not be present in FFLP3 but will be
stored in the EDB.

We generalize the class of database relations to
include all those terms for which we have a
function awvailable for evaluating arithmetic

predicates. For instance, the relation PLUSCX,Y,Z)

without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
DR copyright notice and the title of the publication and

ia by permission of

Kyoto, August, 1986

—395—

B e

e

ladridalris ot e B R e o

Links all representable integers X, Y, and I such
that X+Y=I. Further, we can extend Horn clauses to
include special terms such as equality between
variables (e.g., X=Y), since we assume that the
equality test be available, and hence we can
represent it through a special relation EQCX,Y). We
assume that the domain and co-domain of functions
be finite.

Each wvariable ¥ of a clause of a FFLP program is
associated to a finite range Rg(X). Ranges of
variables of database relations are Llimited to the
values existing in the instance of that relation or
to the domain and co-domain of functions; all
variables of computed relatiomns are Limited to a
unique finite wniverse U which includes all
individuals possibly occurring in the DB.

An input goal to a FFLP is a clause consisting of a
single literal, for instance:
?-Qla,X).

The solution of an input goal P(tl1,...,tnm) i3 the
set of all ground instances of P(t1,...,tn) which
are logical consequences of the FFLP; for example:
Sol(FFLP, G(a,X)) = {@fa,c) | (e s U p
(FFLP U EDB => Q(a,c))}

If the dnput goal is a Literal with all places
bound to constant wvalues, then the solution space
is reduced to the answers “yes" or “no':
Sol{FFLP, Plc)) = "wyes" if (c & U A
(FFLP U EDB => P{c)),
"no" otherwise.

2.2. Positive algebra with closure

We assume that the reader iz familiar with the
relational model and algebra as from [Ullmand2].
Positive relational algebra (RA+) includes as
primitive operators selection (07, projection(Tml,
cartesian product(x), join{bk<d), semi=join(=), and
union {(U); noticeably, it does not dnclude the
difference operator. We extend projection to
include TTy E (projection on the empty set) as an
operator which can be applied to an algebraic
expression E; Try E returns "yes" if E #£4, "no" if
E =¢ . ¢ denotes the empty relation of suitable
degree.

The closure operator ta“a is applied to an

expression E(X) of a (variable) relation X,
provided that the schema of the result of E(X) is
the same as the schema of X. The Llanguage obtained
by extending RA+ with the closure operator is
denoted as ERA+. The operational definition of the
closure ocperator 1ﬁ:given by the following program
AD which computes O E(X):

A ApCECX))
| 5 ¢= &
| REPEAT
| ¥ <= E(5)
| <=5 U ¥
| UNTIL ¥=5
| RETURN &

The fixpoint semantics of the closure operator is
also well defined. Let P denote the set of all
possible relations having the same domain as X:

P = powerset (Dm(X))

] LR - B Fr T
Pt B LT

Then, F is a complete lattice under the union and
intersection operations, having as minimal element
the empty relation and as maximal element Dm(X).

Expressions of RA* are monotone: (f.e. X C Y =>
E(X) C ECY}), hence algorithm A. always tiﬁﬁinates
after a finite number of iterations, and 07 E(X) is
the minimal solution (i.e. the least fixpoint) of
the equation X=E(X):

Dx E(X) =min { Xe P | ¥ = ECX) }

3. SYNTAX DIRECTED TRANSLATION FROM FUNCTION =
FREE LOGIC PROGRAMS TO EXTENDED RELATIONAL ALGEBRA

A syntax=directed translation algorithm maps each
clause of a FFLP intoe a correspondent disequation
of RA+. Disequations are subsequently interpreted
as equations wunder the Closed World Assumption
(CWA) and solved using the closure operation.

EJJLTransLatinn of individual clauses

Let a generic Horn clause of a FFLP have the
following structure:

Rz Ftor,l,...n:n}:- u1cﬂn1,... Bkj, — uhcﬂs,...ﬁm}
Then, the translation associates to R an algebraic
disequation:

Expr(ﬂj, e ﬂnl cr

where P iz a computed relation correspondent to
predicate P, and similarly Q. are either computed
or database relations :nrresgondEnt to predicates
@,. The specification of the algorithm for the
sﬁnta: directed translation requires defining some
useful notation and two rewriting functions.

= pceursi{®, .RH5), of sort boolean, is "true" if
the term o, belongs to the RHS, "false"
otherWwise.

- corr{i} denotes the function returning, for
each o, of the LHS, the index j of the leftmost
varisble B, of the RH5 such that 3,=«, if such
a variabLejexists. 3

= const(®,) of sort boolean, is true if g, is a
tonstant, false otherwise; const(p.,) is
similarly defined.]

Wi

= varix,), of sort boolean, is defined as "not

consat Ii}”'

= newvari{x}) 15 a procedure returning a new
variable name at each invocation.

- Let E denote a string, x and y denote symbols.
Then E<x,y> denotes a new string in which the
first occurence of x is substituted by y.

The syntax directed translation of R dnto an
algebraic disequation of RA+ iz defined through two
recursive rules which apply to the LHS and RHS of R
respectively.

The first rule deals with three special cases:
3. bindings to constant wvalues in the LHS;

b. multiple occurrences of the same wvariable in
the LHS;

. existence of a variable of the LHS that does
nat occur in the RHS.

- Egﬁ —_

el i Tl L e T

Each such special case is reconducted, by suitable
string transformations, to an eguivalent case in
which all positions of the LHS are bound to
distinct wvariables. Then, the second rule is
applied to the RHS; it simply generates all
selection conditions due to constant bindings or
replicated wvariables within the RHS, and then
builds a cartesian product with all database or
computed relations corresponding to terms of the
RHS.

After applying the second rule, eguivalence =
preserving transformations can be applied to the
resulting expression in RA+ to transform cartesian
products into joins and te propagate selections to
their operands, in the conventional way (see

[ULLmanB2]). The mnotation xi=1 kui indicates the
cartesian product of relations 91,... Qk.
rule 1.
T(RI=if 3 § : const(x,) feanf
then !
newvar(x)

return T(LHS<dﬁ,:h:-RHS, EG(I,DHIJ

elsif 3 i,j :G{i=ﬂg, i<j Awbh*/

then
newvar ()
return T(LHS(H'VK):-RHE, EG(:,Gfi}

elsif J i: uar{uﬁi A not occurs (e, RHS) feeef

then return T(LHS:-RHS, Rg{h%}J

]
else returnTTw”“L___W”tn] T'(RHS)

end if;
rule 2.
TYCRY = §f J4 ¢ cansttBi} I% a *f
then
neWvari{x)

return 07 _n T'(RHS<B, ,x>)
elsif J i,i :1B.=B., i€j J* b o/
then L.

mewvar(x)
return E}=j T'{RHS<B1,x>}

else return (X, _ Q.
" i=1..k i
end if;
Example. The following i3 & systematic application
of the translation algorithm.

POX, X 2Y:=50X,YIR(Y,a,L)

1. by T, case (b
TO PONT, X, Z)e=S(X,Y) ROY,a,2),EQ{NT X))

2. by T, Last recursive call

T g5 T CSOLYI,ROY,8,2),EQINTX))
P

3. by T', cases (a) and (b)

]Tﬁ] 513:_“2!3“:? T'(SCN2,N3Z),R(Y, N4, 20, EQ(NT, X))
L =
4. by T', lLast recursive call
G-
'lrrﬂ’i'5 4=a A 223 p 1=7 (5 X R x EQ)
5. After pushing selection and join conditions
Tr&’m (s pd,_, (05__R)) o9, _, EQ)
ﬁ: Final disequation:
6,1,5 ({5 P,y (G_RM) ba,_ ED) C P
3.2. Transformations from disequations to

‘equations in RA+

By effect of the translation rules explained abowve,
we can turn each FFLP dnto a set of algebraic
diseguations. For instance, the last 3 clauses of
the FFLP in Section 2.1 generate:

T, (Poay_, R)CP

‘ITE sCP

T 4 (PP, R) P, 8) Ca

. =

The Closed World Assumption (CWA, [Reiter781)
enables ws to turn these diseguations into
gquations. By the CWA, all facts which cannot be
deduced by the application of the FFLP to the
database are false; hence, no fact about a generic

term P can be proved other than through existing
disequations; hence the union of all RHS of

disequations gives the algebraic eguation required
to compute P. The above example generates the
system of equations:

P =TT, (Pq,_, R} U (T, 5)
Q=7 , (PB4 R) D, 5)

1=1 3=2
Margue-Pucheu et al. [Marque Pucheu84] show a

transformation from Llogic programs into eguations
which does not directly use relaticonal algebra.

3.3. Solution of independent equations

Solving a system of equations is easier 9f each
equation is independent from the others {or can be
made independent by suitable substitutions); an
equation is independent when it does not contain
computed relations in the RHS other than the one in
the LH5. For the solution of independent eguations,
two cases are given:)

a. The RHS contains only database relations; in
this case, the solution of the eguation is:
simply given by the evaluation of the
expression in RA+. This happens when rules for
the computed relation in the FFLP are
nonrecursive.

b. The RH5 contains one or more occurrences of the
computed relation CR; in thiz. case, the
definition of the closure operator as fixpoint
of algebraic eguations enables us to build the
solution as follows:

cr RHS(CR)

sol{CR)Y = 0
In the above example (Sect. 3.2), the first
equation is independent, and can be solved as:

P
sol{P} =0 {Trth‘ WIEE R) U WE 1)

The second eguation for @ depends on F, however we
can suspend its evaluation until we have solwved the
equation for P. Then we consider F as a fixed (i.e.
database) relation, and the second equation falls
in case {a) above:

sol{Q) =1T}’# {{sal{P) hﬂ1=1 R bd3=2 8)

interpret input goals as suitable
algebraic solutions; for

We can now
expressions on the
instance:

T=P{X). <=> sol{P}

T= L4 |

7-Pial. >TE£Q.=a sol (P)
T=Ga,X). <=> 1=a sol (@)

7 . €= Q
-afa,hb) >Tr¢’qr1=a A 2=p SOL(A)

—397—

et Sl Tk

3.4. Reduction by substitutions

We have seen that by suitable substitutions it is
sometimes possible to reduce a system of mutually
interdependent equations to a system of eguations
which are independently resoclvable, when a certain
order of evaluation 15 observed. We call these
systems of equations reducible by substitutions.
Let us first define the problem more formally. We
start with a given set % of equations of the
following form:
5 R1 = E1CRT,...Rn]

Re = EZCR1,...Rn]

Rn = EnCR1,...Rn]
where each Ri s a distinct reLatinnal variable and
each Ei i3 an expression of RA , which involves
some {not necessarily all) wvariables R1,...Rn; we
call Ei the defining part of Ri.

A substitution consists in the replacement of some
variable R1 by its defining part Ei in the RHSs of
all eguations of 5. A resolution of Rj consists of
a series of substitutions which generate an
equation Rj=E' that does not containm any variable
different from Rj. Clearly, if Rj has a resolution,
then its value can be computed either by evaluation
of an expression of constant relations (if Rj does
not appear in E') or by the apE}i:atiun af the
closure operator to E', yielding O E'(Rj).

After successful resolution, Rj can be marked as a
known constant relation and we can eliminate the
defining equation for Rj from the original system
of equations 5. This step is called the elimination
of Rj from 5. A set of eqguations is reducible by
substitutions iff it can be transformed to the
empty set by SUCCEesSTve resolutions and
eliminations, Note that it is useless to substitute
a variable which occurs in its own defining part;
we shall forbid such substitutions.

It i3 clear that the particular form of each
expression Ei in 5§ as well as the constant
relations that appear in Ei are not relevant for
determining whether 5 is reducible by
substitutions; the only relevant information is the
mutual interdependency of relational wvariables in
5. The information on wvariable interdependency is
most appropriately represented in the dependency
raph G=<N,.E> defined as follows:

NiG)= {R1,...,Rn}

E(G)= {<Ri,Rj>|Rj occurs in Eil.
Mote that Lloops of the form <Ri.Ri*> may occur in
E{G}; in this case we call Ri a looping node.

It is easy to see that substituting a wvariable Ri
in 5 exactly corresponds to dropping the node Ri
from 6 and Llinking all the predecessors of Ri to
all successors of Ri by new edges. By analogy, we
call such a process the substitution of node R dn
G. Since we have forbidden to substitute variables
®i that occur in their own defining part, we forbid
to substitute Looping nodes in a dependency graph.

If, after a series of node substitutions, the node
Rj has no outgoing edges to any nodes different
from Rj, wWwe say that we have resolved Rj. After a
successful resalution of Rj we can eliminate node
Rj and all its incident and outgoing edges from the
ariginal graph G, yielding a mnew (and simpler)

N et Ve skt v o e T i e P i e e e il

graph G'=G-{Rj}. If, by successive resolution and
elimination of nodes, it is possible to get an
empty graph, we say that G is reducible by
substitutions.

Lemma 3.1. Ay acyclic connection graph G is

reducible by substitutions.

Theorem 3.1. A strongly connected graph & is
reducible by substitution iff it contains a node K
such that G-{K} is acyelic.

Theorem 3.2. A graph G is reducible by substitution
iff its strongly connected components are each
reducible by substituticns.

Froofs of Lemma 3.1 and of Theorems 3.1 and 3.2 are
presented in [Camerini8&). Based on Theorems 3.1
and 3.2, we build algorithm REDUCE which determines
whether a graph G is reducible by substitutions; in
the positive case, the algorithm outputs a series
of substitutions and resolutions (in correct order)
to reduce G.

The algorithm requires dntroducing a Reduction
Graph GCN,E), built from the dependency graph G by
Tdentifying all strongly connected components of G.
M(E) are the connected components of G;
EC(E) are the edges between connected components
of G, defined in the obvious way.
Clearly § s acyelic; we call bottom nodes of & all
nodes which have no outgoing edges.

ALGORITHM "REDUCE"™
INPUT: Dependency Graph G
OUTPUT: Sequence of substitutions or resolutions

1. iddentify strong connection components G61...Gk
of G.

2. Tor each component Gi find a node Ki in 61 such
that Gi={Ki} 1is acyclic; if Ki cannot be found
then stop with output "irreducible”.

3. build the reduction graph B.
4. if B is empty then stop.

5. for any bottom node Gi of & do:
for each node Rj in Gi-{Ki}
output “substitute Rj";
output “resolve Ki';
apply REDUCE to Gi-{Kil};
remove Gi from G.

6. ogoto &,

It is easy to see that the REDUCE algorithm is
poelynomial in the size of 4dts dnput (i.e. the
dependency graph G): the fddentification of the
strong connection components (step 1) as well as
the acyclicity test (step 2) are well known
polynomial problems; furthermore it is not hard to
seg that steps 4=6 are repeated at most |[N(GY]]
times.

Example. Consider the
equations in RA+:

R1 = ¢1 uTlh _(R1 09 , R&) U RS

following system 5 of

L1 pl
k2 = RS U R&
R3 ="J'1'LE (R& HPE R3) U C2
R& = R3 by Cé
p3

RS =TT13 (R mpﬁ R&) U C3

R& = (R1 bﬂps C5) U C6

—398—

Figure 1 shows the reduction graph fer 5.

Fig. 1. Dependency graph and reduction graph for a

system of eguations

The output produced by the REDUCE algorithm is as
follows:

SUBSTITUTE R&; RESOLVE R3; RESOLVE R4;
SUBSTITUTE R5; SUBSTITUTE R&; RESOLVE R1;
RESOLVE R&; RESOLVE R5; RESOLVE R2.

The sequence of solutions is produced as follows:
=TT
R3 LEE(RE Mp C&2 MpE R3) U C2
R4 = R3 bdpj Ch
=Tr
R1 L.l:m b-up,lum n-dp5 CS) U cé)» U
T, L (R bﬂpﬁ ((R1 bﬂps C5) U C&XY U €1 03

L3
Ré& = (R1 Pﬂp C5) U C&

3

5

RS =1T;3:{n1 h*hﬁ R&) U €3
RZ = RS U R&

E:E: Resolution of mutually dependent equations

Some systems of eguations cannot be reduced by
substitutions; in such cases we have to use other
zolution methods. There are two approaches for
solving nonreducible systems. In the first
approach, the single relation wvariables Ri are
combined to one super-variable R, for instance by
use of cartesian products. Then the original system
of eguations can be rewritten as R=ELR] and solved
by applying the closure operator. Two different
variants of this methed are described in
[thandrad2] and [CeriB8&].

The second approach computes the solution directly
from the original system of eguations by initially
setting Ri=d for i=l...n and then sucessively
computing Ri:=EilR1,..,RAnl, until the value of each
fRi remains wunchanged:

ALGORITHM A

| FOR i2=1 TO n DO Riz=d;
| REPEAT

| cond: =true;

| FOR iz=1 TO n DO Si:=Ri;

| FOR j:=1 TO n DO

| BEGIN

| Riz= Ei[51,...,501;

| IF Ri <> 5§ THEN cond:=false;
| END;

| UNTIL cond;

| FOR i:=1 TO n DO OUTPUTC(R).

—399—

P A] T e g A o,

We can optimize Algerithm A by using at each step
the recently computed values for R1,....Ri for the
computation of the new wvalue of Ri#l, instead of
using the old values, i.e., 51,...,5i:

ALGORITHM B

| FOR $:=1 TD n DO Ri:=d;
| REPEAT

| cond:strue;

| FOR i:=1 TD n 0O

| BEGIN

| S:= Ri;

| Riz= EilR1,...,RN];

| IF Ri <> 5 THEM cond:=false;
| END

| UNTIL cond;

| FOR 4:=1 TO n 0O OUTPUT(Ri).

Algorithms A and B have well-known correspondents
in the field of rnumerical analysis: Algorithm A
corresponds to the Jacobi algerithm for the
jterative solution of systems of equations, while
algorithm B corresponds to the Gauss—3eidel
algorithm.

3.6. Conclusion of Section 3

In this section we have given rules for
transforming FFLPs into systems of equations in RA+
and we have shown how these systems can be solved
by use of the closure ocperater. By this process we
have defined both the fixpoint semantics and the
operational semantics for FFLPs and queries
operating on an extensional database EDB.

Though outside the scope of this paper, it can be
seen that our semantics correspond exactly to the
semantics for logic programs defined by Van Emden
and Kovalski [VanEmden76]; due to the Limitedness
of ranges for individual wvariables and to the
absence of function symbols, the Herbrand universe
of any FFLP is finite.

4. ALGEBRAIC APPROACH TO THE OFTIMIZATION OF LOGIC
PROGRAMS

We turn now to the optimization eof expressions in

ERA+. Execution strategies presented in the
previous section suffer from thwo major
disadvantages:

a. The algorithm which computes the closure

operation is not too efficient.

b. In the computation: G%uxE(x}, conditions of the
legical oquery are not used, because the
SElECtiDH condition is mnot pushed
O0E(X).

Proofs of theorems in this section are guite simple
and can be found in [Ceri8él.

inside

4.1. Efficient computation of the closure cperator

Algorithm A, presented in section 2.2 is not wvery
efficient bEEause several partial unions are needed
and because E(5) has to be evaluated several times
for the same tuples; consider now the more

efficient program Ay

| Ay CEQ):

A A o

o e eiin e ma i B e s B it ey o] T

| 5s<é
| REPEAT

| ¥ <= §

| 5 <= E(3)
| UNTIL Y=%

| RETURN 5

Theorem 4.1. If E(X) is an expression in RA+, then
ADEEEI}} and !1EEEKJ} are equivalent programs.

Mote that Theorem 4.1 does not hold if E(X) is not
in RA+; for instance, if E(X)=K-X, K #d¢, then A
never halts while hn terminates returning K al
result.

Program A eliminates the first source of
inefficiency, i.e. the computation of unions within
the program Hn, but it does not eliminate the
second source, 1.e. the computation of E(5) several
times for the same tuple. We now develop two
algorithms which do not have this burdensome
property. '
befinition &.1. An expression E(X) over RA+ is
Linear it it holds:
TWK,Y € Rg(E) : ECXUY) = E(X) U ECY)

We can noW present algorithm A:

2t
| AL CECKID:

| . °5 <=¢; p <-4

| REPEAT

| b <= E(D} =5
| §<=5UD
I

I

2

UNTIL b = &
RETURM 5

Theorem 4.2. 1f E{X} is Linear,

eguivalent to Ag(ECXD).

The advantage of algorithm A, compared to algorithm
A, is that the size of D, Tthe "difference term”
produced at each fterationd is smaller with respect
to the size of S. (the "accumulation” term).

then ﬁEEEEI}} is

Thearem &.3. Ear:h expression E(X)} can be rewritten
dolil DU
in a canonical form:

ety T G, (x¥ xcpue

A i L]
where ¥* renresents the cartesian product of i

terms X and ti are constant (database) relations.

Let can denote the transformation in RA+ from an
expression E{X} to fts canonfcal form. Let
degree(E(x}) denote the maximal i in can(E(X)})
Efficient algorithms can be developed depending on
the degree of an expression; we show, in
particular, algorithms deve loped far
degree (E{X})=2. MNote that if degree(E(X})=1 then
the expression is linear, hence ‘2 can be applied.

Let E"(X,¥Y) be the expression obtained from E(X) by
replacing each cartesian product X x ¥ with X x Y.
Then, we can build algorithm Age

| AgLECXD):

| 75 <=%; 0 <P
| REPEAT

| T1 €= E'(5,D)

| T2 <= E'(D,5)

| T3 <= EL{D)

| r <= (TT UT2 U T3 -5
| 5 €=5UD

| UNTIL o = &

| RETURM 5

a

PP Iy S N e .

Theores &. 4. If the degree of E(X) s 2, then
ulgur1thn ns is equivalent to h1.

The advantage of algorithm A, compared to algorithm
A, is that we never compute ?he term E"(5,5), which
might be large. We further notice that the program
can be simplified by omitting the ewvaluation of T2
if the expression E'"{X,Y) iz commutative. Algorithm

Ay can be generalized for a generic i.

Example: Nonlinear ancestor program

FFLP: ancfx,y):= parix,¥).
anclx,¥):— ancix,z), anclz,.¥).

DISEQUATIONS: PAR C ANC

1r1 4 T CANC Hz -q ANC) C ANC
EQUATION: ANC = PAH uTr CANC D=1 _, ANC)
1,4 2=1
SOLUTION: NC
sol¢ane) = 0™ Cepar v T

1’ﬁinuc bﬂé;1ANCI}

The degree of E(ANC) is 2. Assuming acyclicity of
the PAR relation, algorithm A, produces at each
iteration i1 the pair of ancestors corresponding
to the 2i-th and 2i#+1-th generations; term T2
should not be evaluated, as the expression is
clearly commutative. Acyclicity of the PAR
relation is not required by algorithm ﬂj-

4.2. Pushing selection conditions into Llinear
expressions

Aho and Ullman C[Ahe79] indicate a pethod for
optimizing expressions of the type: G 0 (ECX)). We
briefly outline their method by one example. The
linear expressien for the set of all ancestors of
an individual "a" is:

=0 A
ANC =17, 07 (T ,CXp<,_,PAR) U PAR)
It holds:
Oy X =0, T 4, (X0 _4PAR) U PAR)

By applying associativity and distributivity:

ClaaX = 0 (07 xe<, ,PAR) U T, _ PAR)

By introducing the wvariable ¥ fur~ﬁ}n
Y o= T, Cred,_ PAR) UG, PAR)

ER we get:

S 2=
Thus we hawve:
Y
= P
ANC = 0 (T, , (Yo, PAR) Gy PAR)

This formula can now be evaluated using algorithm
Unfortunately, this method applies only when
tﬁe selection can be pushed directly to the
variable X in E(X). In the rest of this section we
show, on the ground of examples, how other
optimizations are possible. Consider the terms:

(4.1 B, = E@)

b= E{Dn} = Ed)
Considering algorithm A it is easy to verify
that, for Linear E:DFESEIOHS E(X), the following
equation holds:

X -
0ECX) = Uig,....0 5"

This formulation for E(X) is attractive because we
can compute terms so that 0. is pushed inte each
Di’ and never compute the full terms D,:

i
G} D, .

.2 T oo = v, 1

i=z0, ... @

~ 400~

Starting from this. general form, we can see how
algebraic manipulations produce the same effect as
technigues such as the “magic set" and "magic
counting™. We use g well-known example: the search
af same generation cousins. Let wus produce the
transformation from FFLP to ERA+ for this example:

FFLP: sgiX,%).
sgiX, Y= par{X,X1),5g(X1,.Y1) par{Y,¥1).

DISEQUATIONS: EQ € S6
Ti;’supmwzﬂsmwgzpm} ¢ 56

EQUATION: S6 = EQ UTT, _((PARPd,_ SG)bda, __PAR)
1,5 2=1 4=3

SOLUTION: .

sol(S6) = 07 (EQ UTY, .((PARDd_ 56)Dd, _PAR))

1,5 2=1 4=2
Motice that the expression computing 56 is Llinear.
We dintroduce the “composition™ operation, as in
CAho 791, to denote the following expression (where
R and 5 are binary relations):
Ros —"'1’4 R bﬂa=1 5

Then, denoting as RAP the relation obtained by
exchanging the order of attributes in PAR (RAP =
ﬂé’1 PAR)Y, we have:

sol(S6) = 0°CEQ U (PAR o (56 o RAP))

Note that the composition operation is associative,
hence:

(XeYol=Xo(fol)=XoYol
Further, we

indicate as X' a chain of -1

applications of the composition to a binary
relation X:
]
Xy = K1 o KE D aus Ki
Terms D, defined by the system (4.1) are:
by = £@) = €Q ; ;
b, = E(D,) - E(d) = PAR' o EG o RAP
i+l i
Consider the query in FFLP:
7= sgla, X).
corresponding to the expression in ERA+:
G _, sol(s6)
=3
By propagating selections to the terms D, in the

right side, we obtain: L

i i
= G-
Di 1=a PAR o EQ o RAP

Let us compare the terms Di and b ! we denote as

i+l
reducing common suhexpression{il Ri the largest

common subexpression(s) of Di, u1+1 which includes
selection condition(s); in this case,
R, = 07 pPaR'
] 1=a

It is possible to pre-determine a subset of the
relation PAR which contains all relevant tuples for
the computation of 56; this is done by evaluating
the "magic" set M of all elements that can appear
in the second column of terms R.; this is the set
of all ancestors of “a". L

PAR, = &

j=0"

while R, is not empty do
begin b

PARM = PﬁRM u Ri

i =i+l
end

=TT
M 2 F'.FLR"

Consider now the semi=join reduction of PAR:

]
FAR" = PAR D<E=T M.
It is easy to see that only tuples of this relation
give a contribution to terms Di; we can then write:

b, = 0“1“ PAR'' o EQ o RAP’

By using equation (4.2), we deduce that:

05 0% (Ea U (PAR o $6 o RAP)) =
- i i

u-i=u.f-ll--l.fm G‘:I-a PAR .n EQ o RAP i=

5
u,_ O PAR' o EQ o RAP =
1"U"Sﬁﬂn 1

=a
'
ﬂi-a 0 (EQ U (PAR' o 56 o RAP)).

We can then apply algorithm A, to solve this
simplified problem. Mote that M fi itself obtained
as the application of the closure to a simple
expression, as follows:

M =TT, 0" ((x o PAR) UG~ __ PaR)
2 1=a

Assuming acyclic data, we can easily show the
algebraic equivalent of the ‘“magic counting”
method. Let us first simplify each term D, by
eliminating the E& relation and propagating
equality conditions:

0.,, = PAR' o RAP'
with acyclic data, there cannot be replicated
tuples in the union of terms R,; hence, there is an
i such that R,=¢ for j>i. But if R.=4$ then also
D.=d. Hence whk can evaluate 56 usthg the LHS of
eduation (4.2) by the following algorithm:

56 = ¢
R = 0‘1=a PAR
i=0
while R #¢ do
begin
R =8 o PAR .
S6 = 56 U (R o RAP')
=3¢
end
Algebraic transformations of this section are

easily generalized for a query with two bindings:
T=sgfla,b).

corresponding to the expression:

TR&*II“ A 22b sol (5G).

We omit details of derivations, and show the final

results:

(1) Using magic sets:

(1t 56 '

T cana=p 07 (EQ U (PAR' 0 SG o RAP'))

with RAP' being the semi-join reduction of RAP by
the magic set produced by the selection ﬂ?=b RAP.

(2} Using magic counting, we produce the program:

—401-

{2) Using magic counting, we produce the program:

ANSWer=no
R1 =G PAR

R2 = G2 par

2=hb
if R1 o RZ # & then answer = yes
while ((R1 #d) and (RZ #4¢) and (answer = nol)
do
begin
R1 = R1 o PAR
RZ2 = PAR o R?
if R1 o R2 # P then answer = yes
end
output answer

Notice that with this program we compute
iteratively two terms, each obtained from one
binding condition. The computation s halted as
soon as either. of the two. terms; is empty or
Di = R1 o R2 produces one tuple.

5. CONCLUSIONS

This paper has presented a systemstic approach to
the algebraiec treatment of Llogic queries; we have
shown a syntax directed translation from FFLP to
algebraic equations and then shown how eguations or
systems of equations can be solved and how
individual equations can be optimized.

Several problems considered in th1§ .paper need
further improvements:

a. The proposed solution method K for systems of
: equations could be improved by propagating
bindings from one eguation to another.

b. -Efficient algorithms presented for expressions
of degree 1 and 2 can be generalized to
expressions of any degree.

€. Further dnvestigation {5 needed to fully
understand how the algebraic appreach compares
with the "magic set" and "magic counting”
methods .

d. Another noticeable direction of research has as
goal the treatment of Horn clauses dncluding
function symbols. The necessary counterpart on
the database side s the extension of the
relational model and languages to model complex
objects (e.g., non—1INF relations).

Acknowledgement

This research was supported by the Esprit project
n-432 Meteor (An dintegrated formal approach to
industrial software developement). We Like to thank
Stefano Crespi-Reghizzi, who has stimulated our
work and provided useful comments on a first draft
of the paper, Letizia Tanca, who has suggested us
an improvement for the solution of systems of
equations, and Paoclo Camerini, who has he lped
proving the theorems in Section 3.4.

REFEREMCES

CAho79] A.V. Aho, J.D. Ullman, “Universality of
data retrieval Llanguages™, Sixth ACM Symp. on
principles of programming languages, San Antonio
Jan. 1979,

CApt82] K.R. Apt, M.H. VanEmden, "Contributions to
the theory of Llegic programming”, ACM Journal,
29:3, pB41-B62, 1982.

[BancilhonB&] F. Bancilhen, D. Maier, Y. Sagiv,
J.D. Ulmann, "Magic sets and other strange ways
to implement Llogiec programs", Proc. ACM-PODS,
Cambridge (MA), March 24-26 1986.

CCamerini86] P. Camerini, 5. Ceri, 6. Gottlob, L.
Lavazza: "A note on the solution of mutually
dependent equatiens by wvariable substitution”,
bipartimento di Elettronica, Internal Report,
1984.

CCeriB5] S. Ceri, 5. Crespi-Reghizzi, L. Lavazza:
"Extended Relational Algebra (ERA): bata
structures and cperations™, Rep. Ne
Metear/T2/THT/1, June 1985.

[CeriB6) S. Ceri, 6. Gottlob, L. Lavazza,
"Translation and optimization of Llogic queries:
The algebraic approach", Dipartimento di
Elettronica, Folitecnico di Milano, Rep.
n.B86=004,

[ChandraB82] A.K. Chandra, 0. Harel, "Horn clauses
and the fixpoint hierarchy", in Proc. ACM-PODS,
pp. 158=162, 1982, Eneni B

[Henshen 841 L.J. Henshen and 5.A. Mavgi, "On

compiling queries 4n recursive first-order

databases", ACM Journal, 22:4, pp.47-85, 1984.
[Marque PucheuB4] G. Margue-Fucheu, i

Martin-Gallausiaux, G. Jomier, "Interfacing

Prolog and relationl DBMS™ MNew applicationz of
DBs, Academic Press 1984.

CReiter78] R. Reiter, "On closed world databases",
in Logic and databases, Plenum Press, MNew York,
1%78. .

C5acca'B6] ©D. Sacea', €. Zaniolo, ™"On the
Implementation of a Simple Class of Logic Gueries
for Databases", Proc. ACM-PODS, Cambridge (MA),
March 24-26 1986. By

[UllmanB2] J. Ullman, "Principles of database
systems", Computer Science Press, Rockville, Md.,
1982.

[(ULlman851 J. Ullman, "Implementation of Llogical
query Llanguages for databases", ACM-TODS, 10:3,
pp. 289-321, 1985,

[VanEmden761 M. H. Van Emden, R. Kovalski, "The
semantics of predicate logic as a programming
Language", ACM Journal, 23:4, pp.733-T42, 1974.

~402—

