'£EE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 11, NOVEMBER 1988 1597

Software Prototyping by Relational Techniques:
Experiences with Program
Construction Systems

STEFANO CERI, STEFANO CRESPI-REGHIZZI, ANDREA DI MAIO, MEMBER, IEEE,
AND LUIGI A. LAVAZZA

Abstract—A method for designing and prototyping program con-
struction systems using relational databases is presented. Relations are
the only data structures used inside the systems and for interfaces;
programs extensively use relational languages, in particular relational
algebra. Two large projects are described. The Ada Relational Trans-
lator (ART) is an experimental compiler-interpreter for Ada in which
all subsystems, including the parser, semantic analyzer, interpreter,
kernel, and debugger, use relations as their only data structure; the
relational approach has been pushed to the utmost to achieve fast pro-
totyping in a student environment. Multi-Micro Line (MML) is a tool
set for constructing programs for multimicroprocessors’ targets, in
which relations are used for allocation and configuration control. Both
experiences confirm the validity of the approach for managing team-
work in evolving projects, identify areas where this approach is ap-
propriate, and raise critical issues.

Index Terms—Ada, program construction environments, rapid pro-
totyping, relational programming, target computer description.

[. INTRODUCTION

ELATIONAL programming is a novel approach to
the development and rapid prototyping of software
applications [6], [26], [30], [31]. The paradigm of this
approach is quite simple: data structures are described
using the relational model [9]; algorithms are transfor-
mations from an initial set of relations to a final one, ex-
pressed using relational languages [38], possibly ex-
tended, as later argued.
The rationale of this approach is the following.
® Consolidated methods for structuring and normaliz-
ing relations can be used in the design of data [25].
* Subsystems become homogeneous in their data struc-
tures.
e All interfaces between subsystems are clearly and
uniformly defined.
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® Data of interest for a subsystem can be extracted as
subschema of the database (DB), so that changes and de-
pendences are easy to recognize.

e Relational algebra (or calculus) provides synthetic
expressive primitives for operating on all data structures.

e A programming discipline is established, which em-
phasizes the need for designing data structures before al-
gorithms. :

The relational approach was applied to two large soft-
ware projects, which serve as significant testbeds: a
compiler-interpreter (the Ada Relational Translator, or
ART) for the Ada programming language, and a tool set
(Multi-Micro Line, or MML) for constructing programs
for multimicroprocessors’ targets. In ART, we relied on
enthusiastic but unprofessional students with a very fast
turnaround; relational programming has been useful for
minimizing the risk of throwing away large mysterious
pieces of code without committing the project leader to
continuous direct intervention. Similarly, relational pro-
gramming was exploited in MML to coordinate software
developments by distant partners in a national pilot proj-
ect.

However, a traditional DB system would not always
suit our peculiar requirements. In software engineering
applications, relations are not defined once and for all by
a DB manager and later used, but rather, each subsystem
defines and uses a subset of the relations much more dy-
namically. Furthermore, relations are expected to be of
small or moderate size, so that they can be kept in central
memory for faster operation. We have designed and im-
plemented an experimental relational data manager to
meet these requirements. Other extensions to conven-
tional programming languages have been developed in or-
der to deal with relations, most noticeably Pascal-R [36],
Modula-R [39], and DBPL [16]. These three systems
constitute an evolution of the same basic approach: to in-
troduce the new type relation (with the power of rela-
tional calculus or more) within an imperative program-
ming language. Results have been encouraging in several
nonconventional applications, including the support of
programming descriptions [39].

The use in the project ART of relational queries within
computationally intensive loops made us prefer a core,
rather than a disk, resident data manager. Other DB sys-
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tems have been developed specifically for managing soft-
ware engineering data: IDL [12], DAMOKLES [15],
OMEGA [29], and PDB [32]. Their application is mostly
to support ‘‘programming in the large’’ by building sys-
tems which belong, in our classification, to the version
management subschema of a program construction system
(see Section II).

In addition, software engineering data are more com-
plex than objects in traditional DB applications, and their
manipulation sometimes requires recursive queries. Ex-
tensions to the relational model and languages are being
developed to enhance its expressive power [8], [10], [26],
[28], [34]; in the conclusions, we discuss the convenience
of extending relational programming in this direction. In-
terestingly, the need for relational representations has in-
dependently arisen in interactive programming environ-
ments [22] to supplement the attributed syntax trees used
to represent the result of semantic analysis. That paper
demonstrates the power and limitations of relational op-
erations and introduces a hybrid system which shows sev-
eral advantages with respect to a purely relational one, or
to a purely attribute-grammar-based approach.

We first propose in Section II a classification of data
used by program construction systems in terms of DB re-
lations; relations are grouped into subschemas, and we
discuss the timing of their creation, load, and usage. In
Section III, we present the ART project, and in Section
IV, we present the MML system. In the conclusions, we
evaluate the experience and indicate directions for future
work.

II. DATA CLASSIFICATION FOR A PROGRAM
CONSTRUCTION SYSTEM

Since both applications are program construction Sys-
tems, we propose a classification of data from the view-
point of their definition and usage in a program construc-
tion DB (PCDB). The purpose of this classification is also
to introduce a terminology for the relevant information
structures of a PCDB; extensive examples of some sig-
nificant cases will be given in Sections III and IV.
At a first classification criterion, we use subschemas';

the PCDB includes four subschemas (see Fig. 1).

1) The version management subschema describes the
development and usage of each software module or doc-
ument (including intermodule dependences) in the so-
called ‘‘software life cycle.”’

2) The program translation subschema describes data
required for translating a source program into an execut-
able form (typically, the translation involves compilation,
linking, code generation, and optimization).

3) The program execution subschema describes data
used in program execution (including run-time libraries,
run-time debugging support, etc.).

4) The rarget configuration subschema describes the

target system to which an executable program can be tai-
lored.

'A schema describes all the data of the DB; a subschema contains a
subset of them, which are used by a well-distinguished set of applications.
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Fig. 1. Subschemas of the PCDB.

The four subschemas are not intended as a partition of
the PCDB; rather, they represent different viewpoints
from which the PCDB can be seen, corresponding to dif-
ferent uses of the PCDB. In fact, a strong point of the DB
approach is the possibility of sharing information among
different cooperating subsystems. For instance, a debug-
ger needs information from subschemas 1)-3).

The need of a DB for managing software documenta-
tion and modules [subschema 1)] is generally recognized,
as witnessed by current Ada programming support envi-
ronment [2] efforts or the Portable Common Tool Envi-
ronment (PCTE), an EEC-supported ESPRIT project.
Subschema 1) supports activities which are typically ref-
erenced as ‘‘programming in the large.’’ Extending the
DB approach to subschemas 2)-4) represents instead a
rather substantial innovation. Subschemas 2) and 3) con-
tain data which are typically used for activities referenced
as ‘‘language processing.’’ At the very extreme, sub-
schema 3) has to do with the low-level run-time structures
accessed by interpreters and kernels. Subschema 4) has
less generality, as it is required for tailoring a compiled
program to greatly varying target configurations; this hap-
pens, for instance, with multimicroprocessor targets, as
in [37]. We have widely applied 2) and 3) in the ART
project and 4) in the MML project.

Development of DB applications typically distin-
guishes three times (or phases): ‘‘creation time,’” at which
the DB schema is produced; ‘‘load time,’’ at which the
instances of the DB (or tuples in relational terminology)
are generated; and ‘‘use time,’’ at which instances of the
DB are manipulated or retrieved. A distinguishing feature
of PCDB with respect to typical DB applications is that
in PCDB there is not just one creation, load, or use time
for the entire DB, but rather each relation has its own.
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We have developed a general classification of all the
data in the PCDB by identifying a hierarchy of the rele-
vant ‘‘times’’ for a program construction system and then
indicating at which times relations are created, generated,
and used.

Traditionally, for program construction systems we dis-
tinguish six ‘‘times’’:

1) compiler design (CD) time,

2) version management system design (VSD) time,

3) target architecture design (TAD) time,

4) program compilation (PC) time (includes front-end
processing and linking),

5) program load (PL) time (includes target-dependent
back-end processing of an intermediate text), and

6) program execution (PE) time.

The above ‘‘times’’ are shown in Fig. 2, organized in
a self-explanatory precedence tree. Fig. 3 summarizes the
classifications in this section.

A. Version Management Subschema

Relations of this subschema maintain information about
module history, including author, users, authorizations,
creation or revision dates, processing phases passed, tests,
etc. [2]. Relations are created at VSD time and used dur-
ing the software life cycle; instances are manipulated as
an effect of editing programs, checking their interfaces,
compiling, linking or executing them, making documen-
tation, and so on. This application of DB’s is rather es-
tablished and will not be further covered.

5. Program Translation Subschema

Data in the program translation subschema can be fur-
ther classified according to their usage.

e Source Language Descriptions: These describe the
lexical elements of the language and the grammar. Rela-
tions are created and loaded at CD time and never up-
dated; they are used by scanners, parsers, and syntax-di-
rected editors.

o Intermediate Language Descriptions: These are
commonly produced by the various phases of compilation
and typically represent an abstract program tree; they are
used as input to code generators, optimizers, or interpret-
ers. Relations for intermediate description are created at
CD time, while their instances are produced and used at
PC time.

® Symbol Tables: These describe declared data or pro-
gram structures. Relations of the symbol table are created
at CD time, and their instances are produced and used at
PC time; portions of the symbol table can also be used
later, at PE time, e.g., for debugging. In some compilers,
differences in the lifetimes of parts of the symbol table are
carefully exploited for discarding information as soon as
possible. Using a DB is convenient for this purpose, as it
1s possible to select portions of relations during the com-
pilation, store them in secondary memory, and then re-
construct the overall information when needed. Notice
that the distinction between intermediate languages and
symbol .tables is no longer required, as there are recent
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Fig. 2. Partial order of ‘‘times’’ in program construction systems.

Schema Instance Instance
Type of data design time | creation time | usage time
VERSION Version
MANAGEMENT System SW Lifecycle SW Life
Design Cycle
SOURCE Compiler Compiler Program
LANGUAGE Design Design Compilation
DESCRIPTION
INTERMEDIATE Compiler Program
LANGUAGE Design Compilation | Compilation
DESCRIPTION
Program
SYMBOL Compiler Program Compilation,
TABLE Design Compilation Program
- Execution
RELATION Program
BETWEEN Compiler Compilation,
COMPILATION Design Compilation Program
UNITS Execution
OBJECT Cﬁmpiler Pro Pro
esign, gram gram
PROGRAM Compilation Execution
DESCRIPTION Compilation
- Compiler Program
DATA Dmpé'n.. Compilation Program
OBJECT gram Execution
-DESCRIPTION Compilation Execution
TARGET Target Target Target
HARDWARE Hardware Hardware Hardware
DESCRIPTION Description | Configuration | Configuration
OBJECT Target Prog;m
PROGRAMTO Hardware Loading, Program
HARDWARE Description, Program Execution
ALLOCATION Compiler Execution
Design

Fig. 3. Classification of relations in the PCDB.

proposals (such as Diana [21] or ART itself) where they
have been integrated.

o Interrelations Between Compilation Units: These
give the visibility and precedence rules between compi-
lation units and are treated by the linker. Part of these
relations may be shared with the version management
subschema. The schema of the relations is made at PD
time; instances are produced and used by the linker at PC
time and also used at PE time.

Examples of relations of this subschema are described
in Sections III-A and III-B.

C. Program Execution Subschema

Some of the data of this subschema are also common to
the program translation subschema (they are in fact pro-
duced during program translation and used during pro-
gram execution). They are as follow.
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® Object Program Descriptions: An object program is
a sequence of instructions (of a virtual or physical ma-
chine) which address memory locations where variables
and constants are stored. The schema of relations for de-
scribing object programs is designed at CD time; in-
stances of this relation (i.e., actual object programs) are
generated at PC time and used at PE time.

® Data Object Descriptions: Objects (variables, con-
stants, etc.) are traditionally classified as statically, semi-
statically, or dynamically allocated [20] according to the

time when their size and memory address can be decided.

Consistently with the relational approach, we unify object
representations by storing them as tuples of relations;
however, this distinction leads to different times at which
the schema and instances of the relations are created. In
most cases, instances are generated and used at PE time.
Relations storing static and semistatic objects can be cre-
ated at PC time. The situation for dynamic objects, such
as arrays of variable dimensions, is instead more com-
plex. Consider a dynamic object defined within a proce-
dure: the amount of storage required is different at each
execution of the procedure; therefore, it is not possible to
create ‘‘static’’ relations for storing it. In a ““pure’’ rela-
tional approach, one should create at PE time distinct re-
lations for each dynamic object or use complex represen-
tations. The ART relational DB manager supports
attributes of type ‘‘vector,”” with a variable number of
values; thus, dynamic objects can be stored as values of
those attributes. This solution extends the ‘‘pure’’ rela-
tional approach in the direction of ‘‘non-first-normal-
form’’ relations [26], [28].

® Process Descriptions: In languages with concur-
rency, another run-time structure contains the descriptors
of concurrently executing processes. The schema of re-
lations for process description is made at CD time; in-
stances of these relations are generated and used at PE
time. Our two projects differ in this respect: Ada run-time
support is based entirely on relations, wheras MML is not,
for efficiency reasons. We stress that the penalty of a re-
lational representation for run-time structures is unac-
ceptable in practical real-time applications.”

Some examples of object program and data object de-
scriptions are shown in Section III-C; examples of pro-
cess description are in Section III-D.

The debugger is also part of the run-time support in a
program construction system; the use of the PCDB is
highly beneficial for the debugger since 1) all the relevant
symbol table information is made available to the debug-
ger, and 2) objects can be inspected and modified easily,
allowing monitoring and forcing of program execution.

Much attention has been devoted to an innovative de-
bugger for Ada, which is actually the object of separate
research [14], summarized in Section III-D.

*However, we recently learned that a telephone switching system ESSS
by AT&T applies a core-resident special relational data manager for line
switching.

D. Target Configuration Subschema

This information is used for describing the allocation
of resources in a target system with a varying configura-
tion. The situation arises in embedded computer applica-
tions based on multimicroprocessor targets and in no-stop
reconfigurable machines. We recognize the following.

® Target Hardware Descriptions: These describe types
and number of processors, types and sizes of memories,
interprocessor connections, process-to-memory accesses,
peripherals, the operational status of the various compo-
nents, etc. These relations are created at TAD time; in-
stances are mostly modified when the target system is re-
configured.

® QObject Program Allocation Descriptions: These de-
scribe the allocation of processes to processors and of
software modules to storage; they also indicate the con-
nections (e.g., serial line, shared memory, ethernet) used
for interprocess communication. Relations of this schema
are created statically (at TAD or CD time), and instances
are generated at PL time (assuming a static allocation of
processes) or ET time (in the case of dynamic allocation
of processes).

Target description and allocation are illustrated in Sec-
tion IV.

III. THE ADA RELATIONAL TRANSLATOR

A compiler and interpreter for a large subset of Ada,
including tasking, generics, and most critical aspects of
the language, have been implemented in a period of about
2 years by 16 graduate students, for a total of about 7
man-years. We did not place any emphasis on perfor-
mance or on innovative compilation methods since we
considered this project a prototype and testbed of the re-
lational methodology. All programs, including the rela-
tional data manager, were written in Pascal for a Vax-780
under Unix 4.1.

Next, we briefly describe the novel aspects of the proj-
ect; a detailed presentation can be found in a series of
articles referred to by [6].

The structure of the ART system is shown in Fig. 4; it
includes a lexical and syntactical module (LEXSYN), a
semantic module (SEM), and an interpreter (EX), which
includes run-time support for tasking. The subset of Ada
was not established ahead of prototyping, but rather, we
encouraged addition of new features as the project pro-
ceeded; thus, the treatment of exceptions, generics, and
a symbolic debugger (the high-level Ada relational de-
bugger, or HARD) were added in the second year by sec-
ond-generation participants.

A. Lexical and Syntactical Analysis

This activity belongs to the program translation sub-
schema of Fig. 1 and occurs at program compilation time
(Fig. 2).

LEXSYN is driven by a finite-state automaton and an
extended BNF grammar, both relationally encoded. The
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Fig. 4. ART project structure.

state transition graph of the finite-state automaton is mod-
eled by the relation

AUTOMATA (PRESENT-STATE, SYMBOL,
NEXT-STATE, OP-CODE,KIND)

Attributes forming the primary key are underlined. The
triple PRESENT-STATE, SYMBOL, NEXT-STATE is
the transition function; the OP-CODE attribute denotes
the operations associated with state transitions, while
KIND indicates if the transition has recognized a token
(e.g., number, identifier, delimiter, or keyword).

Syntactical analysis is performed top-down on LL(1)
extended BNF grammars. We exemplify the design of re-
lational data structures representing a grammar as a typi-
cal application of ‘‘normalization’’ [25] in this context.
A grammar is encoded by the attributes

LEFT-SIDE the symbol on the left-hand side of a
production,

GUIDE-SYMBOL look-ahead terminal symbol,

P# production number,

LENGTH length of a production,

ELEMENT element in the right-hand side of a pro-
duction,

POSITION element’s position on the right-hand side,

ITERATION, OPTIONALITY whether an element
is iterated or optional, and

ACTION identifier of a semantic action to be acti-
vated.

We then recognize the functional dependences:

LEFT-SIDE, GUIDE-SYMBOL -
PRODUCTION-NUM
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procedure LEXSYN is
CT: STRING:; -- global variable for the current token;

rocedure NEXTSYM is
egm
- returns CT as the current token;
end

rufed ure PARSER (CLS: in STRING) is
egin
Kgc: PROJECTI{P #]
SELECT(GUIDE_SYMBOL =CT and LEFT_SIDE =CLS] LEFT__PART;
-- determines the current production or productions
-- for expanding the current left side;
-- if cardinality is 0 then there is an error;
-- if cardinality is greater than 1 then there is non- -determinism;
case CARD(X) is
when 0 = > ERROR;
when 1l => L <- PROJECT(LENGTH] SELECT(P# =X]
PRDDUCTIUN LENGTH,;
foriinl..Lloo son elements of the right side;
Y <-PROJE ELE NT,ACTION]
SELECT{POSITION =i and P#=X] RIGHT__PART;
Af TERMINAL(Y. ELEMENT) then
if Y ELEMENT=CT then NEXTSYM; else ERROR;
-- with terminal elements, the NEXTSYM procedure
-- is called; mismatch with CT is an error
end if;
else PARSER(Y.ELEMENT);
Hdwiift.h nonterminal elements, PARSER is called;
end if:
if Y. ACTION /= 0 then TRANSLATOR(Y.ACTION);
--da_l}ranslat.iun action might be performed;
end if;

end loop;
when others = > NON-DETERMINISM;
end case;
end PARSER,;
begin
TSYM; -- reads the first token;
PARSER(AXIOM); -- enters the recursion;

end LEXSYN;

Fig. 5. Sketch of the Ll:.(l) p;rser, which embeds operations of relational
algebra, i.e., PROJECT and SELECT.

PRODUCTION-NUM,POSITION -
ELEMENT, ITERATION, OPTIONALITY,
ACTION

PRODUCTION-NUM — LENGTH

From these attributes and dependences, we construct
the following third normal form relations:

LEFT-PART (LEFT-SIDE, GUIDE-SYMBOL, P#)

RIGHT-PART (P#,POSITION, ELEMENT,
ITERATION, ACTION)

PRODUCTION-LENGTH (P#, LENGTH)

The parser is a recursive procedure that implements a
variant of the recursive descent algorithm; the parser is
data driven, with no procedural knowledge of the gram-
mar embedded in its code. In Fig. 5, the parse algorithm
is sketched; the basic structure of the algorithm is not al-
tered by error treatment or nondeterminism (both omitted
here), which is solved using semantic information.

A complication is the syntactical ambiguity caused by
overloading. An identifier can assume different meanings
because of multiple definitions. We have carefully de-
signed the grammar of Ada to confine the sources of am-
biguities within alternative productions having the same
left part. Then, LEXSYN produces as many intermediate
representations as possible interpretations; the solution of
the ambiguities is left to the semantic analyzer, to be de-
scribed later. With this choice, nondeterminism is con-
fined to that part of the tree where overloading causes un-
certainty, without giving rise to combinatorial explosion
of alternatives.
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B. The Intermediate Relational Representation and
Semantic Analysis

The language used for intermediate (abstract) represen-
tations of Ada programs is R-TCOL, a relational imple-
mentation of the language T-COL-Ada [35] (the forerun-
ner of Diana [21]). T-COL-Ada is a directed acyclic graph
with the following properties.

e Nodes are associated with the abstract structures of
Ada. They are classified into disjoint types, and each node
type has several attributes, which describe the properties
of the corresponding abstract structure.

e Oriented arcs represent references between abstract
structures.

R-TCOL is an implementation of T-COL-Ada consist-
ing of a set of relations obtained by applying the follow-
ing rules.

e Each type of node in T-COL-Ada is modeled by a
relation of R-TCOL; each node instance of a particular
type within a T-COL-Ada graph is therefore a tuple of the
corresponding R-TCOL relation.

e Each attribute associated with a node type becomes
an attribute in the corresponding R-TCOL relation.

* Oriented arcs between nodes are represented explic-
itly by attributes. If the type of the destination node 18
fixed, then the arc is modeled by adding in the source
relation an attribute referencing the tuple identifier of the
destination node; otherwise, the arc is modeled by adding
in the source relation a pair of attributes giving the rela-
tion name and the tuple identifier of the destination node.

Fig. 6 shows an example of an Ada source program and
the corresponding R-TCOL representation. Fig. 7 con-
tains a synthetic description of the meaning of these re-
lations.

Before translating the R-TCOL graph into an execut-
able code for the run-time interpreter, module SEM per-
forms a static semantic verification of the correctness of
an R-TCOL graph: the acyclic graph is traversed, and at
each node, an appropriate verification action is called.
Each node type is associated with a distinct semantic
checker. An example of a semantic check is the correct-
ness of jumps ( exit and goto); auxiliary relations describ-
ing the environments of the jump and target statements
are constructed by SEM recursively ascending the R-
" TCOL graph until a tuple representing a program unit or
an accept statement is reached.

The algorithm employed by SEM in order to solve
overloading is a relational implementation of the two-pass
algorithm [33]. This method is easily integrated within
the translation from source programs to R-TCOL and re-
quires the creation of two intermediate relations and a two-
pass analysis of the R-TCOL graph. It has been compared
to other existing methods, in particular [3] and [18], which
are less appealing in the ART environment.

C. The E-CODE Intermediate Language

After passing semantic checks, R-TCOL graphs are
translated into a sort of three-address-code, called E-
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CODE, suitable for interpretation; the schema of relation

E-CODE is
E-CODE-REL (T#,0P-CODE, EXT-REL,
EXT-T#, A-REL,A#, B-REL,B#,
C-REL.C#)

T# provides tuple identification; OP-CODE specifies the
operation code of the E-CODE instruction; EXT-REL and
EXT-T# escape to one auxiliary relation and a specific
tuple within it (the E-CODE language is complemented
by 15 external relations); subsequent attributes reference
3 operands (A, B, and C) by indicating the relation where
they are stored and their attribute indentifiers. Compila-
tion units or subunits partition E-CODE-REL into specific
E-CODE relations; Fig. 8 shows the E-CODE relation for
the program presented in Fig. 6.

The activation records of procedures are also modeled
as relations; they include a group of standard attributes
(representing the static and dynamic chains, arranged in
a cactus-stack organization) and a group of procedure-
specific attributes, representing objects used by the pro-
cedure (parameters, variables, temporary memory loca-
tions). Each procedure is associated with an activation
record relation; upon invocation, one new tuple is in-
serted into the relation. As mentioned in Section II, we
store Ada dynamic objects in flexible vector attributes of
the DB.

An elegant solution was adopted for generic units by
indirect addressing; portions of E-CODE describing ge-
neric units do not make reference directly to activation
records, but rather to intermediate relations containing
references to instantiation-specific activation records.
With this solution, different instantiations of a generic unit
share E-CODE instructions.

D. Execution and Debugging Environment

The EX module contains the E-CODE interpreter and
the operating system kernel [23], [24] supporting multi-
tasking. The main kernel functions are to schedule ready
tasks for execution, to suspend tasks which wait for future
events (e.g., for an entry to be open or for the expiration
of a delay), to create new tasks and destroy terminating
tasks, and to handle exceptions in concurrent operations.
In addition, the kernel holds the queues required for
scheduling ready tasks for execution (we use round robin
with time slicing), for choosing the next task among those
waiting for acceptance on the same entry, and for man-
aging the tasks waiting for expiration of delays. We out-
line kernel information representation by relations. TASK-
DESCRIPTOR stores relevant information concerning
initiated tasks, such as

e STATUS, taking one of the following values: { ‘‘ac-
tive,”” ‘‘suspended,’’ ‘‘ready,’’ ‘‘delayed,’’ ‘‘waiting-for-
rendez-vous,’’ ‘‘waiting-in-rendez-vous, "’ ‘“com-
pleted,”’ ‘‘waiting-for-activation-of-dependents’’ };

o reference to the TASK-CODE (within E-CODE);

e reference to the TASK-DATA (a specific activation
record); and .
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task BUFFER is
antry READ(C: out CHARACTER);
WRITE(C: in CHARACTER);
and FFER;
task body BUFFER is
-- declarations omitted
begin
-- some instructions omitted
select
when COUNT < POOL-SIZE = > accept WRITE(C: in CHARACTER)
uence of statmunts for entry W EI'I'E
ﬁq INDEX):=
end WRITE;
IN-INDEX := IN-INDEX mod POOL-SIZE + 1;
COUNT := COUNT + 1;
or
when COUNT > 0 = > accept READ(C: out CHARACTER);
uence of statements for entry READ
C i= P OL(OUT-INDEX);
end READ;
OUT-INDEX := OUT-INDEX mod PDGL—SIZE +1;
COUNT:= CDUNT 1;
end select;
-- some instructions omitted
end BUFFER;
(a)
T# name formal-seq# | accept-seq# T# name spec-seq# body
W
23 READ 102 103 i3 BUFFER 101 31
i o 104 106 Relation TASK-SYM
Relation ENTRY-SYM
T# kind sym# block-seq# exc#
m
31 TASK 12 108 0
32 ACCEPT 28 110 0 T# kind sym#
! 33 ACCEPT 29 111 0 46 Entry-sym 29
Relation BLOCK 47 Eatry-sym 24
Relation DECL
T# altern-seq#
3 107
Relation SELE{_:.‘T
T# # block #
T# ord rel num S—
28 23 32
101 1 Decl 46
29 24 33
101 2 Decl 47
102 1 Varbl-sym 40 Relation ACCEPT
103 1 Accept 28
104 1 Varbl-sym 41
105 1 Accept 29
106 n Select 3
107 1 When 5
107 2 When 8 T# kind statm-seq# ind-seq#
m
108 1 Accept 28 5 or 108 : 0
109 1 Accept 29 6 or 109 0
Relation SEQUENCE Relation WHEN
(b)

Fig. 6. (a) Fragment of an ADA program. (b) R-TCOL representation for
the fragment of an Ada program in (a).

* reference to MASTER-DATA (the activation record
of the master unit).
ENTRY-DESCRIPTOR describes the status of each entry
(ENTRY-ID) of each task (TASK-ID); each specific entry
has an ENTRY-CONDITION (which can be ‘‘open’’ or

L&Closeii)
tasks.

and can be IN-RENDEZ-VOUS with other
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Three relations describe queues of tasks. In Fig. 9, we

have one queue of °

‘ready’’

tasks and several queues of

tasks waiting on entries (either in rendez-vous or for ren-
dez-vous). Each task can belong to only one queue at any
instant. Based on this property, queues are modeled by
the QUEUES relation that gives the successor for each
task in any queue. Two relations give the first and last



1604 I[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 11, NOVEMBER 1988

TASK SYM:

Describes all the tasks declared in the Ada pro ; in particular, the tuple ith
T# = 12 represents the task BUFFER. AttributeSPEC__SEQ# isa reference to
the sequence uf declarations belonging tothe task specilication (see relation
SEQUENCE):

attribute BODY refers to the block which encloses the task's body(see relation
BLOCK). Both attributes represent ares of the T-COL- Adagraph (each arc is
modeled by a single attribute).

SEQUENCE:

Describes the sequential order of ADA statements.This relation has a double
key: attributes with the same T #represent a sequence of references to R__TCOL
tuples, ordered by increasing value of the ORD attribute.

The remaining two attributes REL and NUM represent the destination of two
arcs of the T__COL__Ada graph.

DECL: :

Describes declarative statements; in particular, tuples 46 and 47 represent the
declarations of entries READ and WIEITE.

Attributes KIND and SYM# are references to tu£ie: of the symbol-table
relations: in particular, in this case the relation ENTRY__SYMis referenced.

ENTRY SYM:

Describes the symbol-table informations about entries. Tugles 23 and 24
describe entries READ and WRITE: attribute FORMAL_SEQ# isa reference
to the sequence of entry's formal parameters, while ACCEPT_SEQ# is the list
of accept statements referencing the entry.

BLOCK:

Describes block statements, program unit bodies and sequence of statements
associated to accept statements.

Attributes KIND and SYM# are a reference to the symbol-table tuple
representing the entity owner of the block; BLOCK __SEQ# gives the sequence
of instructions contained in the body, while EXC# is a reference to a tuple
desribing exception handlers (if any) of the block.

ACCEPT: _
Tuples of this relation represent accept statements; this relation links accept
instructions to the corresponding body.

SELECT:
Describes statement Select: it indicates the sequence of alternatives.

WHEN:
Describes each alternative: it indicates the nature of the alternative and the
associated sequence of statements.

Note: relation VARBL__SYM is not shown

Fig. 7. Description of some R-TCOL relations.

T#| 8, |Extrel Ext| A-Rel |1y | B-Rel By | CRel =
W e PR e PR W R R §
-REL
55 TAccEpr |ace. | 2 |WRITE | O |INTEGER| O |nil 0
REL
26 | ASSCGN INFOAS 1 |BUFFER | 12 | WRITE 3 |nil 0
27 lenD. lacc. | 2 |WRITE | 0 |INTEGER| 0 |nil 0
ACCEPT |REL
28 |MOD  |nil 0 |BUFFER | 8 |BUFFER | 6 |BUFFER | 10
29 |ADD nil 0 |BUFFER INTEGER 1 |BUFFER 8 T
30 |ADD nil 0 |BUFFER INTEGER 1 |BUFFER 7
31 [GO.TO |nil 38 |l 0 |an 0 |mil 0
32 | ACCEPT |ACC- 3 |READ | O |INTEGER| 0 |nil 0
REL
33 1ASSGN |INFOAS | 2 |READ | 3 |BUFFER | 12 [nil 0
34 rEND- ACC- 3 |READ 0 |INTEGER| O |[nil 0
ACCEPT JREL | |
35 | MOD nil 0 |BUFFER | 9 |BUFFER 6 |BUFFER | 10
36 |ADD 'nil 0 |BUFFER | 10 |INTEGER 1 BUFFER 9
37 ]'SUB irrlil 0 |BUFFER 7 |INTEGER 1 BUFFER 7
38 [GO-TO il 24 |nil 0 |nil 0 |nil 0
Fig. 8. E-CODE relation for the fragment of a program in Fig. 6

element of the queue: READY-QUEUE-DELIMITERS
is a singleton relation for the ‘‘ready’’ queue, and EN-
TRY-QUEUES-DELIMITERS has one tuple for each
queue established for a particular entry.

Access to elements of queues is initially via the DE-
LIMITER relations (giving the first or last elements) and
then by traversing the QUEUE relation (in the appropriate
direction). This is an example of an application that would
benefit from the introduction of recursion into the algebra
(see Section V). Fig. 9 shows an example of some of the

i task- task- master
task-id status v data dade
w

100 . R e sl el

200 S R R T o

300 TR TR Rl g

400 ready - st R

TASK-DESCRIPTOR
: i entry- in-rendez-
entry-id condition vous

ENTRY-DESCRIPTOR

task-id next
400 nil
200 100
100 nil
QUEUES
first last
400 400
READY-QUEUE-
DELIMITERS
entry-id first last
127 200 100

ENTRY-QUEUE-DELIMITERS
Fig. 9. Representation of task information for the kernel.

above relations; we assume that task 300 is active and has
accepted a call to its entry 127 by task 200, so that tasks
300 and 200 are in rendez-vous; task 100 has also issued
a call to entry 127 and is waiting for acceptance, while
other tasks are waiting for execution.

Symbolic run-time debugging is a challenge in a con-
current environment, especially for a very complex lan-
guage like Ada [17]. The need for a debugger was per-
ceived when the ART project was already advanced.
Nevertheless, design and development of our high-level
debugger were easier than they would have been in a more
traditional organization.

The main targets of HARD were [14] the use of Ada
features to debug Ada programs, to facilitate use by Ada
programmers, and the presence of two usage modes, in-
teractive debugging and unmanned execution for moni-
toring and analysis. We used the predicate-action
approach: predicates, commonly referred to as
‘‘breakpoints,’’ are Boolean functions defined for each
event to be detected. The truth of a predicate triggers an
action, which examines or modifies the state of execution.
Actions can be predefined (e.g., ‘‘suspend’’) or user-de-
fined. The interactive usage mode is useful to remove bugs
affecting design requirements, while the unmanned mode
(based on user-defined Ada monitoring tasks) allows
checking for time-dependent errors and evaluation of per-
formances. The user can insert and remove breakpoints
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on a full set of conditions (statement execution, entry call
and accept, exception raise, etc.); he can display infor-
mation about variables, the scope, the history of concur-
rent execution, the kernel status, and so on; and he is able
to manipulate such information in order to modify the
future flow of execution.

As a consequence of homogeneity with Ada, some
HARD features are as follow.

* Breakpoints are implemented as entry calls, which
are inserted into the interpretable E-CODE.

* Predefined actions are implemented through a set of
procedures which are written partly in Ada and partly in
E-CODE (with some extensions).

* Ada tasks are used to build predicates and actions (in
the unmanned mode).

HARD uses data from the program translation and pro-
gram execution subschemas (Fig. 1). A major advantage
of the relational approach has been experienced in obtain-
ing interfaces which are easy to build and access. Further
details on HARD can be found in [14].

IV. TARGET CONFIGURATION CONTROL IN A PROGRAM
CONSTRUCTION SYSTEM FOR MULTIMICROPROCESSORS.
(MML)

In contrast to ART, which was originally conceived to
assess the use of relational methods for prototyping, the
MML [4] project was a four-year cooperative effort of
academic and industrial institutions. MML is a language
cer:ved from Pascal, extended with processes, commu-
nication primitives, and low-level /O, for writing con-
current real-time programs. An innovative feature of
MML is that the architecture and configuration of the tar-
get are variable and can be changed without affecting the
program.

Target systems are ‘categorized at two levels.

® The architecture is roughly the family of intercon-
nectable boards out of which a system can be made. Ex-
amples are the TOMP architecture [13], allowing from 1
to 64 Zilog Z8001 processors and various combinations
of private, local, and global buses and memories, or an
architecture based on Motorola M68000 microcomputers
linked by a LAN.

* Within a chosen architecture, the configuration de-
fines the number and types of processors, the sizes and
attributes of memories (ROM/RAM, private/global), the
interconnection scheme (shared memory, two-port mem-
ory, serial/parallel bus), and the peripherals included in
the actual target system.

Fig. 10 shows two configurations of the TOMP archi-
tecture.

The user of MML must provide a description of the
target configuration. Then he decides, at loading time, the
hardware allocation of his processes. Notice that after a
change in configuration of the target the same source pro-
gram can be reused without recompilation. The structure
of the MML program construction systems, named the
Multi Micro Development System (MMDS) is shown in
Fiz. 11. On the other hand, architectures are defined by
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Serial Channel CH1

lsm:l lPDlll P21 |M21 P102 “_5102'
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Private bus PB1

r Private bus PB2

Local bus LB1
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/

Private hus PB2
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P3 M31 P302 S102
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Fig. 10. A configuration of the target system belonging to the architecture
TOMP. Adding the dashed blocks, another configuration is obtained.

Source MML program.

!

MML COMPILER

1

Intermediate Language
Modules of a single Process.

!

LINKER

v

Linked intermediate

Process code.

Interactive Allocation Session. -

.‘_

Description
Relations.

[nteractive Target ConfigurationSession.

Target
“Architecture
Relations.

Process
Specification.

Process

!

TARGET SYSTEM
DESCRIPTION
ANALYZER

Target

Configuration
Relations.

Run-time System
Library.

L

DISTRIBUTED
PROGRAM
BUILDER

Executable Code Files. CODE CGENERATORS
FOR VARIOLS
+ MICROPROCESSORS
DOWNLOADER
To the Target:

Absolute Code, and
Run-time Svstem Tables

Fig. 11. The MML program construction environment.
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the system designers of MML since introduction of a new
architecture imposes some work: code generation and run-
time support must be retargeted.

All the interfaces between the subsystems are relation-
ally described using a specifically designed DBMS de-
rived from the relational DB of ART, but (unlike ART)
the MML compiler uses conventional data structures for
its internal data. We briefly outline the relations used for
architecture, configuration, and allocation description.

Architecture Description: Its purpose is to define the
range of architectures available to MML users. A suitable
relation describes the properties of each element of the
architecture. Examples are omitted for brevity.

Target Configuration. The target configuration is then
described interactively, under control of a tool which ver-
ifies that the actual values supplied agree with the legal
values, specified in the description tables of the chosen
architecture. Fig. 12 shows part of the relational descrip-
tion for the target system in Fig. 10 (solid lines). Notice
that some of the relations in Fig. 12 represent the topol-
ogy of the target system (processors, memories, buses,
and the connections); others give properties of the target,
such as the access rights of processors to memories.

Allocation Description: The next step for MML users
is to specify allocation of the source programs to the tar-
get resources. Such information is used at load time for
targeting the code and computing the addresses; at exe-
cution time, it is accessed by the kernel and debugger. In
MML, tasks cannot be dynamically created or moved
around at run time.

Examples of relations for allocation description are
shown in Fig. 13; they provide, in particular, the follow-
ing information: 1) the mapping of MML tasks to proces-
sors, 2) the residency of program modules, 3) the link
(including communication protocols) used for communi-
cation between any two processes and 4) the physical ad-
dress corresponding to a certain interrupt signal. Notice
that some tuples (not shown in Fig. 13) are preset to in-
dicate the presence of kernels or other run-time libraries
on some memories. The loading phase is completed by
preparing a summary of relations to be downloaded on the
target for future use by the kernel or debugger; e.g., the
link to be used for rendez-vous by two processes is one
such piece of information. Remember that such relations
are represented by specialized data structures for higher
efficiency.

MMDS was implemented.in Pascal under RSX-11 for
PDP-11 machines. Currently, MML is undergoing a com-
plete redesign in order to become a professional tool, but
he basic relational philosophy has been retained. It is
worth noting that the relational approach has been natu-
rally applied to version management information and that
a commercial DB management system has been used in-
stead of the previous ad hoc relational data manager. The
change was made possible by the growth of resources of
newer Unix host machines. For details on the new MML
environment (termed the Multi Micro Program Support
Environment), refer to [19].
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Processor-Id Model /O Mode

| S AR
P11 28001 I0-Mapped

P21 Z8001 10-Mapped

MODEL AND IO MODE OF PROCESSORS

Memory- .
Processor-Id B ank-?{i Right
e 5 T S S |
P11 M11 read write
P11 M12 read write
P11 MC1 read only
P21 MCl1 read write
P21 M21 read only
P21 M22 read write
ACCESS RIGHTS OF PROCESSORSTO
MEMORIES
Bus-Id Bus-Id
PB1 GB
PB1 LB1
GB LB1
PB2 GB
GB LB2
PB2 LB2
BUSTO BUS
CONNECTIONS
Bus-Id Kind
*
PB1 Private
PB2 Private
LB1 Local
LB2 Local
GB Global
DESCRIPTION OF BUSSES
Unit-Id Link-Id
_
P11 PB1
P21 PB2
PROCESSOR-BUS
CONNECTION
Unit-Id Link-Id
A7 S T A L T T T T O AP SR L
M1l PB1
M12 LB1
M21 PB2
M22 LB2
MC1 GB
MEMORY-BUS
CONNECTION
Aom—Y Size Kind
“
M1 32K ram
M12 8K ram
M2 64K ram

DESCRIPTION OF MEMORY BANKS

Fig. 12. Relations describing the solid line target configuration of Fig. 10
within the MML program construction system.
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Processor-Id Sequence-Id
P11 Consumer
P2l Producer

MAPPING OF MML SEQUENCES (i.e. TASKS)
ONTO PROCESSORS

Program-Module-Id g:?ﬁ?' Offset
Consumer.Data M12 0
Consumer.Code M11 4560

Producer.Data M22 0
Producer.Code M21 4800

LOCATION OF PROGRAM MODULES

Fig. 13. Relations describing the mapping of an MML program onto the
target configuration of Figs. 10 and 12. We assume that the application
consists of two processes, a consumer and a producer, each one split into
a data and a code module.

V. CONCLUSIONS

Relational programming is an attractive evolutionary
paradigm to overcome the present difficulties in software
construction [5]. We have applied relational program-
ming in the ART project, where 16 part-time graduate
students have been working for about two years with little
supervision, and in the MML project, conducted by 6 ex-

perienced persons and a project leader. Both experiences

confirmed the validity of the relational approach for de-
veloping complex evolutionary projects with little central
supervision and, in the first case, a fast turnover. We have
wttempted to analyze the reasons for those successes and
to develop further the method and tools that support re-
lational programming. In our opinion, the main advan-
tages are the following. - .

* In a situation where specifications of the project can-
not be laid down completely, the conceptual approach of
data modeling, typical of DB applications, avoids early
commitment in designing data structures and algorithms.
The analysis is focused on identifying relations and their
attributes and on organizing them in accordance with
functional dependences by applying normalization tech-
niques. This is in contrast with the structured abstract-
data-type approach to software specification and design,
where enormous attention must be devoted early to an ac-
Curate and complete definition of operations and their do-
mains. '

* Relational algebra provides expressive and simple fa-
cilities for extracting the data view which is needed when
new unanticipated functions must be added to the project.
Even when data structures are intricate, as with compiler
symbol tables, their relational description allows easy en-
try for newcomers, who can quickly retrieve the relevant
components of data. Notice that this approach might lead
t0 inefficient algorithms: when new functions are added
o the system, some duplicated processing occasionally
takes place if the newcomers do not care to check whether
Similar processing has already been in the system. How-
tver, unanticipated extensions of software projects devel-
Oped with other conventional approaches often require
Much more costly respecifications and program revisions.

1607

® As a result, the program structure is totally decou-
pled from the team structure: addition of manpower for
new functions is handled by extracting a suitable view
from the DB. Further project documentation is grealy sim-
plified since it coincides with the relational specification
of data: alogrithms are of only private interest to each
team.

* As Codd states in his Turing lecture [11], relational
algebra effectively simplifies procedures by hiding most
iterations within the algebraic operators. As loop com-
plexity is a significant measure of program cost in soft-
ware metrics, it is clear that much effort is thus spared.
However, not all loops can be avoided by relational op-
erators, and some extensions to relational algebra are
needed, as discussed below.

* A relational prototype might be progressively trans-
formed into a working product. This can hardly be done
automatically, but a set of guidelines could be developed
for hand-optimizing the system; an experience of this kind
is described in [27] for a well-known Ada interpreter pro-
totyped in Setl.

Coming to critical aspects of relational programming,
we analyze the current limits and required extensions of
the relational approach.

® Current query languages, as typified by SQL or
INGRES, are specifically designed for interactive use;
even when they provide a program interface, in the form
of procedure calls, this tends to be poorly readable. This
criticism applies as well to ART’s DB manager, which
imposes rather unfriendly list manipulations for setting up
schema descriptors and tuples. We are currently design-
ing a new relational system [8] with a friendlier interface
and more efficient storage management for relations.

* As we mentioned, not all iterative operations can be
handled by relational operators; e.g., the ancestor-de-
scendant relation cannot be computed from the parent-son
relation, as it would require a transitive closure. In ART,
several algorithms including most semantic tree tra-
versal algorithms and the syntax analyzer of Ada source
programs (Fig. 5), would benefit from transitive closures.
In a current development, we have extended algebraic op-
erators with a closure operator, which computes the fix-
point of a relational transformation. Work on the use of
closures for executing recursive Prolog queries on a re-
lational machine is in progress [7].

® Other limitations concern the relational model itself.
A remarkable coincidence of research efforts aiming to
extend the relational data model can be found in the di-
rection of nested relations (or non-first-normal-form re-
lations) [8], [26] [28], [34]. By means of nested relations,
several situations can be more naturally modeled, leading
to simpler relational algorithms.

® A major limitation of relational programming is the
reduced efficiency of programs with respect to imperative
programs, using ad hoc data structures. Indeed, our ex-
periences confirm the fact [29] that a purely relational ap-
proach is impractical, at least using current DB technol-
ogy. This reduces the scope of application of relational
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programming to prototype development (as in ART) or
forces us finally to design efficient data structures when
real-time requirements are heavy (as in MML). However,
this limitation is not a direct consequence of the approach
itself, but rather of current limitations of main memory
DB’s, and particularly of the system specifically used in
our projects. We observe that if all parts of a complex
system are implemented as relational algorithms, it then
becomes appealing to investigate special software and
hardware for fast execution of relational operations in the
central memory, using associative addressing. The per-
formance of such a system should compare favorably to
those of high-level artificial intelligence languages.
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