
Private Relationships in Social Networks

Barbara Carminati Elena Ferrari Andrea Perego

DICOM, Università degli Studi dell’Insubria, Varese, Italy
E-mail: {barbara.carminati,elena.ferrari,andrea.perego}@uninsubria.it

Abstract

Current social networks implement very simple protec-
tion mechanisms, according to which a user can state
whether his/her personal data, relationships, and resources
should be either public or accessible only by him/herself
(or, at most, by users with whom he/she has a direct re-
lationship). This is not enough, in that there is the need
of more flexible mechanisms, making a user able to decide
which network participants are authorized to access his/her
resources and personal information. With this aim, in [2]
we have proposed an access control model where autho-
rized users are denoted based on the relationships they par-
ticipate in. Nonetheless, we believe that this is just a first
step towards a more comprehensive privacy framework for
social networks. Indeed, besides users’ resources and per-
sonal data, also users’ relationships may convey sensitive
information. For this reason, in this paper we focus on
relationship protection, by proposing a strategy exploiting
cryptographic techniques to enforce a selective dissemina-
tion of information concerning relationships across a social
network.

1 Introduction

In the last few years, social networks have become one
of the most successful services over the Web, exploited by
an exponentially increasing number of users [5]. The main
aim of Web-based social networks is to make available an
information space, where each social network participant
can publish and share information—such as personal data,
annotations, blogs, and, generically, resources—for a vari-
ety of purposes. In some social networks, users can spec-
ify how much they trust other users, by assigning them a
trust level. Information sharing is based on the establish-
ment of relationships of different types among participants
(e.g., “colleague of”, “friend of”), which are also used to
customize social network services. This is the case, for
instance, of collaborative rating and filtering, where users’
opinions are weighed on the basis of the existing relation-

ships and trust levels. The availability of this information
obviously raises privacy and confidentiality issues. In fact,
users’ personal data and resources are regularly exploited
not only by companies, for marketing purposes, but also
by governments and institutions for tracking persons’ be-
haviours/opinions, and, in the worst case, even by online
predators [1]. Moreover, the adoption of Semantic Web
technologies to represent personal information, user rela-
tionships, and trust levels [3], have increased information
interoperability, thus making simpler to access users’ data.

For these reasons, recently some social networks—
e.g., Facebook (http://www.facebook.com) and Viden-
tity (http://videntity.org)—have started to enforce
quite simple protection mechanisms, according to which
users can decide whether their data, relationships, and,
generically, resources, should be either public or accessi-
ble only by themselves and/or by users with whom they
have a direct relationship. However, such mechanisms are
not enough, in that they enforce too restrictive protection
policies. There is then the need of enforcing more flex-
ible strategies, making a user able to define his/her own
rules, denoting the set of network participants authorized
to access his/her resources and personal information, even
though they are not directly connected through a relation-
ship.

Some preliminary approaches addressing these issues
have been recently proposed. In [2] we have described a
flexible access control mechanism supporting a selective
dissemination of users’ resources in social networks. The
model presented in [2] denotes the users authorized to ac-
cess a resource in terms of the relationship type, depth, and
trust level that they should have with other users in the net-
work in order to gain access to the requested resource. To
the best of our knowledge, this is the first proposal of an
access control mechanism for social networks. As far as
access control enforcement is concerned, we have adopted
the client-side approach outlined by Weitzner et al. in [7],
where access to resources is granted if the requestor is able
to demonstrate that he/she satisfies the requirements (in
terms of relationships he/she participates in) stated by ac-
cess rules. Main benefits of such decentralized enforcement

1631-4244-0832-6/07/$20.00 ©2007 IEEE.

mechanism are in terms of scalability and efficiency of ac-
cess control. A mechanism to protect personal information
in social networks by using an anonymity-based approach
is described in [6]. The principle is that nodes in the net-
work are anonymous, and thus it is not possible to link a
node to a specific user, unless you already know him/her.
Such strategy has the advantage of keeping publicly avail-
able users’ data, but of avoiding that they can be used to
track the behaviour of specific persons.

In this paper, we focus on relationship protection, since
we believe that this is a fundamental issue that, to the best
of our knowledge, has never been addressed before. Rela-
tionships in a social network may give rise to some relevant
privacy concerns. For instance, a user would like to keep
private the fact that he/she has a relationship of a given type
with a certain user. In other cases, a user would like to
avoid other users know the existence of a relationship of a
given type, independently from the user with whom it is es-
tablished. Suppose, for instance, that a user u participates
to a network consisting of company X’s consultants. Even
though the identity of the other members of the community
is not revealed, knowing that user u is involved in such a
network discloses by itself private information.

For this purpose, here we complement the model pro-
posed in [2] with a mechanism able to enforce different pri-
vacy requirements on social network relationships. This is
a major extension in that it requires to first define a format
to express privacy requirements on relationships and then
to devise mechanisms to avoid leakage of private informa-
tion concerning relationships. The key point is that, since
relationships information is fundamental for access control,
we have to devise a method able to protect the privacy of
relationships and, at the same time, make such information
usable for access control purposes.

In order to address this issue, we specify privacy require-
ments through a set of distribution rules, which basically
state the protection requirements to be enforced on a rela-
tionship. Cryptographic-based techniques are then used to
enforce distribution rules and to avoid privacy breaches that
may arise when access control is carried out.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly summarizes the access control model pro-
posed in [2]. Section 3 illustrates our approach for relation-
ship protection, whereas Section 4 discusses the security is-
sues determined by relationship updates. Finally, Section 5
concludes the paper and outlines future research directions.

2 Background

In this section we briefly introduce the access control
model and the related mechanism presented in [2].

First of all, we denote a social network S N by a tu-
ple (VS N ,ES N ,RTS N ,TS N ,φES N), where VS N and ES N ⊆

A

B

C

D

E

F

G(colleagueOf , 0.6)

(friendOf , 1)

(colleagueOf , 0.2)

(friendOf , 1)

(colleagueOf , 0.2)

(friendOf , 1)

(friendOf , 0.8)

(colleagueOf , 0.5)

(colleagueOf , 0.4)

(friendOf , 0.2) (friendOf , 0.6)

(friendOf , 0.4)

(colleagueOf , 0.6)

Figure 1. A portion of a social network. La-
bels associated with edges denote, respec-
tively, the type and trust level of the corre-
sponding relationship.

[VS N]2 are, respectively, the nodes and edges of a di-
graph (VS N ,ES N), RTS N is the set of supported relation-
ship types, TS N is the set of supported trust levels, and
φES N : ES N → RTS N ×TS N is a function assigning to each
node e∈ES N a relationship type rt ∈RTS N and a trust level
t ∈ TS N . The number and type of relationships in RTS N and
trust levels in TS N depend on the specific social network and
its purposes; our only assumption is that |RTS N |> 0. Sim-
ilarly, each social network supports a different range and
type of trust levels [4], corresponding either to a set of in-
tegers or rational numbers, or to Boolean values. In case a
social network does not support trust, this means that all the
nodes are equally trustworthy, and thus we assume that each
edge is associated with the maximum level of trust. Given
an in/direct relationship rel between nodes v and v′, the trust
level of rel denotes how much v considers trustworthy v′ wrt
relationship rel. We do not enter here into the details of the
formulas used to calculate trust levels [4], which may vary
depending on the social network. However, we need to re-
mark that, regardless of the algorithm used to compute the
trust level t of a relationship of type rt between nodes v′ and
v, such calculation needs to take into account the trust levels
of all the edges belonging to paths corresponding to all the
existing in/direct relationships of type rt between v′ and v.
A simple example of social network is depicted in Figure 1.
In the figure, the initial node of an edge is the node which
established the corresponding relationship. E.g., the edge
connecting A to B states that B has a relationship of type rt
with A.

In the model described in [2], access control is enforced
through a set of access rules. Given a resource rsc, owned
by a node in S N , an access rule AR is a pair (rid,AC),
where rid is the identifier (i.e., the URI) of resource rsc, and
AC is the set of all the access conditions to be satisfied to ac-
cess resource rsc—i.e., a conjunction of access conditions.
An access condition is a tuple AC = (v,rt,d max,t min),
where v ∈ S N is the node with which the node requesting
a given resource must have a direct or indirect relationship,

164

whereas rt ∈ RTS N , d max, and t min are, respectively, the
type, maximum depth, and minimum trust level that the re-
lationship should have. The depth of a relationship of type
rt between two nodes v and v′ corresponds to the length
of the shortest v-v′ path consisting only of edges labelled
with rt. Finally, the same resource can be associated with
one or more alternative access rules: in other words, the set
AR = {AR1, . . . ,ARn} of access rules applying to a given re-
source rsc, corresponds to the disjunction (AR1∨·· ·∨ARn).

Example 2.1 (Access Rules) Consider the social network
in Figure 1, and suppose that D(avid) owns a resource rsc,
with identifier rid, and that he wishes to make rsc acces-
sible only to his friends, and to the friends of his friends,
with the constraint that their trust level must be at least
equal to 0.2. This policy can be expressed by the follow-
ing access rule: AR1 = (rid,{(D, friendOf ,2,0.2)}). Sup-
pose now that David decides to grant access also to his col-
leagues with a minimum trust level equal to 0.5. This can
be achieved by specifying an additional access rule AR2 =
(rid,{(D,colleagueOf ,1,0.5)}). By contrast, if David
wishes to grant access to resource rsc only to friends who
are also colleagues (with the same constraints on depth and
trust level in the examples above), he can specify the fol-
lowing access rule AR3 = (rid,{AC1,AC2}), where AC1 =
(D, friendOf ,2,0.2) and AC2 = (D,colleagueOf ,1,0.5).
This access rule ensures that access to rsc will be granted if
the requestor satisfies both AC1 and AC2.

Access control is enforced according to the approach
proposed in [7]. When a user (hereafter, the requestor) re-
quests a resource to another user (hereafter, the resource
owner), the former receives from the latter the set of ac-
cess rules regulating the release of the requested resource.
These rules basically state which type of relationship should
exist between the resource owner and the requestor, and the
maximum depth and minimum trust level required. The re-
questor has to provide the resource owner with a proof of the
requirements expressed by the received access rules, show-
ing that between them there exists the required relationship,
and that this relationship has the required depth and trust
level. Therefore, the first issue to be addressed is how a
resource owner can be ensured that proofs created by re-
questors are correct and trustworthy.

Since proofs demonstrate the existence of specific rela-
tionships involving the resource requestor, first of all we
certify relationships through the use of relationship certifi-
cates, which are generated by two nodes establishing a re-
lationship. Whenever a user, say Alice, establishes a new
relationship with Bob, they both create and sign a certifi-
cate stating that between them there exists a direct relation-
ship of a certain type and with a certain trust. By means of
relationship certificates, it is possible to verify the correct-
ness of proofs concerning the corresponding relationship.

The correctness of a proof related to an in/direct relation-
ship between Alice and Bob can be verified by retrieving
the chain of certificates confirming the existence of a path
between them. By contrast, verifying the trust level con-
tained into a proof needs a more complex strategy, since
the trust level between two nodes is computed taking into
account all the possible paths connecting them [4]. There-
fore, the requestor must provide the resource owner with
all the corresponding chains of certificates in order to let
him/her verify the correctness of the trust level certified by
the proof. Besides its inefficiency, this solution is liable
to security attacks, in that the resource owner cannot be
sure that the requestor has actually provided all the possi-
ble chains of certificates, or he/she has intentionally omit-
ted a chain with a low trust level. To overcome this draw-
back, we have adopted a slightly different architecture wrt
the one outlined by Weitzner et al. in [7]. Indeed, we pro-
pose a semi-decentralized architecture, according to which
a given trusted node in the network, referred to as central
node CN, is in charge of managing relationship certificates
and computing relationships’ trust levels. Thus, whenever a
requestor receives from the resource owner the access rules
regulating the release of one of his/her resources, the former
requests to CN the certificate chains proving the existence
of a given relationship with a given depth, as well as its trust
level. The certificate chains, if any, are generated by CN by
consulting the relationship certificate repository, and, before
being returned to the requestor, the corresponding trust level
is signed by CN. Then, the requestor exploits the received
certificate chains to generate the proof.

Example 2.2 (Access Control Enforcement) Consider
the social network in Figure 1, and suppose that G(reg)
requests to D(avid) the resource with ID rid. Sup-
pose, moreover, that the following access rule applies:
(rid,{(D, friendOf ,2,0.2)}). Two paths of type friendOf
and maximum depth equal to 2 exist between Greg and
David, namely, DEG and DFG, corresponding to the fol-
lowing chains of certificates: CCDEG = {(D, E, friendOf ,
0.8), (E, G, friendOf , 0.4)}; CCDFG = {(D, F, friendOf ,
0.2), (F, G, friendOf , 0.6)}. Based on such chains, CN
computes the trust level of the corresponding relationship.
For this purpose, we can sum the product of the trust
levels of certificates in the different chains, and then
divide the result by the number of chains. Thus we have:
1
2(0.4 ·0.8 + 0.6 ·0.2)= 0.22.

After having received from CN the certificate chains and
the average trust level, Greg computes the depth of the cor-
responding relationship, which is equal to the length of the
shortest chain. Greg then returns to David the set of certifi-
cate chains and the assertion (D,G, friendOf ,2,0.2), stat-
ing that between David and Greg there exists a relationship
of type friendOf , depth 2 and trust level 0.22. Since the as-
sertion satisfies the condition (D, friendOf ,2,0.2), access

165

to the resource is granted.

3 Relationship Protection

In the approach proposed in [2], relationships are as-
sumed to be public. Here, we extend such model by enforc-
ing privacy requirements on social network relationships.

Relationships play a crucial role in access control in that
relationship certificates are used by a requestor to prove
he/she has the credentials to access a given resource (see
Section 2). However, relationship certificates may convey
information that the nodes involved in the corresponding
relationship would like to keep private.

Consider, for instance, Example 2.2. At the beginning,
G is aware only of the relationships it participates in—i.e.,
it knows to be colleague of D, and friend of E and F . But
when G retrieves the chains of certificates from the central
node CN, it is informed that D is friend of C, E , and F , that
C is friend of F , and how much they trust each other. In case
C, D, E , or F would have liked to keep private all or part of
such relationships, the certificates returned by the central
node determine an improper dissemination of private infor-
mation.

For this reason, we propose a mechanism (described in
Section 3.1) according to which information about the exist-
ing relationships can be accessed only by authorized users.
Moreover, the proposed solution protects certificates also
from being accessed by the central node CN, that therefore
it is not required to be trusted.

However, relationship certificates are not the only means
by which information about relationships could be improp-
erly disseminated. Also access control should be carefully
considered. As an example, consider a node R asking a re-
source to a node O, and suppose, moreover, that O states
that in order to get access to the requested resource a node
must prove to have a relationship of type rt with it. In such
a case, R can infer that O participates in a relationship of
type rt with at least a node in the network, otherwise such
resource could not be accessed by anyone.

Relationship types may not require to be protected in
case they are ‘generic’, such as “friend”, “colleague”, etc.,
but in other scenarios access request answers may lead to an
inappropriate distribution of private information. Consider
for instance the case of a relationship of type “employee of
company X”: if such relationship type is used in an access
rule, all the nodes in S N may be aware of which is the
company that a given user is working for, by simply issuing
access requests to that node.

In the following sections, we illustrate the solutions we
have devised to address both the above-mentioned privacy
issues.

3.1 Protecting Relationship Certificates

In order to prevent unauthorized access to relationship
certificates, we associate with them one or more distribution
rules. Similarly to access rules, these rules contain a set
of distribution conditions determining the characteristics of
the users to whom certificate access is granted. The notion
of distribution condition is formally defined as follows.

Definition 3.1 (Distribution Condition) A distribution
condition DC for a relationship certificate RC is a tuple
(v,rt,d max), where v ∈ VS N is the node with which there
must exist a relationship of type rt ∈ RTS N and maximum
depth d max ∈N, in order to gain access to RC.

A set of distribution conditions DC related to a certifi-
cate is called distribution rule. More precisely, when a node
v wishes to establish a relationship with another node v′, v
negotiates with v′ the characteristics of the nodes that are
authorized to read the corresponding relationship certificate
RC, by specifying a set of distribution conditions DC. Then,
they generate a certificate key CK, i.e., a pair (kRC, idRC),
where kRC is a symmetric key and idRC is the correspond-
ing key identifier. The resulting distribution rule DR is a
pair (CK,DC) consisting of the certificate key CK and the
set of conditions DC denoting the nodes authorized to read
certificate RC.

The semantics of distribution conditions is the same
as access conditions, i.e., a distribution condition set
DC(DR) = {DC1, . . . ,DCn} of a distribution rule DR cor-
responds to the conjunction (DC1 ∧ ·· · ∧ DCn). In case
the distribution of a certificate key should be controlled
by alternative conditions, this is obtained by specifying a
set DR1 = (CK,DC1), . . . ,DRn = (CK,DCn) of distribution
rules containing the same certificate key CK but differ-
ent condition sets DC1, . . . ,DCn. Consequently, such set
DRCK = {DR1, . . . ,DRn} of distribution rules corresponds
to the disjunction (DR1∨·· ·∨DRn). Thus, the general form
of the distribution rules applying to a given certificate can
be expressed as the following logical formula in DNF:

(DC1∧·· ·∧DCk)∨·· ·∨ (DCm∧·· ·∧DCn)

Encrypted relationship certificates are stored into a pub-
lic certificate directory C D , managed by the central node.
More precisely, once the agreement has been reached, v
sends to C D the tuple (idRC,EkRC (RC)).1 The idea is that
nodes v and v′ distribute the certificate key CK to all and
only the nodes satisfying the distribution rules they have
specified for certificate RC. For this purpose, any node in
S N is equipped with a certificate key directory CKD, stor-
ing the set DRCK of distribution rules concerning each cer-
tificate key CK it received.

1Ek(d) denotes the encryption of d with key k.

166

Algorithm 1 Certificate Key Distribution
1: Input A node v ∈VS N , a set of nodes V ⊆VS N , and a set of distribu-

tion rules DR⊆ CKDv

2: for all DR ∈ DR do
3: for all v ∈V do
4: if ∀DC ∈ DC(DR), v has a relationship of type rt(DC) with v

then
5: d max← d max(DC)−1
6: DC← (v,rt,d max)
7: DC← DC∪{DC}
8: else
9: DC← /0

10: break
11: end if
12: if |DC|> 0 then
13: send (CK(DR),DC) to v
14: end if
15: end for
16: end for

Example 3.1 (Distribution Rules) Consider the social
network in Figure 1, and suppose that D(avid) estab-
lishes a relationship rel, which he wishes to disclose
only to his friends and to the friends of his friends.
This policy can be expressed by the distribution rule
DR1 = (CK,{(D, friendOf ,2)}). Suppose now that David
decides that also his colleagues can read relationship
rel. This can be achieved by specifying an additional
distribution rule DR2 = (CK,{(D,colleagueOf ,1)}). Thus,
the certificate key CK will be distributed to all the nodes
in S N satisfying either AR1 or AR2. By contrast, in case
David wishes to disclose rel only to friends who are also
colleagues (with the same constraints on depth in the exam-
ples above), he can specify the following distribution rule
DR3 = (CK,{DC1,DC2}), where DC1 = (D, friendOf ,2)
and DC2 = (D,colleagueOf ,1).

The distribution of certificate keys is carried out accord-
ing to a protocol, described by Algorithm 1, involving all
the nodes authorized to access the corresponding relation-
ship certificates, which is performed each time a node es-
tablishes a new relationship, or when the node receives a
new certificate key from one of its neighbours, to verify
whether such key must be further distributed. It is impor-
tant to note that distribution rules are not delivered in their
original form, but they are transformed in order to be rela-
tive to the receiving node. More precisely, the node compo-
nents of each distribution condition are substituted with the
identifier of the node receiving the rule, whereas the depth
components are decreased by a unit. Consequently, as soon
as the depth component of at least one of the conditions in
the distribution rule is equal to 0, the distribution of the cor-
responding certificate key is stopped, and then we say that
such distribution rule is no longer active (see Example 3.2).

The algorithm receives as input three parameters (line 1):
the node v executing the protocol, a set of nodes V ⊆ VS N ,

and a set of distribution rules DR included into the certifi-
cate key directory CKDv of v. The elements of sets V and
DR depend on whether the protocol is executed after v has
established a new relationship or when v receives a new cer-
tificate key. In the former case, V has only one element,
corresponding to the node v with which v established the
new relationship, whereas DR contains all the active dis-
tribution rules—i.e., the rules where, for each access con-
dition, the maximum depth component is greater than 0.
By contrast, if the protocol is executed when v receives a
new certificate key CK, V corresponds to the set V (v) of its
neighbours, whereas DR contains just the distribution rule
DR = (CK,DC) of key CK. Node v, then, verifies whether
the nodes in V satisfy the set of conditions DC(DR) of each
distribution rule DR ∈ DR (lines 2-4). This is achieved by
retrieving the sets of certificates in the directory CDv of
v, concerning relationships between v and each one of its
neighbours v ∈V , and then comparing the relationship type
components of such certificates with those in the access
conditions in DC(DR). Thus, if v satisfies DR, v computes
the modified conditions to be sent to v, and builds the cor-
responding condition set DC (lines 5-7); otherwise, DC is
set to the empty set, and the loop is stopped (lines 9-10). Fi-
nally, if the set DC of modified distribution conditions is not
empty, v sends to v a distribution rule DR consisting of the
certificate key CK(DR) of the original distribution rule DR,
and the set of modified distribution conditions DC (lines 12-
14).

Example 3.2 (Certificate Key Distribution) Consider the
social network in Figure 2(a), where rt and rt′ stand
for friendOf and colleagueOf , respectively. Suppose that
D(avid) wishes to establish a new relationship of type
friendOf with A(lice). Thus, Alice and David generate
a certificate RC=(D,A, friendOf ,0.5) and a certificate key
CK=(kRC, idRC).

Suppose they agree on a (single) distribution rule con-
taining the condition DC=(D, friendOf ,2), stating that cer-
tificate RC should be disclosed only to David’s friends, and
to the friends of his friends. Then, David sends CK and
a transformed version of DC to Alice, C(arl), E(ve), and
F(rank)—i.e., all David’s neighbours with whom he estab-
lished a relationship of type friendOf . The transformed
versions of DC are the following: Alice: (A, friendOf ,1);
Carl: (C, friendOf ,1); Eve: (E, friendOf ,1); Frank:
(F, friendOf ,1).

Then, Alice sends CK and further transformed versions
of DC to Bob, Carl to Frank (who already received CK,
and thus he ignores the new distribution rule), whereas
both Eve and Frank send them to G(reg). Thus, Bob
and Greg will receive the following distribution condi-
tions: Bob: (B, friendOf ,0); Greg (from Eve and Frank):
(G, friendOf ,0). Therefore, Greg receives two copies of the
same rule for the same certificate key, of which he will ig-

167

A

B

C

D

E

F

G(rt′, 0.6)

(rt, 1)

(rt′, 0.2)

(rt, 1)

(rt′, 0.2)

(rt, 1)

(rt, 0.8)

(rt′, 0.5)

(rt′, 0.4)

(rt, 0.2) (rt, 0.6)

(rt, 0.4)

(rt′, 0.6)

(a)

A

B

C

D

E

F

G

(CK , {(E, rt, 1)})

(CK , {(G, rt, 0)})

(CK , {(C, rt, 1)})

(CK , {(G, rt, 0)})

(CK , {(A, rt, 1)})

(CK , {(F, rt, 1)})

(CK , {(B, rt, 0)})

(CK , {(F, rt, 0)})

(rt′, 0.2)

(rt′, 0.2)

(rt, 0.4)

(rt′, 0.6)

(b)

A

B

C

D

E

F

G

(CK , {(E, rt, 1), (E, rt′, 0)})

(CK , {(A, rt, 1), (A, rt′, 0)})

(rt′, 0.2)

(rt, 0.4)

(rt, 1)

(rt′, 0.2)

(rt, 1)

(rt, 1)

(rt, 0.4)

(rt, 0.2) (rt, 0.6)

(rt′, 0.6)

(c)

A

B

C

D

E

F

G(CK , {(A, rt, 1)})

(CK , {(C, rt, 1)})

(CK , {(E, rt, 1), (E, rt′, 0)})

(CK , {(F, rt, 1)})

(CK , {(B, rt, 0)})

(CK , {(G, rt, 0)})

(CK , {(F, rt, 0)})

(CK , {(B, rt′, 0)})

(CK , {(G, rt, 0)})

(rt′, 0.2)

(rt, 0.4)

(rt′, 0.6)

(d)

Figure 2. Figures 2(b)-2(d) depict three examples of certificate key distribution, based on the graph in
Figure 2(a), referring to the establishment of a relationship of type rt = friendOf between nodes D and
A. Continuous edges denote relationships, whereas dotted edges denote certificate keys delivery.

nore the later one. Finally, since the maximum depth in the
conditions above is 0, Bob and Greg do not distribute cer-
tificate key CK to their neighbours (see Figure 2(b)).

All the nodes involved in the distribution of CK store it
in their certificate key directories, along with the distribu-
tion condition they received. Thus, whenever Alice or Eve
establish a new relationship of type friendOf with a node
v ∈ S N , they will send to v both CK and a modified version
of the stored distribution condition, in case v satisfies it.

Suppose now that RC is associated with an additional
distribution condition (D,colleagueOf ,1). Therefore, the
distribution rule related to RC is (CK, {(D, friendOf , 2),
(D, colleagueOf , 1)}). According to the semantics of a
condition set, the nodes authorized to access certificate
RC are those participating with David in a relationship
of type friendOf , with a depth not greater than 2, and of
type colleagueOf , with a depth not greater than 1. Besides
Alice, only Eve satisfies such conditions, and thus David
sends them the transformed version of the distribution rule
(CK,{(D, friendOf ,1),(D,colleagueOf ,0)}). By contrast,
Alice and Eve will not distribute the received certificate key
to any of their neighbours, since one of the received condi-
tions has a maximum depth equal to 0 (see Figure 2(c)).

Finally, suppose that with certificate RC two distribution
rules are associated, namely (CK,{(D, friendOf ,2)}) and
(CK,{(D,colleagueOf ,1)}). In such a case, the certificate
key will be distributed also to Bob, however each authorized
neighbour will receive only the distribution rule he/she sat-

isfies. In other words, Alice, Carl, Frank, and Greg will re-
ceive only the modified version of (CK,{(D, friendOf ,2)}),
Bob the modified versions of (CK, {(D, colleagueOf , 1)})
from David and of (CK,{(D, friendOf ,2)}) from Alice,
whereas Eve will receive the modified versions of both from
David, since she has with him relationships of both types
friendOf and colleagueOf (see Figure 2(d)).

3.2 Protecting Relationships in Access
Rules

As we have seen at the beginning of this section, an-
swers to an access request may reveal private information
about the relationships existing among social network par-
ticipants. The reason is that, when a user requests a re-
source, the resource owner replies with an access rule,
which contains, among others, the relationships that the re-
questor must have with a specific user in order to grant the
access. If the owner wants to keep private some types of re-
lationships he/she has with other network nodes, this mech-
anism could lead to privacy breaches.

To avoid that, we adopt a cryptographic-based approach
according to which relationship types are associated with
encryption keys that are used to hide relationship infor-
mation into access control rules. Whenever a node v es-
tablishes a relationship of type rt with a node v′, besides
performing all procedures concerning certificate generation
and certificate key distribution illustrated in Section 3.1,

168

they also agree on a symmetric key krt and a key identi-
fier idrt to be associated with that specific relationship type,
if a key has not yet been assigned to rt. Moreover, each
node of the social network is equipped with a directory
RKD, called relationship key directory, to store these keys.
More precisely, both v and v′ store in their directories a tuple
RKrt = (krt, idrt,rt). If, subsequently, nodes v and v′ estab-
lish new relationships of the same type rt with other nodes,
they distribute RKrt also to the new neighbours, so that key
krt can be used also by them when establishing relationships
of type rt. Therefore, krt will be associated with relationship
type rt for a community (i.e., a subgraph) SNrt ⊆ S N .

To protect relationship information into access control
rules, the idea is that access conditions are not maintained
in clear into access rules, rather they are encrypted with
the keys of the corresponding relationship types. More pre-
cisely, suppose that a node v ∈ SNrt specifies an access rule
AR = (rid, {AC1, . . . , ACn}), and let rt(AC1), . . . ,rt(ACn)
be the relationship types appearing in access conditions
AC1, . . . ,ACn, respectively. Each access condition ACi is
encrypted with the key ki, i ∈ [1,n], corresponding to the
relationship type rt(ACi), and then the tuple (rid, {(id1,

Ek1(AC1)), . . . , (idn, Ekn(ACn))}) is stored into the access
rule base of node v.

Since all the nodes in SNrt have key krt, they are able to
read all the access conditions concerning such relationship
type. By contrast, all the other nodes are not able to read the
access conditions, and therefore of inferring the existence
of a relationship of type rt involving a subset of the network
participants.

Suppose now that there exist two communities
SNrt,SN′rt ⊂ S N , such that SNrt ∩SN′rt = /0, which use two
distinct keys krt,k′rt for the same type of relationship rt. It
may then happen that two nodes v ∈ SNrt and v′ ∈ SN′rt es-
tablish a new relationship of type rt. In such a case, the
two communities are merged, and, consequently, the nodes
in SNrt (SN′rt) must be authorized to read any access con-
dition concerning relationship rt specified by the nodes in
SN′rt (SNrt).

In order to address this scenario, we adopt a key agree-
ment and distribution protocol according to which, when-
ever two nodes v and v′ wish to establish a relationship of
type rt, the corresponding key is determined as follows:

1. If they do not already have a key for such type of rela-
tionship, they generate a new key krt; otherwise,

2. If both of them have the same key krt or if only one of
them have a key krt for such type of relationship, they
both use key krt; otherwise,

3. If they have two distinct keys krt,k′rt for such type of
relationship, they exchange keys krt,k′rt, and distribute
them to their communities SNrt and SN′rt. Then, they

A

B

C

D A′

B′

C′

D′

ts1

ts2

ts3

ts4

ts
′
1

ts
′
2

ts
′
3

ts
′
4

ts5

Figure 3. Two connected subgraphs of a so-
cial network, where edges denote the same
type of relationship friendOf , whereas the la-
bels associated with edges denote the in-
stant TS (TS′) in which the corresponding re-
lationship has been established.

use the older for encrypting access conditions. As a
result, both the communities SNrt and SN′rt are able to
read access conditions concerning relationship type rt,
specified by one of their nodes.

Example 3.3 (Relationship Key Distribution) Consider
the two connected subgraphs SN,SN′ of a social network
S N depicted in Figure 3, where VSN = {A,B,C,D} and
VSN′ = {A′,B′,C′,D′}. We assume that, at a given instant
TS0 (TS′0), none of the nodes in SN (SN′) participate
in a relationship of type friendOf . Then, at instant
TS1 > TS0 (TS′1 > TS′0), node A (A′) establishes a rela-
tionship of type friendOf with node B (B′). They agree
on a relationship key RK = (kfriendOf , idfriendOf , friendOf)
(RK′ = (k′friendOf , id

′
friendOf , friendOf)), and they store it

into their relationship key directories. When node A (A′), at
instant TS2 > TS1 (TS′2 > TS′1), establishes a relationship
of type friendOf with node C (C′), since such node does
not have a key for relationship friendOf , they use the one
formerly agreed by A and B (A′ and B′). The same happens
when node B (B′), at instant TS3 > TS2 (TS′3 > TS′2),
establishes a relationship of type friendOf with node D
(D′). Finally, at instant TS4 > TS3 (TS′4 > TS′3), node C
(C′) establishes a relationship of type friendOf with node
D (D′). They both have a key for such type of relationship
in their relationship key directories, corresponding to the
relationship key formerly agreed by A and B (A′ and B′). As
a result, we have nodes belonging to two distinct subgraphs
which use two distinct relationship keys RKfriendOf and
RK′friendOf . Suppose now that node D, at instant TS5

(with TS5 > TS4 and TS5 > TS′4), wishes to establish a
relationship of type friendOf with node D′. Since they
have two distinct keys for the same relationship type, they
exchange such keys, and distribute them to SN and SN′,
respectively. Nodes D and D′ now have two different keys
for the same relationship type. When they need to use

169

them for encrypting access conditions, they will use the
older one—i.e., D will use RKfriendOf whereas D′ will use
RK′friendOf .

Having relationship certificates and access rules not pub-
lic implies to modify the access control procedure described
in Section 2. In particular, one of the main differences is
related to the computation of trust. In fact, since relation-
ship certificates are now not accessible by the central node
CN, we cannot rely on it in order to perform such task.
Therefore, when computing trust, we do not consider all the
chains of certificates corresponding to the relationship(s)
between the requestor and the node(s) specified by the ac-
cess rule(s), since one or more certificates in such chains
may be not accessible to the requestor itself. Rather, we
apply a solution according to which trust is computed wrt a
single certificate chain satisfying the access rules associated
with the requested resource.

In brief, the access control procedure works as follows:

1. when an access rule AR is returned to a requestor, if
such node is not able to decrypt one or more of the
corresponding access conditions AC(AR), it is aware to
be not authorized to access the requested resource, and
then it does not carry on the access control procedure;
otherwise,

2. the requestor sends to the central node the set of cer-
tificate key identifiers stored in its certificate key di-
rectory, thus obtaining the corresponding set C of en-
crypted relationship certificates;

3. the requestor decrypts the certificates in C, builds the
corresponding set CC of certificate chains (if any), and
computes the depth and trust level of each of them;
then,

4. for each condition AC ∈ AC(AR), the requestor selects
one of the certificate chains in CC satisfying AC (if
any), and returns both the chain and the proof of AR to
the resource owner.

Example 3.4 (Access Control Enforcement) Consider
the social network in Figure 1, and suppose that the nodes
in the network have the following relationship keys:

• (k0, id0, friendOf): A,B;

• (k1, id1, friendOf): C,D,E,F,G;

• (k2, id2,colleagueOf): A,B,D,E,G.

Suppose that D(avid) owns a resource rsc on which the
following encrypted access rule applies: (rid, {(id1, Ek1(D,

friendOf , 2, 0.3))}). If A(lice) requests access to such re-
source, she will not be able to decrypt the access condition,
since she does not have key k1. Since Alice is not authorized

to access resource rsc, rule encryption has two main advan-
tages: on the one hand, the information about the relation-
ship in which David participates is not released to Alice;
on the other hand, the access control procedure is not per-
formed uselessly. By contrast, if G(reg), who is authorized
to access resource rsc, submits the same access request, he
will be able to decrypt the access condition and to perform
the access control procedure. This applies also to F(rank),
even though he is not authorized to access resource rsc,
since his relationship with David has a trust level equal to
0.2.

4 Certificate Revocation

In the previous section, we illustrated how information
about the existing relationships can be protected, consid-
ering a scenario where the number of edges in the graph
increases. Nonetheless, in a social network, users are able
not only to establish new relationships, but also to revoke
existing ones.

Certificate revocation impacts access control, in that,
when access control is performed, it is necessary to ver-
ify whether a certificate has been revoked in order to avoid
unauthorized accesses to resources. In fact, a node may
store all the certificates retrieved from the central node, and
then use them to give proofs of access rules. This has the ad-
vantage of reducing the number of requests submitted to the
central node, but the consequence is that the node owning
a resource may accept as proof certificates referring to rela-
tionships that do not exist any more. If certificate revocation
is not properly managed, we may also have unauthorized
distribution of certificate keys. Consider, for instance, the
graph in Figure 2(b), and suppose that it depicts the state of
the network at a given instant TS0. Then, at a given instant
TS1 > TS0, D revokes the certificate to A, concerning the
relationship of type rt, to which the following distribution
condition is associated: (A,rt,1). Since this condition has a
maximum depth greater than 0, A will distribute the certifi-
cate key to its neighbours, when establishing a relationship
of type rt, even after TS1, although they are no longer au-
thorized to access the certificate. Relationship keys have a
similar problem. In fact, once a node has received them, it
can read access rules even though, in a subsequent instant,
it will be not authorized to do that, because one or more
certificates have been revoked.

In order to take into account these issues, we adopt a
strategy according to which, whenever a certificate is re-
voked, this is notified to the central node CN, which re-
moves such certificate from the central certificate directory
C D , and stores the corresponding key identifier into a cer-
tificate revocation list C R L , hosted by the central node it-
self. Then, CN sends a message to all the nodes in the net-
work, informing them that the certificate corresponding to

170

a given key identifier has been revoked. Consequently, all
the nodes remove from their directories the certificate and
certificate key, respectively, corresponding to that key iden-
tifier. Since such notification may be delayed, an additional
check is performed by the nodes in the network before ac-
cepting a proof or distributing a certificate key. More pre-
cisely, whenever a node receives from another node a certifi-
cate chain, it queries the certificate revocation list in order
to verify whether one or more certificates in the chain have
been revoked. Similarly, before distributing a certificate
key, a node verifies whether the corresponding key iden-
tifier is in C R L . Note that the strategy illustrated above
addresses security issues concerning access control and cer-
tificate protection, but it does not apply to relationship keys,
which are not directly associated with a certificate, and thus
cannot be easily tracked. Indeed, it may happen that a user
owning the key corresponding to a given relationship type
may exploit it even if it is no longer involved in relation-
ships of that type. Consequently, that user may be aware,
by issuing proper access requests, that a member has estab-
lished a relationship of that type, even if he/she may not
know with whom it has been established. We plan to deal
with this issue in future work; however, such risk can be
limited by periodically re-generating relationship keys.

5 Conclusions & Future Work

Web-based social networks store and make publicly
available a variety of personal information concerning reg-
istered users, which may be exploited for purposes different
from the intended ones. In order to address this issue, in this
paper we have proposed an approach aimed at enforcing pri-
vacy protection on the relationships existing between social
network users. We are currently implementing our model
into a prototype system making use of the most recent social
network technologies. More precisely, the prototype system
is built as a set of Web services, communicating through
SOAP interfaces, where information concerning relation-
ship certificates and both certificate and relationship keys
is stored in RDF format. The central node is built as a so-
cial network management system, which supports the basic
functionalities of a social network. By contrast, peripheral
nodes consist of a client-side and a server-side component.
The former is built as an extension for the Firefox browser,
and it is in charge of generating and delivering certificates,
certificate and relationship keys, submitting access requests,
and of carrying out the access control procedure. By con-
trast, the server-side component is in charge of storing and
managing relationship certificates, certificate and relation-
ship keys, and of controlling access to resources.

We plan to extend the work reported in this paper along
several directions. First, based on the prototype we are de-
veloping, an extensive performance evaluation will be car-

ried out in order to assess the feasibility and scalability of
the devised strategies. Then, we will investigate more so-
phisticated mechanisms for managing updates to users’ re-
lationships and distribution rules, with a particular attention
to revocation of relationship keys. Finally, we plan to ex-
tend our model, on one hand, by taking into account other
possible parameters relevant to control information dissem-
ination (such as the number of relationships a node partic-
ipates in), and, on the other hand, by enforcing both pos-
itive and negative access/distribution rules, and by denot-
ing resources to be protected not only by their identifiers,
but also on the basis of their characteristics. In fact, in
the current version of our model, access/distribution rules
can denote only the authorized users, whereas they do not
allow the specification of a policy stating that a given re-
source can be accessed, for instance, by the users who are
friends but not colleagues of mine. For the same reason, if
we wish to hide a specific portion of a resource, this can
be done only by specifying access rules for all the other
ones. Finally, content-based access control can be used to
further reduce the number of rules to be specified and to
simplify their management, based on the principle that re-
sources sharing similar characteristics should have similar
protection requirements.

References

[1] S. B. Barnes. A privacy paradox: Social networking in the
United States. First Monday, 11(9), Sept. 2006. Available
at: http://www.firstmonday.org/issues/issue11_9/
barnes.

[2] B. Carminati, E. Ferrari, and A. Perego. Rule-based access
control for social networks. In Proc. of the OTM Workshops
2006, number 4278 in LNCS, pages 1734–1744. Springer-
Verlag, 2006.

[3] L. Ding, L. Zhou, T. Finin, and A. Joshi. How the Seman-
tic Web is being used: An analysis of FOAF documents. In
Proc. of the 38th Annual Hawaii International Conference on
System Sciences (HICSS’05), page 113.3. IEEE CS, 2005.

[4] J. A. Golbeck. Computing and Applying Trust in
Web-based Social Networks. PhD thesis, Graduate
School of the University of Maryland, College Park,
2005. Available at: http://trust.mindswap.org/
papers/GolbeckDissertation.pdf.

[5] S. Staab, P. Domingos, P. Mika, J. Golbeck, L. Ding, T. W.
Finin, A. Joshi, A. Nowak, and R. R. Vallacher. Social net-
works applied. IEEE Intelligent Systems, 20(1):80–93, 2005.

[6] D.-W. Wang, C.-J. Liau, and T. sheng Hsu. Privacy protection
in social network data disclosure based on granular comput-
ing. In Proc. of the 2006 IEEE International Conference on
Fuzzy Systems (HICSS’05), pages 997–1003. IEEE CS, 2006.

[7] D. J. Weitzner, J. Hendler, T. Berners-Lee, and D. Connolly.
Creating a policy-aware Web: Discretionary, rule-based ac-
cess for the World Wide Web. In E. Ferrari and B. Thuraising-
ham, editors, Web & Information Security, pages 1–31. IDEA
Group Publishing, Hershey, PA, 2006.

171

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

