Algres: An Advanced
Database System for

Complex Applications

-~
-

This relational

programming |
environment extends |

the relational model to
handle complex
objects and operations
and integrates the
logic programming
paradigm.

68

t

Stefano Ceri, Universita di Modena

Stefano Crespi-Reghizzi and Roberto Zicari, Politecnico di Milano
Gianfranco Lamperti and Luigi A. Lavazza, TXT SpA

he cost and complexity of large soft-
Twarc-dcvclopment projects has

spurred research into innovative
development environments. Algres is an
advanced relational programming envi-
ronment for the development of data-
intensive applications that perform com-
plex operations over complex data
structures.

Algres is designed to be used to develop
knowledge bases, software-engineering
systems, office-automation systems, and
computer-aided design and manufactur-
ing databases.

Algres originated from the Art project,’
which gave us positive results in using a
core-memory-resident relatonal database
to realize working prototypes. However,
Art also revealed two major limitations of
pure relational algebra as a prototyping
tool:

¢ The relatonal model cannot direcdy

0740-7459/90/0700/0068/301.00 © 1990 IEEE

model nested structures; it requires that
you flatten structures and introduce artifi-
cial entites such as references or pointers.

* Because relational algebra is not com-
putationally complete, it must be embed-
ded in a traditional language.

Algres overcomes these limitations, yet
stays as close to the relational approach as
possible.

Algres is based on a rigorous formaliza-
ton of a data model, which is an exten-
sion of the relational model, and opera-
tions, which constitute an extended
relational algebra.”* Algres operations
can manage complex objects (similar to
non-first-normal-form relations?) and ex-
press recursive algebraic expressions.’
Therefore, Algres integrates two impor-
tant research areas: extending the rela-
tional model to handle complex objects

| and integrating database technology and

logic programming.

IEEE Software

Algres components

The Algres project is a composite proj-
ect that incorporates the results of several
research efforts:

* We developed a data model that could
support the definition of complex objects
through the type constructors record, set,
multiset, and sequence. Algres lets you de-
fine (to a finite depth) complex objects
that directly model common hierarchical
data structures.

The dynamic part of our model is ex-
pressed through an algebraic language,
Algres-Prefix, designed to limit loop com-
plexity and suppress linked-list structures,
two major sources of programming costs.
Algres-Prefix extends relational algebra
with restructuring operations for nesting
and unnesting objects, direct representa-
tion of ordered sets and multisets, and
tuple and aggregate functions. It also sup-
portsa closure operator, which lets you de-
fine recursive or deductive queries, as ad-
vocated by proponents of Prolog-like
query languages.

Together, these constructions make a
very expressive formalism that we have ex-
perimented with in several applications,
including a database for a tool that sup-
ports algebraic formal specifications and
parts of a computer-integrated-manufac-
turing system.

Algres-Prefix is a complex and novel lan-
guage, so we have provided two ways to
formally specify the semantics of the lan-
guage:

* We have given an interpretation of a
complex object’s schema as a context-free
grammar with regular right parts. In this
way, we define the valid instances of Algres
objects as strings that the grammar gener-
ates and define algrebraic operations as
grammar transformations. Once trans-
formed, the new grammar generates a
string for the resulting Algres object. This
approach, derived from syntax-directed
translator theory, provides a very abstract

July 1990

attribute grammar as a foundation for the
Algres compiler and interpreter.

* We used Rap, a tool for axiomatic ab-
stract-data-type specifications developed
at the University of Passau, West Germany,
to formally specify Algres-Prefix.® From
the executable Rap specifications, we ob-
tained a preliminary prototype of the Al-
gres environment, which we recoded in
Prolog to improve efficiency. The Prolog
prototype has let us evaluate critical Al-
gres constructs early in its development
and influenced the final system’s imple-
mentation.

* Although we integrated Algres with a
commercial relational database system
(Informix), we did not implement it on
top of the commercial system. We did this
for efficiency: Operations involving
nested loops, nested relations, or fixpoint
computations would be very expensive if
executed in a conventional database sys-

- tem. We assume that Algres will be applied

exclusively to medium-sized complex data

structures, rather than to very large data-

bases. . | '

Figure 1 shows the Algres environment.
Algres runs on Sun 3/60 and 3/80 work-
stations and Digital Equipment Corp.
VAX computers under Unix. The
environment’s core is the translator from
Algres-Prefix to RA (relational algebra)
object code, which is read by the RA ma-
chine. The RA abstract machine provides
runtime support and includes a compiler,
command interpreter, and memory-man-
agement unit. The Informix database-
management system stores relations.

As Figure 1 illustrates, Algres is best de-
scribed as an operational environment
for complex data manipulation, rather
than as a database system, which sets it
apart from other projects that have aug-
mented a relational database system with
support for nested relations. The RA ma-

““chine.is very different from the runtime
support for other dynamic languages
(like Lisp) because its basic operations are

T i —— e —— Eo i —
Graphical interface AlgresQL program| | Datalog program
____________________________ - i %
AlgresQL to Datalog to

Algres-Prefix translator

Algres-Prefix translator

Algres-Prefix program-—

1

| |

Algres-Prefix

3 1 to-RA language translator
~ Alice RA object code j
interface to C
RA Machine Interface to
~——{ «Debugger —~—-| relational database
* Command intepreter L
* Main-memory

management unit

Informix database
management system
Mass-memory storage

Figure 1. The Algres environment.

69

relational and its memory allocation is
compact (no lists or garbage collection).

Algres programs operate on main-mem-
ory data structures, which are loaded
from mass-memory storage in an external
database using explicit statements. The
RA machine can load entire relations or
portions of them (tuples in particular)
using selective and projective load opera-
tions.

The design of the system is based on the
assumption that a typical Algres user will
require only a fraction of the mass-mem-
ory database. We thus assume that main
memory will be sufficient to accommo-
date Algres databases and that speed —
not memory— will be the limiting factor.

Algres objects are stored, both in mass
memory and in main memory, as conven-
tional relations. Algres-Prefix programs
are translated into the RA intermediate,
relational-algebra language. RA provides
traditional algebraic operations on nor-
malized relations, as well as special fea-
tures. We designed it to provide object
code that can be executed efficiently in
the main-memory RA machine.

Algres’s runtime efficiency does not
compete with traditional imperative
Algollike solutions, but it does compare
favorably with other tools and high-level
languages that have been used success-
fully for rapid prototyping, such as Setl
and Prolog.

* We have developed two user languages
you can use with Algres instead of using
Algres-Prefix directly, which is like the as-
sembly language for the RA machine and
1s not easy to use. We designed Algres
Query Language, a multiparadigm, easy-
to-use programming environment that is
an extension of Structured Query Lan-
guage. Programs in Algres Query Lan-
guage are translated into Algres-Prefix be-
fore execution.

We have also used Datalog’™ to graft a
logical style (a la Prolog) onto Algres.
Datalog is a clause-based logic language
developed in the database community
that is syntactically similar to Prolog and
designed to retrieve information from flat
relational databases. Although much
work remains to be done to integrate the
relational and logic paradigms, we have
developed some practical algorithms to
translate Horn clauses into algebraic ex-

70

pressions, at least for basic recursive que-
ries. Datalog programs are also translated
into Algres-Prefix before execution.

* We have developed Alice, an Algres-to-
C interface to exploit existing libraries
and to make Algres facilities available to C
programs. Space limitations prevent us
from describing Alice, which is consider-
ably more advanced than current data-
base-to-language interfaces.

* Finally, we designed a graphical inter-
face to display and create the complex ob-
Jects and the schemas of their relations. A
full description of this window-oriented
interface is outside this article’s scope.

Algres data model

The Algres data model incorporates
standard elementary types (like character,
string, integer, real, and Boolean) and the
type constructors record, set, multiset,

Algres’s runtime
efficiency does not
compete with traditional
imperative Algoklike
solutions, but it does
compare favorably with
other tools and high-level
languages that have
been used successfully

for rapid prototyping.

and sequence. A record is a type construc-
tor for building tuples, which can be col-
lected into sets, multisets, and sequences.

In Algres, an objectis a pair consisting of
aschemaand an instance. The schemaisa
hierarchical structure of arbitrary (but fi-
nite) depth that you build with the type
constructors. The instance must be type-
compatible with the schema.

An Algres-Prefix program has two in-
struction types, which you can interleave
arbitrarily: data definitions, to define ob-
Jects, and algebraic operations applied to
objects.

Object definition. To use a practical ex-
ample, suppose you wanted to model a
production-control system. First you
would define a set of products, each of

which is composed of a set of componen:
In a given quantity. To do so, you woul
define an object consisting of two neste
sets. The first set is the set of all product
the second is the set of all the product
components. We believe this model is ve!
natural because it does not require any a
tificial objects (like pointers) that do n«
correspond to any real entity.

In this example, the Algres-Prefix dat:
definition instruction is

DEF Product-Set: SET OF (
Product-Code: string;
Description: string;
Elements: SET OF (
Component-Code: string;
Component-Quantity: integer)).

This defines the schema of the objec
Product-Set. Description is an elementar
attribute of Product-Set and Elements is :
complex attribute (or subobject) of Prod
uct-Set because it contains the set-of con
structor. You name all objects and thei:
attributes through such data definition
—- you must give distinct names to all attri
butes of objects or subobjects.

You can represent an Algres object’
schema in a graphical tree structure, a
Figure 2 shows. A tree’s internal node:
represent complex attributes and are la
beled| |forrecords, {} forsets, [] for mul-
tisets, and <> for sequences. A tree’s leave:
represent elementary attributes and are
labeled with their type. Figure 2a show:
the Product-Set object’s schema.

You can retrieve objects from a data-
base, create them by entering definitions.
or define them with an assignment state-
ment like this one, which defines the ob-
ject Product-Set:

Product-Set<-{ (P1 Bench { (P24)

(P38)1})
(P2 Leg { })
(P3 Stck | })
(P4 Table { (P24)
(P51)})
(PS5 Top | (P34)
(P62)})
(P6 Drawer { })}

In assignment statements, () enclose
tuples (records), {} enclose sets, [] enclose
multisets, and <> enclose a sequence. You
denote empty sets, multisets, and se-
quences simply by leaving the space be-
tween their respective enclosure symbols
empty.

IEEE Software

To complete our example production-
control system, we must also define ob-
jects that correspond to a daily sequence
of manufacturing operations. We define
each manufacturing operation as a mult-
set of assembling operations in which a
given quantity of products is assembled on
a given assembly line. Furthermore, each
assembly line uses a machine, is subject to
a controller, and requires a given amount
of assembly time.

The data-definition statements for these
manufacturing operation objects are

DEF Assembly-Line (
Machine: string;
Controller: string;
Assembly-Time: integer).
DEF Manufacturing: MULTISET OF (
Product-Code: string;
Assem bl}'-L ine: VS;

Quantity: integer).
DEF Planned-Production: SEQUENCE OF (

Day: string;
Manufacturing: VS).

Assembly-Line is a record with three ele-
mentary. attributes. Manufacturing is a
multiset that includes Assembly-Line as a
complex attribute (VS — for “vide supra”
— refers to a preceding object defini-
tion). Planned-Production is a sequence
of days during which each Manufacturing
object takes place. Figures 2b, 2¢, and 2d
represent the schemas of objects Assem-
bly-Line, Manufacturing, and Planned-
Producton.

A simple instance of Planned-Produc-

tion 1s:

Planned-Production<—= < (1.1.87 [
(P3 (plank John 3) 30)
(PS (plank John 3) 30)
(P2 (router David 5) 45)])
(1.2.87 [
(P2 (plank John 3) 50)]) >.

Operations. The Algres-Prefix language
includes:

* The classical algebraic operations of
selection, projection, Cartesian product,
union, difference, and derived operations
like join, suitably extended to deal with
type constructors and multilevel objects.

e The restructuring operations nest and
unnest, which modify an object’s struc-
ture.?

e Operations to evaluate tuple and ag-

July 1990

PRODUCT-SET
 § A
| { 1
. PRODUCT-CODE DESCRIPTION - ELEMENTS
(string) (string) : {}
1
..... ki r ; ;
COMPONENT-CODE COMPONENT-QUANTITY
(string] - (integer) .
__(-) . ASSEMBLY-LINE
= w0 MACHINE, . CONTROLLER ~ ~ ~ ASSEMBLY-TIME .
sl e e T (integesy - oF 0

(b)} < e 2;- 4 Giatiy _ e : , . ; . . . : M. o z . " | ﬁ ’ 1: : l
: by b ; : v ._ 5 }” = K e :v : [1 . 1 ‘ ® ; :'v\ w“‘;““&, ‘ :‘v \ﬁ
s Pacnucrcuns oS w%ASSEMB[.Y-UNEk =g QUAW = |
R .*.__: Sy » (Stnnﬁ)a x§ ‘« S **,, 5 s % ; - (lmegﬂﬁg »,g,.“ 35 o
o :l MACHII\IB commusﬂ 2 ASSEMBLY-?I#AES-{- e
ot ey {string} (strmg) (mteger} e
Sty Sl

b T e PLANNED PHDDUCTION R

' DAY' MAMUFACTURING
, : A e 1
PRODUCT.-CODE ASSEMBLY~LINE QUAM'{ITY
(string) TR (mteger)
| T
MACHINE CONTROLLER ASSEMBLY-TIME
(d) (string) (string) (integer)

Figure 2. The Algres object schemas for (af Product-Set, (b) Assembly-Line, (¢) Manu-
facturing, and (d) Planned-Production represented as graphical tree structures.

gregate functions over objects and sub-
objects.

¢ Operations to transform types.

* A closure operator, which iteratvely
evaluates an algebraic expression until
the result reaches a fixpoint as a termina-
tion condition.’

Each Algres-Prefix operation has a pre-
fix operation code. This code is either
unary or binary and may have a specifica-
tion part enclosed in brackets. Each oper-
ation constructs an object. Operations
can be combined to form expressions.

For our example, we use the classic bill-
of-material problem, which involves evalu-
ating the number of elementary compo-
nents in a product. It is well known that
this problem cannot be solved by standard
relational algebra.

First, you must determine the end prod-
ucts, which are those products thatare not
components of other products. In Algres,

you program this in two steps.

The first step is to determine the set
(Component-Set) of all existing compo-
nents. You do this by writing an expression
with the algebraic operations Project and
Unnest. The Algres-Prefix instructions
and the resulting object are

Component-Set <—
UNNEST [Elements]
PROJECT [Component-Code]
Product-Set.

Component-Set =
{(P2) (P3) (P5) (P6)].

The first operation is a projection on the
Component-Code attribute of the Prod-
uct-Set object. A projection eliminates the
attributes not mentioned in the specifica-
tion part, while it preserves the hierarchi-
cal object structure. Figure 3a shows the
resulting schema of the intermediate ob-
ject from this projection, a set of sets. The

V i

{}

|
ELEMENTS

{}

I
COMPONENT-CODE
(string)

(a)

COMPONENT-SET
{}
I

COMPONENT-CODE
(string)

(b) |
END-PRODUCTS
{}
; i G
~ 'PRODUCT-CODE
(c) . (string) ;
A : 4+

o

Figure 3. (a) Schema of an intermediate
object that is the result of a projection on
the Component-Code attribute of the
Product-Set object; (b) result of Unnest
operation on the set of sets, the new Com-
ponent-Set object; and (¢) result of projec-
tion over Product-Code, the object
End-Products.

second operation, Unnest, transforms a
set of sets into a simple set.>® Figure 3b
shows the result of Unnest, the new Com-
ponent-Set object (new objects are cre-
ated with the assignment operator).

The second step in determining the end
products is to evaluate those products that
are not components. To do this, you use
the Selection operation, which eliminates
the tuples of an object or subobject that
do not satisfy a selection predicate.

End-Products <-
PROJECT [Product-Code)
SELECT [Product-Code NOT-IN
Component-Set]
Product-Set

End-Products={ (P1) (P4) }.

In this case, you test that Product-Code is
not in Component-Set, which has already
been evaluated and is used here as a con-

72

stant object. A projection over Product-
Code reveals the result; Figure 3c shows
the schema of object End-Products. This
example shows that the compiler can infer
the schema — you need not declare it.

Now that you have determined the end

‘products, you must face the more difficult

task of evaluating the bill of material. For
example, if P1 is made of four units of P4
and P4 is made of three units of P6, a bill-
of-material computation evaluates that P1
1s made of 12 units of P6. You must apply
this construction recursively to obtain the
desired result.

The Closure operator plays a funda-
mental role in evaluating bill-of-material.
Closure is a unary operator that, in the
simplest case, can be defined as

CLOSURE [Expression] Argument

where Closure is applied to a set/object

The classic
bill-of-material problem,
which involves
evaluating the number of
elementary components
in a product, cannot be
solved by standard
relational algebra.

called Argument. ‘Argument may also
occur in the expression in the specifica-
tion part; this is required to obtain the
fixpoint of nonlinear expressions.

At each iteration, the Closure operation
evaluates the expression over the current
result, which initially is equal to Argu-
ment. The result is united to the current
result, yielding the next operand of the
expression. The new value of Argument is

substituted to the operand as well as to all

occurrences in the expression. The itera-
tion terminates when the result remains
identical for two consecutive iterations;
the result of Closure is then the last value
of Argument. Obviously, the correctness
of Closure requires that the expression’s
result be type-compatible with Argument.

To understand the meaning of this op-
erator, consider that if the expression is
monotonic (with respect to set inclusion)

in its Argument, the Closure operation
evaluates the unique minimal fixpoint of
the algebraic equation

X = Expression (X) U Argument

In this case, Closure terminates in a finite
number of iterations.

However, termination is notguaranteed
if the expression is not monotonic (for ex-
ample, if it uses a set-difference opera-
tion). Therefore, to program with the Clo-
sure operator, you must first understand
how to structure Argument so it leads to
an iterative evaluation.

In this_example, a convenient structure
is a triple, <X, Q,Y>. Each component Xis
made up of Q instances of component Y.
We chose the End-Products set as the ini-
tial Argument value, initialized so each
end product has the quantity 1 — itself.
We obtained this by applying the opera-
tion Tuplextend twice to the End-Prod-
ucts object, which has been evaluated pre-
viously.

Argument <—
TUPLEXTEND [Arg-Component:=

Arg-Product]
TUPLEXTEND [Arg-Quantity:=1]
RENAME [Arg-Product:= Product-Code]
End-Products.

Argument={ (P1,1,P1)
(P4,1,P4) }.

Tuplextend extends an object’s schema
and instance; its specification indicates
the new attribute’s name and the function
required to evaluate it. We used the Re-
name operation here to change the name
of one elementary attribute.

Now you can apply the Closure operator
to Argument to produce the bill of mate-
rial. The difficult part is to generate a suit-
able expression whose result is type-com-
patible with Argument. The expression
we used to do this contains the Unnest op-
eration on Elements applied to the Prod-
uct-Set object (Unnest transforms a set of
sets into a set). The resulting object is
Jjoined to Argument; a join is simply a se-
lection over a Cartesian product, as in
standard relational algebra. Then a
Tuplupdate operation evaluates, asan up- -
date to the Arg-Quantity attributes, the
quantities of each subcomponent in a
given component. Finally, the expression
projects the result to obtain triples that

IEEE Software

are type~compatible with Argument.

Bill-of-material <-
CLOSURE
[PROJECT [Arg-Product,
Arg-Quantity, Component-Code]
TUPLUPDATE [Arg-Quantity:=

Arg-Quantity * Component- Quantity]
JOIN [Product-code=Arg-Component]
UNNEST [Elements] Product-Set]

Argument.

Bill-of-Materials={(P1, 1, P1

(P4,4,P2)
(P4,1,P5)
(P4,4,P3)
(P4,2,P6)).

In this expression, the Unnest operation
applied to Product-Set in the iterative Clo-
sure expression can be moved out of the
loop because it does not change at each
iteradon. You can do this by preevaluating
an Unnested-Product-Set object:

Unnested-Product-Set <—
UNNEST [Elements] Product-Set.

Unnested-Product-Set ={
(P1, Bench, P2,4)
(P1, Bench, P3,8)
(P2, Leg, NULL ,NULL)
(P3, Stuck, NULL, NULL)
(P4, Table,P2,4) .
(P4, Table,P5,1)
(PS, Top, P3,4)
(PS, Top, P6,2)
(P6, Drawer, NULL, NULL) }.

Then you rewrite the Closure expression
so you join Unnested-Product-Set directly
to Argument. This example shows that un-
nesting empty sets generates null elements.

Other features. Our production exam-
ple also illustrates other Algres-Prefix fea-
tures. For example, we used the Aggrfun
operation to evaluate all assembly times
on each day of production. Aggrfun does
this by evaluating the aggregate function
Sum over Assembly-Time in the Planned-
Production object:

Assembly-Timel <-
PROJECT [Day,Sum-Assembly-Time]
TUPLEXTEND [Sum-Assembly-Times:=
AGGRFUN
[SUM/ {A.ssembly-Tlme*Quanm}f) 1]
Planned-Production.

Assembly-Timel =
{(1.1.87,405) (1.2.87,150) |

July 1990

INTERMEDIATE-OBJECT

|
DRY: 20

(string)

MANUFACTURING - SUM-ASSEMBLY-TIME
(string) ;
, { 1
PRODUCT-CODE ASSEMBLY-LINE QUANTITY
(string) s (integer)
: | 1 | 3
MACHINE CONTROLLER ASSEMBLY-TIME

(string)

(string)

Figure 4. Schema of the intermediate object Tuplextend, showing a new Sum Assem-
bly-Time attribute to store the results of the aggregate function.

Figure 4 shows the schema of the interme-
diate object Tuplextend [Sum-Assembly-
Times:= Aggrfun/Sum/ (Assembly-
Time*Quantity)]] Planned-Production.
This schema shows that a new attribute,
Sum-Assembly-Time, has been added to
the hierarchical level immediately above

the attributes Assembly-Time and Quan-

tity. This attribute lets us store the result of
the aggregate function.

Next, you transform the Assembly-
Timel object into a sequence, sorted by
day. To do this, we used the type-coercion
operator Makeseq, which generates a se-
quence; its specification indicates an as-
cending order:

Assembly-Time2 <-
MAKESEQ [ASC Day] Assembly-Timel

Assembly-Time2 =
<(1.1.87,405) (1.2.87, 150)>

RA abstract machine

Algres objects are stored, both in mass
memory and in main memory, as conven-
tional relations. For example, the RA ma-
chine translates the Algres object shown
in Figure 5a into two RA relations shown
in Figure 5b.

The RA machine maps Algres objects to
RA relations by mapping each set, mulu-
set, and sequence object or subobject to a
distinct relation. Subobjects are linked to
their parent objects through attribute
pairs, called pointer and pointed respec-
tively. For example, if the Family object
equals 01 and the Car object equals 02, the
main-memory representation of 01 re-
quires a pointer attribute and the repre-
sentation of 02 requires a pointed attri-
bute to model the one-to-many

relationship between the tuples of 01 and

DEF Family : SET OF (Name: string,
Age: integer,

Cars: MULTISET OF (Brand: string)).

Family<-{ (john 46 [(buick) (ford) (ford)])
(mary 45 [(GM)])
(david 17 [(dar.sun) 1)
(deborah 15 4

(a)

Family (Name:string, Age: integer, Car: pointer).

Car (Family: pointed, Occ: integer, Brand: string).

FAMILY Name Age Car-ptr | CAR Family-ptd Occ Brand
john 46 l 1 1 buick
mary 45 2 1 2 ford
david 17 3 2 1 GM
deborah 15 0 3 1 datsun

(b)

Figure 5. (a) Algres object and (b) the results of its translation by the RA machine into

RA relations.

73

DEF Library: SET OF (

(a)

—
.

Subject: string,
Books: SET OF (First-Author: string,

DEF All-Book-Authors: SET OF(Books: SET OF (Author: string))

Algres-Name Algres-Id
Library 1
All-Book-Authors 2
(b) |
Algres-Id RA-Id

1 1

1 2

2 1
-2 2
()
Algres-ld RA-Id ATId AT-Name Type Ref Offset Mark
1 1 1 Subject string NULL 1 NULL
1 1 2 Books pointer 2 2 NULL
1 2 1 Subject pointed 1 1 NULL
1 2 2 First-Author string NULL 2 NULL
1 2 3 Title sting NULL 3 NULL
1 2 4 Year integer NULL 4 NULL
2 1 1 Books pointer 2 1 NULL
2 2 1 All-Book-Authors pointed 1 1 NULL
2 2 2 Author sting NULL 2 NULL
)

Tide: string,
Year: integer)).

Figure 6. (a) Algres objects Library and All-Book-Authors and their (b) Algres- Descnp-
tor, (e) RA-Descriptor, and (d) AT-Descriptor directory relations.

02. In implementating pointer and
pointed attributes, we used explicit (inte-
ger) values, but we are considering using
physical pointers instead to improve effi-
ciency.

In the example in Figure 5, the names of
RA relations and attributes are symbolic,
but the Algres-Prefix-to-RA translator and
RA machine use the actual numeric iden-
tifiers, which were generated automati-
cally. You can store these RA relations in
the Informix mass-memory database with-
out conversion by using two system-con-
trolled attributes. To represent multisets,
you store each identical tuple only once
and use the system-controlled attribute
Occ to give the number of occurrences of
identical elements within the multiset.
Similarly, instead of representing se-
quences by the physical ordering of
tuples, sequence objects have a system-
controlled attribute Pos, which gives each
tuple’s position in the sequence.

RA machine organization. The RA ma-

~ chine is a hierarchy of three virtual ma-

74

chines: the debugger, the command inter-
preter, and the memory-management
unit.

The debugger provides step-by-step exe-
cution, tracing, and visualization of inter-
mediate results. The command inter-
preter supplies procedures to visualize
Algres objects and to execute RA pro-
grams. The memory-management unit
implements memory management for re-
lations, tuples, and attributes, while hid-
ing their physical organization.

The memory-management unit stores
each Algres object as a sequence of contig-
uous RA relations, each RA relation as a
sequence of contiguous tuples, and each
tuple as a sequence of contiguous attri-
bute values. It implements all memory
blocks as arrays of bytes, which means that
all database values are represented inter-
nally as byte strings and are type-con-
verted for presentation and computation.
The type-conversion facilities of C (the im-
plementation language) ease these con-
versions. Finally, because the memory re-
quired is not known in advance,

fixed-length memory blocks are allocate«
dynamically.

In main memory, RA relations ar
stored in two opposite instance stacks
which grow against each other. The firs
stack is segmented into permanent anc
temporary areas. The permanent area
stores objects that must be retained
throughout an Algres session. Permanent
objectsinclude objects imported from the
mass-memory resident database and ob-
Jects obtained by assignment instructions
in Algres-Prefix. The temporary area
stores objects that can be discarded as
soon as they have been used. Temporary
objects contain the intermediate results of
a computadon. The second stack contains
only temporal objects.

We chose to organize the main memory
into two opposite stacks to avoid frag-
menting the storage area, thus reducing
the need for expensive garbage collec-
tion. We developed a special algorithm for
stack management that guarantees that,
whenever we compute an algebraic opera-
tion involving one or two Algres objects as
operands, all the operands are allocated
on the same stack and the result is written
to the opposite stack. The algorithm also
guarantees that permanent objects that
are evaluated by any expression are always
allocated to the first stack.

This means that you can include perma-
nent objects in the permanent area of the
first stack simply by changing the value of
the stack pointer that separates the per-
manent and temporary areas. In this way,
the permanent area grows by enclosing
permanent objects in the order in which
they are evaluated. On the other hand,
temporary areas can be discarded (again
by manipulating stack pointers) as soon as
their objects have been used in the com-
putation because they cannot be refer-
enced by other parts of the program.

Some RA operations that are applied to
temporary results are performed by Mark
attributes, which are invisible to users. For
example, to perform selections and pro-
Jections over temporary objects you mark
the selected tuples or projected attributes.
This lets you execute some operations di-
rectly on the stack where the operand is
allocated without copying objects from
one stack to the other.

IEEE Software

Directory. The RA machine maintains a
directory that describes the mapping of
an Algres object to a RA relation. Each
mapping consists of three RA relations:

Algres-Descriptor
(Algres-Name, Algres-Id)
RA-Descriptor
(Algresld, RA-Id, Stack,
Start-Addr, End-Addr, Tuple-Length,
Cardinality)
AT-Descriptor
(AlgresId, RA-Id, AT-Id, AT-Name,
Type, Ref, Offset, Mark)

The first, Algres-Descriptor, contains
the mapping from Algres-Prefix names to
internal identifiers.

The second, RA-Descriptor, contains
one tuple for each RA relation. It indi-
cates the identifier of the RA relation, the
identifier of the corresponding Algres ob-
ject, the stack number, the start and end
addresses in that stack, and the length and
number of tuples.

The third, AT-Descriptor, contains one
tuple for each attribute in an RA relation.
It indicates the Algres and RA identifiers,
the attribute identifier, the name, the
type, a reference to RA relations (used if
the attribute is of type pointer or point-
ed), the offset of the attribute within the
tuple, and a Mark, which in temporary ob-

jects indicates whether the attribute has
been projected.

Candidate keys for Algres-Descriptor
are both Algres-Name and Algres-Id, the
unique key of RA-Descriptor is the pair
<Algres-Id, RA-Id>, and the unique key of
AT-Descriptor is the triple <Algres-Id, RA-
Id, AT-Id>. The RA machine implements
directory relations as arrays of records,
which are stored in two opposite directory
stacks. These stacks are managed like the
data stacks.

For example, the Algres objects Library
and All-Book-Authors, defined in Figure
6a, would have the directory relations
shown in Figure 6b, 6c, and 6d.

RA object code. RA objectcode instruc-
tions, produced by the translator, have
this format:

<operating code> <operandl>
<operand2> <result>

where <operating code> identifies an RA
operation and <operandl>, <operand2>,

July 1990

DEF Library: SET OF (

Library <-{ (English Literature, |

(American Literature, {

All-Book-Authors={ (

Subject: string,
Books: SET OF (

(Shaw,Pygmalion,1914)
(Shakespe
(Dickens,Oliver Twist,1838)
(Shakespeare,King Lear,1606)
(Shakespeare,Macbeth,1606) }),
(Hemingway,A Farewell to Arms, 1929)
(Steinbeck,Of Mice and Men,1937)
(Hemingway,For Whom the Bell Tolls,1940)
(Hemingway,The Old Man and the Sea,1952)
(Bellow,Humboldt's Gift,1975)})}

DEF All-Book-Authors: SET OF(Books: SET OF (Author:string))

{(Shaw) (Shakespeare) (Dickens)})
({(Hemingway) (Steinbeck) (Bellow)}) }

First-Author: string,
Title: string,
Year: integer)).

are,Hamlet,1601)

Figure 7. Algres object definitions for Library and All-Book-Authors.

and <result> indicate either an RA rela-
tion or an attribute of an RA relation
(some instructions have only one oper-
and). A translator transforms each Algres-
Prefix operation into a sequence of RA in-
structions:

ENTER Stack-Number

< instructions to generate the schema
of the result object>

< instructions to generate the instance

of the result object>
"END Num-Rel

where Stack-Number indicates in which of
the two stacks the result must be written,
and Num-Rel is the number of operand
relations to be deleted from the opposite
stack.

An example of how an Algres-Prefix op-
eration is executed is a projection

PROJECT [Al...Am] Object

where Ai are names of attributes, possibly
at different hierarchical levels of Object.
In the execution, first the list Al to Am s
transformed into a larger list, Al to An,
which includes the ancestors of all attri-
butes in the list Al to Am, even if they are
not mentioned in the list. You must in-
clude them because you must mantain all
intermediate levels between projected at-
tributes and the root in the schema of the
resulting Algres object.

Next, to perform the projection you ac-
cess the RA relations in suitable order and
mark attributes that do not appear in the
list Al to An. Ifan RA relation corresponds
to a set, you first detect and delete repli-
cated tuples generated by the projection;
thisis in fact achieved directly by using the

Mark attribute. If an RA relation corre-
sponds to a multiset, you modify the Occ
attribute. If an RA relation corresponds to
a sequence, you do not perform an addi-
tional operation. These operations are ex-
ecuted on the current stack; the marked
tuples and attributes of RA relations are
then copied to the other stack.

- Consider again the Algres Library ob-

ject and the Algres-Prefix projection:

AH-Book-Authors <-
PROJECT [First-Author] Library

The Library and All-Book-Authors ob-
jects (schemas and instances) are shown
in Figure 7.

The RA code obtained by translating
the above Algres-Prefix projection is

ENTER 1
PJSEQ 12
FIELD 121
FIELD 122
ENDP]
REMDUP 12
COPY 1121
COPY 1222
END 2

This code assumes that the resultis copied
to the first stack, while operations can be
performed directly on the operand rela-
tion on the second stack.

* Enter is the heading of an Algres-Pre-
fix operation and its parameter (1 in this
example) identifies the stack on which
the result must be written.

* End is the end of an Algres-Prefix op-
eration and its parameter gives the num-
ber of temporary RA relations to be de-
leted from the stack.

75

SET Product-set
ITEM Product-Code: STRING
ITEM Description: STRING
SET Elements

END
END;

RECORD Assembly_line
ITEM Controller: STRING
ITEM Machine : STRING

END;

MULTISET Manufacturing

ITEM Product-Code: STRING
RECORD Assembly_line: VS
ITEM Quantity: INTEGER
END;

LIST Planned_Production
ITEM day: STRING
MULTISET Manufacturing: VS
END;

ITEM Componentcode: STRING
ITEM Component-quantity: INTEGER

Figure 8. AlgresQL program for computing the bill-of-material problem.

* Pjseq describes the schema re¢sulting
from the projection by specifying the attri-
butes to be preserved. Its parameter indi-
cates the RA relation on which the projec-
tion is performed, indicated by the pair

<Algres-Id, RA-Id>. Each projected attri-
bute is introduced by the operating code
Field, and is indicated by the triple <Al-
gres-ld, RA-Id, AT-Id>.

* Endpj concludes a sequence of Fields,

Component_Set :=
UNNEST Elements

FROM Product_set) ;

End_Products :=
SELECT Product_Code
FROM Product_Set

: Argument =

[NEW] Arg_quantity = 1,
FROM End_Products;

Bill_of Material :=
CLOSE Argument ON
(SELECT Arg_product,

Component_Code
FROM (UNNEST Elements
FROM Product_set),

Argument

FROM (SELECT Component_Code

WHERE [Product_Code NOT_IN Component_Set] ;

SELECT Arg_Product= RENAME Product_Code,

[NEW] Arg_component = Arg_Product

[NEW] New_quantity = Arg_quant * Comp-quantity,

WHERE Product_Code = Argument_Component);

Figure 9. AlgresQL program to build the Component-Set, End-Products, Argument, and

Bill-of-Material objects progressively.

76

indicates the attribute list is finished, and
executes projection.

* Remdup operates on RA relations by
removing duplicate tuples after projec-
tions.

e Copy is a two-operand operation that
copies one RA relation into another one.
In this case, it transfers to the opposite
stack the result of the projection opera-
tion performed on a temporary object
(only marked attributes are copied). Each
operand is a pair, <Algres-Id, RA-Id>.

User languages

The Algres programming environment
is multiparadigm. You can interact with
the system with two languages, Algres
Query Language and Datalog.

AlgresQL extends Structured Query
Language to deal with all features of the
Algres data model in a query-language
programming style. AlgresQL is com-
putationally equivalent to Algres-Prefix,
but is easier for those accustomed to SQL
to use and read.

Datalog, while it deals only with a subset
of the Algres data model’s features, lets
you program in a logic-programming
style. The computational power of
Datalog is included in that of Algres-Pre-
fix. You can write part of your program in
the programming style you prefer and
translate the AlgresQL and Datalog por-
tions into Algres-Prefix before execution.

AlgresQL. To SQL we have added lan-
guage constructs to express explicity the
Closure, Nest, and Unnest operators and
to deal with multisets and sequences (in-
cluding type transformation).

We extended SQL'’s basic block struc-
ture, which is based on Select-From-
Where clauses, by supporting the use of
block structures recursively within the Se-
lect and From clauses. You can nest que-
ries in both Select and From clauses.

The definition of Algres-Prefix opera-
tors dictated our SQL extensions, which
are comparable to those proposed in the
AIM-II project at IBM Heidelberg, West
Germany,” and by Hans Sheck and Mark
Scholl.* The AIM-II language, however,
supports neither the multiset and list data
types nor a closure operator; Shek and
Scholl’s language does not have a closure
operator.

IEEE Software

Like SQL, AlgresQL is composed of
data-definition, query, and data-manipu-
lation statements. In addition, database-
interface statements let your program in-
teract with the external database.

Figure 8 shows the AlgresQL program
for computing the bill-of-materials prob-
lem. Data-definition statements define
the Product-Set, Assembly-Line, Manufac-
turing, and Planned-Producton objects.
These AlgresQL definitions are equiva-
lent to Algres-Prefix’s data-definidon in-
structions.

You then build the Component-Set,
End-Products, Argument, and Bill-of-Ma-
terial objects progressively, using the same
strategy as in Algres-Prefix,.as shown in
Figure 9. In fact, each AlgresQL statement
can be easily translated into its corre-
sponding Algres-Prefix expression.

Datalog. Datalog is a logic language de-
signed specifically to query a relational
database. A Datalog program is simply a
collection of Horn clauses — logic formu-
las with a particular structure. Horn
clauses are one of three types:

 Facts are assertions about the real
world. Conventional relations are collec-
tions of facts with the same structure.

* Rules express the behavior of the real

world. Rules have a head (also called a
conclusion) and a body (also called the
premise). Intuitively, a rule means that if
the premise holds then the conclusion
holds.

* Goals express queries on the real
world. A Datalog processor uses facts and
rules to answer all the queries of agoal.

Syntactically, Datalog is similar to Pro-
log. However, it is much simpler than Pro-
log because it does not include special
predicates (like Cut) and function sym-
bols and because it partially restricts nega-
tion. Datalog’s semantics is set-oriented.
The retrieval of all possible answers to a
goal uses a breadth-search strategy (in-
stead of Prolog’s depth search). Further,
the result of a queryisindependent of the
order of clausesin the program or of pred-
icates in clauses (Prolog is order-sensi-
tive).

Datalog programs formulate logic que-
ries over potentially large collections of
facts that are stored through conventional
relations. Returning to the bill-of-material

July 1990

problem, in Datalog you would describe
the product-component relationship sim-
ply as a set because Datalog does not deal
with complex objects.

DEF Product-Set: SET OF (
Product-Code: string;
Component-Code: string;
Quantity: integer).

Computing the bill-of-materials prob-
lem in Datalog is similar to doing so in
Algres-Prefix and AlgresQL. You need
rules to evaluate

* the components set (products whose
code appears as the second attribute of
the Product-Set object),

e the End-Products set (products whose
code does not appear in the set of compo-
nent codes),

e the start (nonrecursive) definition of
the Bill-of-Material object for each End-

Algres provides a novel

approach to very
high-level programming
and an open laboratory
for the integration of
relational and logical
techniques.

Product, stating that each end product
consists of itself in quantity 1, and

* the recursive definition of Bill-of-Mate-
rial for components belonging to an arbi-
trary depth level in the part-component
ree.

The Datalog rules to model this prob-
lem are

Component(X):~Product-Set(_,X,_).

/*rulel */
End-Product(X):-= Product-Set(X,_,_),
not Component(X). /*rule2*/
Bill-Of-Material (X,1,X) := End-Product(X)
/*rule 3 */
Bill-Of-Material (X,Y,Z) :-
Bill-Of-Material (X,Q1,W),
Product-Set(W,Z,Q2),
Times(Q1,Q2.Y). /*ruled */

Rule 1 simply says that a Component is
any part appearing as second argument of
the predicate Product-Set; this predicate

is assumed to be stored in mass memory.

Rule 2 says that a finite product is any
product that does not also appear as a
component. This use of negation is ac-
ceptable because negation is safe.

Rule 3 evaluates the nonrecursive part
of a bill of material, by stating that each
finite product is made of one unit of itself.

Rule 4 evaluates the recursive part of a
bill of material. It asserts that — if X is
made of Q1 components Wand Witself is
made of Q2 components Z— Xis made of
Q1 * Q2 components Z

It is easy to translate Datalog programs
with one recursive predicate to a standard
relational algebra that has been enriched
with a fixpoint operator.” Thus, relational
algebra extended by the Closure opera-
tion is a suitable environment to execute
Datalog queries. In fact, we do not use
much of the expressive power of the Al-
gres data model. We are considering
Datalog extensions to deal with complex
objects, as LDL-17 and similar languages
do.

However, it is more difficult to translate
rules with mutually recursive predicates,®
and we are now evaluating extensions to
the Closure operation to do this effi-
ciently.

e believe that Algres provides a
novel approach to very high-
level programming and an

open laboratory for the integration of re-
lational and logical techniques. It also
provides an alternative to Lisp and Prolog
runtime environments.

All the components of the Algres envi-
ronment are operational; the system 1is
written entirely in C. We are now expand-
ing the graphical interface to handle Al-
gres expressions and extending Datalog
as a query language. We will make a distri-
bution kit of the Algres system available
for nonprofit use at a nominal fee.

More work is needed to develop a de-
sign methodology and an effective style
for Algres-based developments.

We are using Algres in the ESPRIT
Phase 2 Stretch project (Project 2443) to
rapidly prototype an extended database
system — Logres — that integrates the ob-
ject-oriented data-modeling paradigm
and the rule-based approach for the spec-
ification of queries and updates. ' <

77

Acknowledgments

We thank everyone who has contributed to
the Algres project, especially Alberto Dapra,
Stefano Gatti, and O. Zaffaroni of TXT; Georg
Gottlob of the University of Vienna; Letizia
Tanca of Politecnico di Milano; and M. An-
tonetti, S. Aliverti, G. Bossi, Filippo Cacace, F.
Cesani, P. Dotti, Marco Ferrario, M. Giudici, D.
Milani, P. Nasi, A. Pastori, A. Patriarca, M. Patri-
arca, G. Pisani, M. Riva, and P. Vagnozzi. We
also thank the anonymous referees for their
comments.

The Algres Projectis mainly supported by ES-
PRIT Project 432 (Meteor). We also acknowl-
edge partial support of the Italian Research
Council, the Italian Ministry of Education’s
40% research program, and the Rank Xerox
University Grant Program. :

:

References "

1. S.Cerietal., “Software Prototyping by Rela-
tional Techniques: Experiences with Pro-
gram Construction Systems,” IEEE Trans.
Software Eng., Nov. 1988, pp. 1,597-1,609.

2. S.Abiteboul and N. Bidoit, “Non-First-Nor-
mal Form Relations to Represent Hierar-
chically Organized Data,” Proc. Third ACM
SIGMOD-SIGACT Symp. Princ. Database Sys-
tems, ACM, New York, 1984.

3. P.Dadam etal., “A DBMS Prototype to Sup-

Gianfranco Lamperti is 2 member of the re-
search staff at TXT SpA. His research interests
include the study and development of software-
engineering activities and extensions of rela-
tional algebra.

Lampert received a doctor degree in electri-
cal engineering (computer science) from the
Politecnico di Milano.

port Extended NF2 Relations: An Inte-
grated View on Flat Tables and Hierar-
chies,” Proc. ACM SIGMOD, ACM, New
York, 1986.

4. H.J.Shekand M.H. Scholl, “The Relauonal
Model with Relaton-Valued Attributes,”
Information Systems, 1986.

5. A. Aho and J. Ullman, “Universalities of
Data-Retrieval Languages,” Proc. Sixth ACM
Symp. Princ. Programming Languages, ACM,
New York, 1979.

6. L. Lavazza and S. Crespi-Reghizzi, “Alge-
braic ADT Specifications of an Extended
Relational Algebra and Their Conversion
into a Running Prototype,” in Workshop Al-
gebraic Methods, Theory, Tools, and Applica-
tions, W. Bergstra and N. Wirsing, eds.,
Springer-Verlag, New York, 1987.

7. C.Beeri etal., “Sets and Negaton in Logic
Data Language,” Proc. Sixth ACM SIGMOD-
SIGACT Symp. Princ. Database Systems, ACM,
New York, 1986.

8. S.Ceriand L. Tanca, “Optimization of Sys-
tems of Algebraic Equations for Evaluating
Datalog Queries,” Proc. Very Large Databases,
Morgan Kaufmmann, Brighton, England,
1987, pp. 3141.

9. S. Ceri, G. Gottlob, and L. Tanca, ‘Rela-
tional Databases and Logic Program-
ming,” Surveysin Computer Science, Springer-
Verlag, New York, 1990 (to appear).

10. F. Cacace et al., “Integrating Object-Oni-
ented Data Modeling with a Rule-Based
Programming Paradigm,” in Proc. ACM
SIGMOD, ACM, New York, 1990.

Luigi A. Lavazza is a member of the research
staff at TXT SpA. His research interests include
the study and development of software-engi-
neering activities and extensions of relational
algebra and logic programming.

Lavazza received a doctor degree in electrical
engineering (computer science) from the
Politecnico di Milano.

Stefano Ceri is professor of computer science
at the Dipartimento di Matematica Pura ed
Applicata, Universita di Modena, Italy, and a
visiting professor at Stanford University. His re-
search interests include distributed databases,
database design, and the use of databases in
software engineering and logic programming.

Ceri received an MS in computer science
from Stanford University and a doctor degree
in electrical engineering (computer science)
from the Politechnico di Milano.

Stefano Crespi-Reghizzi is professor of com-
puter science at the Dipartmento di Ele-
ttronica, Politecnico di Milano and the coordi-
nator of the doctoral program in electronics
and computer science. His research interests
include formal languages, automata, seman-
tics, and the convergence of artificial intelli-
gence, databases, and software-engineering
technologies.

Crespi-Reghizzi received a doctor degree in
electrical engineering (computer science)
from Politecnico di Milano and a PhD in com-
puter science from the University of California
at Los Angeles.

A : -
+ ‘ n " g .-': i,

Roberto Zicari is an associate professor of com-
puter science at the Politecnico di Milano. His
research interests include the definition of ad-
vanced database systems for complex applica-
tions, database theory, and office automaton.

Zicari received a doctor degree in electrical
engineering (computer science) from Poli-
tecnico di Milano.

Address questions about this article to Zicari at Politecnico di Milano, Dipartimento di Elettronica, Piazza Leonardo da Vinci 32, 1-20133 Milano,

Italy; Bitnet relett] 5@imipoli.bitnet

/8

£

IEEE Software

